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Abstract: In this paper, the Elzaki transform decomposition method is implemented to solve the
time-fractional Swift–Hohenberg equations. The presented model is related to the temperature
and thermal convection of fluid dynamics, which can also be used to explain the formation pro-
cess in liquid surfaces bounded along a horizontally well-conducting boundary. In the Caputo
manner, the fractional derivative is described. The suggested method is easy to implement and
needs a small number of calculations. The validity of the presented method is confirmed from the
numerical examples. Illustrative figures are used to derive and verify the supporting analytical
schemes for fractional-order of the proposed problems. It has been confirmed that the proposed
method can be easily extended for the solution of other linear and non-linear fractional-order partial
differential equations.

Keywords: Elzaki transformation; Adomian decomposition method; time-fractional Swift–Hohenberg
equation; Caputo operator

1. Introduction

The concept of Fractional Calculus (FC) is old, which arises from the nth derivative
notation used by Leibniz in their publication. So, L’Hopital asks Leibniz what the result
would be if the order is non-integer [1]. Riemann and Liouville defined the concept of
fractional order differentiation in the 19th century. Later on, researchers began to research
FC and found that fractional-order models are more suitable than integer-order models
for some real-world problems [2–4]. FC is an efficient and powerful tool for describing
memory and hereditary properties in various materials and processes.

Fractional Differential Equations (FDEs) have significantly gained much attention
from researchers due to providing fractional modeling of different phenomena in nature.
Due to this reason, the implementation of FDEs to model different physical systems and
processes has been increased, for example, colored noise [5], economics [6], oscillation
of earthquake [7], and bioengineering [8]. The other applications are control theory [9],
rheology [10], visco-elastic materials [11], signal processing [12], damping method [13],
polymers [14], and so on. The scheme consisting of integer partial differential equations
and fractional-order partial differential equations with the fractional Caputo derivative
has a well-designed symmetry structure. This problem is utilized to analyze dispersive
wave phenomena in different areas of applied science, like quantum mechanics and plasma
physics. Nonlinear phenomena play a crucial role in applied mathematics and physics;
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we know that most engineering problems are non-linear, and solving them analytically
is difficult. In physics and mathematics, obtaining exact or approximate solutions to
nonlinear FPDEs is still a significant problem that requires new methods to discover exact
or approximate solutions.

Because of the above fact, researchers have developed numerous numerical and
analytical techniques for the solution of FPDEs [15,16]. In [17], A.A. Alderremy et al.
used Modified Reduced Differential Transform Method (MRDTM) to solve the fractional
nonlinear Newell–Whitehead–Segel equation. M.S. Rawashdeh and H. Al-Jammal [18]
implemented the fractional natural decomposition method (FNDM) for finding approx-
imate analytical solutions to systems of nonlinear PDEs. Certain analytical solutions of
the fractional-order diffusion equations were found by K. Shah et al. [19], who used Nat-
ural Transform Method (NTM). To obtain the approximate and exact solutions of space
and time-fractional Burgers equations with initial conditions [20], M. Inc implemented a
variational iteration method.

In [21], using the approximate analytical method, travelling wave solutions for
Korteweg-de Vries equations having fractional-order were discussed. Similarly, in [22],
F.A. Alawad et al. solved space-time fractional telegraph equations using a new technique
of the Laplace variational iteration method. H. Jafari et al. [23] found the approximate
solution of the nonlinear gas dynamic equation by implementing homotopy analysis
method. To obtain a series form solution of time-fractional coupled Burgers equations.
P. Veereshaa and D.G. Prakash used a reliable technique q-homotopy analysis transform
method (q-HATM) [24]. In [25], L. Yan used the iterative Laplace transform method, which
combines two methods, the iterative method, and the Laplace transform method, to obtain
the numerical solutions of fractional Fokker–Planck equations.

However, we used a new technique formed by the combination of Elzaki trans-
form [26] and the Adomian decomposition method [27,28] known as the Elzaki Transform
Decomposition Method (ETDM). The Elzaki transformation is renowned for handling
linear ordinary differential equations, linear partial differential equations, and integral
equations, as seen in [29–31]. In contrast, the Adomian decomposition method [27,28] is
a well-known method for handling linear and nonlinear, homogeneous and nonhomoge-
neous differential and partial differential equations, integro-differential, and FDEs series
form solution.

In this paper, we aim to solve Swift–Hohenberg (S-H) equation with the help of
ETDM. The S-H equation was first introduced and derived from the equations for thermal
convection by J. Swift and P. Hohenberg [32]. The general form of the S-H equation is

∂δρ

∂τδ
= bρ−

(
1 +

∂2

∂τ2

)
ρ− N(ρ), b ∈ R, 0 < δ ≤ 1, (1)

where ρ is a scalar function, b is the real constant, and N(ρ) is a nonlinear term. The
S-H equation has many applications in engineering and science, such as physics, biology,
laser study fluid, and hydro-dynamics [33–35]. The S-H equation plays an important role
in pattern formation theory in fluid layers confined between horizontal well-conducting
boundaries [36]. This equation has many applications in the modeling pattern formation
and its different issues, including the selection of pattern, effects of noise on bifurcations,
the dynamics of defects, and spatiotemporal chaos [37–40].

2. Preliminaries

In this subsection, we recall some simple and most significant concepts concerning
fractional calculus.
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Definition 1 ([41–43]). Abel-Riemann (A-R) described Dδ operator of the δ order as

Dδρ(ψ) =


dn

dψn ρ(ψ), δ = n;

1
Γ(n− δ)

d
dψn

∫ ψ

0

ρ(T )
(ψ− τ)δ−n+1 dτ, n− 1 < δ < n,

(2)

where δ ∈ R+, n ∈ Z+ and

D−δρ(ψ) =
1

Γ(δ)

∫ ψ

0
(ψ− τ)δ−1ρ(τ)dτ, 0 < δ ≤ 1. (3)

Definition 2 ([42,43]). The fractional order A-R integral operator Jδ is given as

Jδρ(ψ) =
1

Γ(δ)

∫ ψ

0
(ψ− τ)δ−1ρ(τ)dτ, τ > 0, δ > 0. (4)

By Podlubny [42] we may have

Jδτn =
Γ(n + 1)

Γ(n + δ + 1)
τn+δ, (5)

Dδτn =
Γ(n + 1)

Γ(n− δ + 1)
τn−δ. (6)

Definition 3 ([41,42,44,45]). In the Caputo manner, the operator Dδ with the order δ is given as

Dδρ(ψ) =


1

Γ(n− δ)

∫ ψ

0

ρn(τ)

(ψ− τ)δ−n+1 dτ, n− 1 < δ < n;

dn

dτn ρ(ψ), δ = n
(7)

with the following properties:

(a) Dδ
τ Jδ

τ f (τ) = f (τ);

(b) Jδ
τ Dδ

τ f (τ) = f (τ)−
n

∑
k=0

f k(0+)
τk

k!
(8)

for τ > 0 and n− 1 < δ ≤ n, n ∈ N.

Definition 4 ([46]). The Mittag–Leffler function ψ is defined as

Eδ(ψ) =
∞

∑
k=0

ψk

Γ(δk + 1)
, δ > 0. (9)

For a f (t) function, the ET or modified Sumudu transform definition is given as

E[ f (τ)] = F(r) = r
∫ ∞

0
h(τ)e

−τ
r dτ, r > 0. (10)

The transformation of Elzaki is a very useful and powerful tool for solving the integral
equation that can not be solved by the Sumudu transformation method.

The following ET transformations of partial derivatives, which can be obtained by
using integration by parts, may be used in (8):

1. E[
∂ f (ψ, τ)

∂τ
] =

1
r

F(ψ, r)− r f (ψ, 0).

2. E[
∂2 f (ψ, τ)

∂τ2 ] =
1
r2 F(ψ, r)− f (ψ, 0)− r

∂ f (ψ, 0)
∂τ

.
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3. E[
∂ f (ψ, τ)

∂ψ
] =

d
dψ

F(ψ, r).

4. E[
∂2 f (ψ, τ)

∂ψ2 ] =
d2

dψ2 F(ψ, r).

Theorem 1 ([47]). Let U(s) be the Laplace transform of f (τ) then ET F(r) of f (τ) is specified as

F(r) = rU(
1
r
). (11)

Theorem 2 ([47]). If F(r) is the ET of the f (τ) function, then

E[Dδ f (τ)] =
F(r)
rδ
−

n−1

∑
k=0

rk−δ+2 f (k)(0), n− 1 < δ ≤ n. (12)

3. Idea of ETDM

The ETDM solution for fractional partial differential equations is described in this section.

Dδ
τρ(ψ, τ) + Ḡ1ρ(ψ, τ) +N1ρ(ψ, τ)−P1(ψ, τ) = 0, n− 1 < δ ≤ n (13)

with initial conditions
ρ(ψ, 0) = g1(ψ), (14)

where Dδ
τ = ∂δ

∂τδ is the fractional derivative in Caputo sense having order δ, Ḡ1 and N1 are
linear and non-linear functions, respectively, and source operator is P1.

By applying Elzaki transform on both sides of (13), we obtain

E[Dδ
τρ(ψ, τ)] + E[Ḡ1ρ(ψ, τ) +N1ρ(ψ, τ)−P1(ψ, τ)] = 0. (15)

By Elzaki transform property of differentiation, we get

E[ρ(ψ, τ)] = sδ
m−1

∑
k=0

s2+k−δ ∂kρ(ψ, τ)

∂kτ
|τ=0

+ sδE[P1(ψ, τ)]− sδE{Ḡ1ρ(ψ, τ) +N1ρ(ψ, τ)}]. (16)

ETDM determines the solution of the infinite sequence of ρ(ψ, τ)

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ). (17)

The decomposition of nonlinear terms by Adomian polynomials N1 is defined as

N1ρ(ψ, τ) =
∞

∑
m=0
Am. (18)

The Adomian polynomials can represent all forms of nonlinearity as

Am =
1

m!

[
∂m

∂`m

{
N1

(
∞

∑
k=0

`kψk,
∞

∑
k=0

`kτk

)}]
`=0

. (19)
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Putting (17) and (19) into (16), gives

E

[
∞

∑
m=0

ρm(ψ, τ)

]
= sδ

m−1

∑
k=0

s2+k−δ ∂kρ(ψ, τ)

∂kτ
|τ=0 + sδE

{P1(ψ, τ)} − sδE

{
Ḡ1ρ(

∞

∑
m=0

ψm,
∞

∑
m=0

τm) +
∞

∑
m=0
Am

}
. (20)

By applying inverse Elzaki to (20), we obtain

∞

∑
m=0

ρm(ψ, τ) = E−
[

sδ
m−1

∑
k=0

s2+k−δ ∂kρ(ψ, τ)

∂kτ
|τ=0 + sδE

{P1(ψ, τ)} − sδE

{
Ḡ1ρ

(
∞

∑
m=0

ψm,
∞

∑
m=0

τm

)
+

∞

∑
m=0
Am

}]
. (21)

The following terms are described as

ρ0(ψ, τ) = E−
[

sδ
m−1

∑
k=0

s2+k−δ ∂kρ(ψ, τ)

∂kτ
|τ=0 + sδE+{P1(ψ, τ)}

]
,

ρ1(ψ, τ) = −E−
[
sδE+{Ḡ1ρ(ψ0, τ0) +A0}

]
, (22)

for m ≥ 1, is determined as

ρm+1(ψ, τ) = −E−
[
sδE+{Ḡ1ρ(ψm, τm) +Am}

]
. (23)

4. Existence and Uniqueness Results for ETDM

In what follows, we will demonstrate that the sufficient conditions assure the existence
of a unique solution. Our desired existence of solutions in the case of SDM follows by [40].

Theorem 3. (Uniqueness theorem): Equation (23) has a unique solution whenever 0 < ε < 1,

where ε =
(Ľ1+Ľ2+Ľ3)τ(δ−1)

δ! .

Proof. Assume that M =
(
C[I], ‖.‖

)
represents all continuous mappings on the Banach

space, defined on I = [0,T] having the norm ‖.‖. For this we introduce a mapping W :
M 7→ M, we have

ρn+1(ψ, τ) = ρ(ψ, τ) + E−1
[(ω

ξ

)δ
E
[
L
[
ρn(ψ, τ)

]
+R

[
ρn(ψ, τ)

]
+N

[
ρn(ψ, τ)

]]]
, n ≥ 0, (24)

where L
[
ρ(ψ, τ)

]
≡ ∂3ρ(ψ,τ)

∂ψ2 and R
[
ρ(ψ, τ)

]
≡ ∂ρ(ψ,τ)

∂ψ . Now assume that L
[
ρ(ψ, τ)

]
and

M
[
ρ(ψ, τ)

]
are also Lipschitzian with

∣∣Rρ−Rρ̌
∣∣ < Ľ1

∣∣ρ− ρ̌
∣∣ and

∣∣Lρ− Lρ̌
∣∣ < Ľ2

∣∣ρ−
ρ̌
∣∣, where Ľ1 and Ľ2 are Lipschitz constant, respectively, and ρ, ρ̌ are various values of

the mapping.
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∥∥∥Wρ−Wρ̌
∥∥∥ = max

τ∈I

∣∣∣∣∣∣∣∣∣
E−1

[
sδE
[
L
[
ρ(ψ, τ)

]
+R

[
ρ(ψ, τ)

]
+N

[
ρ(ψ, τ)

]]]
− E−1

[
sδE
[
L
[
ρ̌(ψ, τ)

]
+R

[
ρ̌(ψ, τ)

]
+N

[
ρ̌(ψ, τ)

]]]
∣∣∣∣∣∣∣∣∣

≤ max
τ∈I

∣∣∣∣∣∣∣∣∣∣
E−1

[
sδE
[
L
[
ρ(ψ, τ)

]
−L

[
ρ̌(ψ, τ)

]]]
+ E−1

[
sδE
[
R
[
ρ(ψ, τ)

]
−R

[
ρ̌(ψ, τ)

]]]
+ E−1

[
sδE
[
N
[
Φ(ψ, τ)

]
−N

[
ρ̌(ψ, τ)

]]]
∣∣∣∣∣∣∣∣∣∣

≤ max
τ∈I


Ľ1E−1

[
sδE
∣∣∣ρ(ψ, τ)− ρ̌(ψ, τ)

∣∣∣]
+ Ľ2E−1

[
sδE
∣∣∣ρ(ψ, τ)− ρ̌(ψ, τ)

∣∣∣]
+ Ľ3E−1

[
sδE
∣∣∣ρ(ψ, τ)− ρ̌(ψ, τ)

∣∣∣]


≤ max
τ∈I

(
Ľ1 + Ľ2 + Ľ3

)
E−1

[
sδE
∣∣∣ρ(ψ, τ)− ρ̌(ψ, τ)

∣∣∣]
≤
(

Ľ1 + Ľ2 + Ľ3
)
E−1

[
sδE
∥∥∥ρ(ψ, τ)− ρ̌(ψ, τ)

∥∥∥]
=

(
Ľ1 + Ľ2 + Ľ3

)
τ(δ−1)

δ!

∥∥∥ρ(ψ, τ)− ρ̌(ψ, τ)
∥∥∥.

Under the assumption 0 < ε < 1, the mapping is contraction. Thus, by Banach
contraction fixed point theorem, there exists a unique solution to (13). Therefore, this
completes the proof.

Theorem 4 (Convergence Analysis). The general form solution of (13) will be convergent.

Proof. Suppose Ŝn be the nth partial sum, that is Ŝn = ∑n
m=0 ρm(ψ, τ). Firstly, we show

that {Ŝn} is a Cauchy sequence in Banach space in M. Taking into consideration a new
representation of Adomian polynomials we obtain

R̄(Ŝn) = Ȟn +
n−1

∑
p=0

Ȟp,

N̄(Ŝn) = Ȟn +
n−1

∑
c=0

Ȟc. (25)
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Now ∥∥Ŝn − Ŝq
∥∥ = max

τ∈I

∣∣Ŝn − Ŝq
∣∣

= max
τ∈I

∣∣ n

∑
m=q+1

ρ̌(ψ, τ)
∣∣, ( m = 1, 2, 3, . . .)

≤ max
τ∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E−1
[
sδE
[ n

∑
m=q+1

L
[
ρn−1(ψ, τ)

]]]
+ E−1

[
sδE
[ n

∑
m=q+1

R
[
ρn−1(ψ, τ)

]]]
+ E−1

[
sδE
[ n

∑
m=q+1

Ȟn−1(ψ, τ)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= max
τ∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E−1
[
sδE
[ n−1

∑
m=q
L
[
ρn(ψ, τ)

]]]
+ E−1

[
sδE
[ n−1

∑
m=q
R
[
ρn(ψ, τ)

]]]
+ E−1

[
sδE
[ n−1

∑
m=q

Ȟn(ψ, τ)
]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
τ∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E−1
[
sδE
[ n−1

∑
m=q
L(Ŝn−1)−L(Ŝq−1)

]]
+ E−1

[
sδE
[ n−1

∑
m=q
R(Ŝn−1)−R(Ŝq−1)

]]
+ E−1

[
sδE
[ n−1

∑
m=q
N (Ŝn−1)−N (Ŝq−1)

]]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ max
τ∈I

∣∣∣∣∣∣∣∣∣∣
E−1

[
sδE
[
L(Ŝn−1)−L(Ŝq−1)

]]
+ E−1

[
sδE
[
R(Ŝn−1)−R(Ŝq−1)

]]
+ E−1

[
sδE
[
N (Ŝn−1)−N (Ŝq−1)

]]
∣∣∣∣∣∣∣∣∣∣

≤ Ľ1 max
τ∈I

E−1
∣∣∣[sδE

[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣
+ Ľ2 max

τ∈I

∣∣∣E−1
[
sδE
[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣
+ Ľ3 max

τ∈I

∣∣∣E−1
[
sδE
[
(Ŝn−1)− (Ŝq−1)

]]∣∣∣
=

(Ľ1 + Ľ2 + Ľ3)τ
(δ−1)

δ!

∥∥Ŝn−1 − Ŝq−1
∥∥. (26)

Consider n = q + 1; then∥∥Ŝq+1 − Ŝq
∥∥ ≤ ε

∥∥Ŝq − Ŝq−1
∥∥ ≤ ε2∥∥Ŝq−1 − Ŝq−2

∥∥ ≤ · · · ≤ εq∥∥Ŝ1 − Ŝ0
∥∥,
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where (Ľ1+Ľ2+Ľ3)τ
(δ−1)

δ! . Analogously, from the triangular inequality we have∥∥Ŝn − Ŝq
∥∥ ≤ ∥∥Ŝq+1 − Ŝq

∥∥+ ∥∥Ŝq+2 − Ŝq+1
∥∥+ · · ·+ ∥∥Ŝn − Ŝn−1

∥∥
≤
[
εq + εq+1 + · · ·+ εn−1

]∥∥Ŝ1 − Ŝ0
∥∥

≤ εq
(1− εn−q

ε

)
‖ρ1‖,

since 0 < ε < 1, we have (1− εn−q) < 1, then

∥∥Ŝn − Ŝq
∥∥ ≤ εq

1− ε
max
τ∈I
‖ρ1‖.

However, |ρ1| < ∞ (since ρ(ψ, τ) is bounded). Thus, as q 7→ ∞, then
∥∥Ŝn − Ŝq

∥∥ 7→ 0.

Hence, {Ŝ1} is a Cauchy sequence in K. As a result, the series
∞
∑

n=0
ρn is convergent and this

completes the proof.

Theorem 5 ([40] (Error estimate)). The maximum absolute truncation error of the series solution
(13) to (23) is computed as

max
τ∈I

∣∣∣ρ(ψ, τ)−
q

∑
n=1

ρn(ψ, τ)
∣∣∣ ≤ εq

1− ε
max
τ∈I
‖ρ1‖. (27)

5. Numerical Examples:

Example 1. Consider the following linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 +
∂3ρ(ψ, τ)

∂ψ3 = 0, 0 < δ ≤ 1, (28)

with initial condition
ρ(ψ, 0) = exp(ψ). (29)

Taking Elzaki transformation of (27), we obtain

E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂3ρ(ψ, τ)

∂ψ3

]
,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂3ρ(ψ, τ)

∂ψ3

]
.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}+ sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂3ρ(ψ, τ)

∂ψ3

]
. (30)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂3ρ(ψ, τ)

∂ψ3

]]
. (31)

Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution:

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ),

∞

∑
m=0

ρm(ψ, τ) = expψ +E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂3ρ(ψ, τ)

∂ψ3

]]
. (32)
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Thus, by comparing both sides of (30), we have

ρ0(ψ, τ) = exp(ψ);

for m = 0,

ρ1(ψ, τ) = (b− 4) expψ 1
Γ(δ + 1)

τδ;

for m = 1,

ρ2(ψ, τ) = (b− 4)2 exp(ψ)
1

Γ(2δ + 1)
τ2δ;

for m = 2,

ρ3(ψ, τ) = (b− 4)3 exp(ψ)
1

Γ(3δ + 1)
τ3δ;

for m = 3,

ρ4(ψ, τ) = (b− 4)4 exp(ψ)
1

Γ(4δ + 1)
τ4δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 3) are easy to get. Thus, we
define the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + ρ3(ψ, τ) + ρ4(ψ, τ) + · · · ,

ρ(ψ, τ) = exp(ψ) + (b− 4) exp(ψ)
1

Γ(δ + 1)
τδ + (b− 4)2 exp(ψ)

1
Γ(2δ + 1)

τ2δ

+ (b− 4)3 exp(ψ)
1

Γ(3δ + 1)
τ3δ + (b− 4)4 exp(ψ)

1
Γ(4δ + 1)

τ4δ + · · · . (33)

Exact solution for (27) at δ = 1 is

ρ(ψ, τ) = exp(ψ)Eδ((b− 4)τδ). (34)

The Figure 1 shows the ETDM graph for Example 1 at various fractional order.

Figure 1. (a). the solution of ETDM at different fractional-order δ. (b). the graph show that the close
relation with each other.

Example 2. Consider the following linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 +
∂4ρ(ψ, τ)

∂ψ4 = 0, 0 < δ ≤ 1 (35)

with initial condition
ρ(ψ, 0) = sin(ψ). (36)
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Taking Elzaki transformation of (35), we obtain

E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}+ sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
. (37)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (38)

Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ),

∞

∑
m=0

ρm(ψ, τ) = sin(ψ) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (39)

Here we will discuss the following two cases.
Case 1: (b = 0). According to (35), we have

ρ0(ψ, τ) = sin(ψ);

for m = 0,
ρ1(ψ, τ) = 0;

for m = 1,
ρ2(ψ, τ) = 0;

for m = n,
ρn(ψ, τ) = 0.

Hence the solution to (35) in this case is

ρ(ψ, τ) = sin(ψ).

Case 2: (b 6= 0). According to (37), we have

ρ0(ψ, τ) = sin(ψ);

for m = 0,

ρ1(ψ, τ) = ((b− 1) + 1) sin(ψ)
1

Γ(δ + 1)
τδ;

for m = 1,

ρ2(ψ, τ) = ((b− 1)2 + (b− 1) + 1) sin(ψ)
1

Γ(2δ + 1)
τ2δ;

for m = 2,

ρ3(ψ, τ) = ((b− 1)3 + (b− 1)2 + (b− 1) + 1) sin(ψ)
1

Γ(3δ + 1)
τ3δ;
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for m = 3,

ρ4(ψ, τ) = ((b− 1)4 + (b− 1)3 + (b− 1)2 + (b− 1) + 1) sin(ψ)
1

Γ(4δ + 1)
τ4δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 3) are easy to get. Thus, we
define the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + ρ3(ψ, τ) + ρ4(ψ, τ) + · · · ,

ρ(ψ, τ) = sin(ψ) + ((b− 1) + 1) sin(ψ)
1

Γ(δ + 1)
τδ

+
(
(b− 1)2 + (b− 1) + 1

)
sin(ψ)

1
Γ(2δ + 1)

τ2δ

+
(
(b− 1)3 + (b− 1)2 + (b− 1) + 1

)
sin(ψ)

1
Γ(3δ + 1)

τ3δ

+
(
(b− 1)4 + (b− 1)3 + (b− 1)2 + (b− 1) + 1

)
sin(ψ)

1
Γ(4δ + 1)

τ4δ + · · · .

Exact solution for (33) at δ = 1 is

ρ(ψ, τ) = −1
b

sin(ψ) lim
N→∞

N

∑
n=0

(
1− (b− 1)n+1

) 1
Γ(nδ + 1)

τnδ. (40)

The Figure 2 shows ETDM solution graph at different fractional order for Example 2.

Figure 2. (a). δ = 0.25. (b). δ = 0.50. (c). δ = 0.75.

Example 3. Consider the following linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 +
∂4ρ(ψ, τ)

∂ψ4 = 0, 0 < δ ≤ 1 (41)

with initial condition
ρ(ψ, 0) = cos(ψ). (42)
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Taking Elzaki transformation of (41), we obtain

E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}+ sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]
. (43)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (44)

Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ),

∞

∑
m=0

ρm(ψ, τ) = cos(ψ) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (45)

Here we will discuss the following two cases.
Case 1: (b = 0). According to Equation (44), we have

ρ0(ψ, τ) = cos(ψ);

for m = 0,
ρ1(ψ, τ) = 0;

for m = 1,
ρ2(ψ, τ) = 0;

for m = n,
ρn(ψ, τ) = 0.

Hence the solution to (39) in this case is

ρ(ψ, τ) = cos(ψ).

Case 1: (b 6= 0). According to (43), we have

ρ0(ψ, τ) = cos(ψ);

for m = 0,

ρ1(ψ, τ) = ((b− 1) + 1) cos(ψ)
1

Γ(δ + 1)
τδ;

for m = 1,

ρ2(ψ, τ) = ((b− 1)2 + (b− 1) + 1) cos(ψ)
1

Γ(2δ + 1)
τ2δ;

for m = 2,

ρ3(ψ, τ) = ((b− 1)3 + (b− 1)2 + (b− 1) + 1) cos(ψ)
1

Γ(3δ + 1)
τ3δ;
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for m = 3,

ρ4(ψ, τ) = ((b− 1)4 + (b− 1)3 + (b− 1)2 + (b− 1) + 1) cos(ψ)
1

Γ(4δ + 1)
τ4δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 3) are easy to get. Thus, we
define the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + ρ3(ψ, τ) + ρ4(ψ, τ) + · · · ,

ρ(ψ, τ) = cos(ψ) + ((b− 1) + 1) cos(ψ)
1

Γ(δ + 1)
τδ

+
(
(b− 1)2 + (b− 1) + 1

)
cos(ψ)

1
Γ(2δ + 1)

τ2δ

+
(
(b− 1)3 + (b− 1)2 + (b− 1) + 1

)
cos(ψ)

1
Γ(3δ + 1)

τ3δ

+
(
(b− 1)4 + (b− 1)3 + (b− 1)2 + (b− 1) + 1

)
cos(ψ)

1
Γ(4δ + 1)

τ4δ + · · · .

Exact solution for (41) at δ = 1 is

ρ(ψ, τ) = −1
b

cos(ψ) lim
N→∞

N

∑
n=0

(
1− (b− 1)n+1

) 1
Γ(nδ + 1)

τnδ. (46)

The Figure 3 shows ETDM solution graph at different fractional order for Example 3.

Figure 3. (a). δ = 0.25. (b). δ = 0.50. (c). δ = 0.75.

Example 4. Consider the following linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 − σ
∂3ρ(ψ, τ)

∂ψ3 +
∂4ρ(ψ, τ)

∂ψ4 = 0, 0 < δ ≤ 1 (47)

with initial condition
ρ(ψ, 0) = exp(ψ). (48)

Taking Elzaki transformation of (47), we obtain
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E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

]
,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

]
.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}+ sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

]
. (49)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (50)

Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ),

∞

∑
m=0

ρm(ψ, τ) = exp(ψ) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

]]
. (51)

Thus, by comparing both sides of (49), we have

ρ0(ψ, τ) = exp(ψ);

for m = 0,

ρ1(ψ, τ) = (b− 4 + σ) exp(ψ)
1

Γ(δ + 1)
τδ;

for m = 1,

ρ2(ψ, τ) = (b− 4 + σ)2 exp(ψ)
1

Γ(2δ + 1)
τ2δ;

for m = 2,

ρ3(ψ, τ) = (b− 4 + σ)3 exp(ψ)
1

Γ(3δ + 1)
τ3δ;

for m = 3,

ρ4(ψ, τ) = (b− 4 + σ)4 exp(ψ)
1

Γ(4δ + 1)
τ4δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 3) are easy to get. Thus, we
define the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + ρ3(ψ, τ) + ρ4(ψ, τ) + · · · ,

ρ(ψ, τ) = exp(ψ) + (b− 4 + σ) exp(ψ)
1

Γ(δ + 1)
τδ + (b− 4 + σ)2 exp(ψ)

1
Γ(2δ + 1)

τ2δ

+ (b− 4 + σ)3 exp(ψ)
1

Γ(3δ + 1)
τ3δ + (b− 4 + σ)4 exp(ψ)

1
Γ(4δ + 1)

τ4δ + · · · .
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Exact solution for (47) at δ = 1 is

ρ(ψ, τ) = exp(ψ)Eδ((b− 4 + σ)τδ). (52)

The Figure 4 shows ETDM solution graph at different fractional order for Example 4.

Figure 4. (a). δ = 0.25. (b). δ = 0.50. (c). δ = 0.75.

Example 5. Consider the following non-linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 +
∂4ρ(ψ, τ)

∂ψ4 − ρ2(ψ, τ) +

(
∂ρ(ψ, τ)

∂ψ

)2

= 0, 0 < δ ≤ 1, (53)

with initial condition
ρ(ψ, 0) = exp(ψ). (54)

Taking Elzaki transformation of (53), we obtain

E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 + ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 + ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}

+ sδE

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 + ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

. (55)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0)

+ E−
[

sδE

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 + ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]]

. (56)
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Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution:

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ), (57)

where the Adomian polynomials ρ2 = ∑∞
m=0Am and (ρψ)2 = ∑∞

m=0 Bm and the nonlinear terms
have been characterised. (53) can be rewritten in the form using certain terms

∞

∑
m=0

ρm(ψ, τ) = ρ(ψ, 0) + E−
[

sδE

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

]]
,

∞

∑
m=0

ρm(ψ, τ) = exp(ψ) + E−
[

sδE

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 − ∂4ρ(ψ, τ)

∂ψ4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

]]
. (58)

The decomposition of nonlinear terms by Adomian polynomials is defined as, according to (20),

A0 = ρ2
0, A1 = 2ρ0ρ1,

B0 = (ρ0ψ)
2, B1 = 2ρ0ψρ1ψ.

Thus, by comparing both sides of (56), we have

ρ0(ψ, τ) = exp(ψ);

for m = 0,

ρ1(ψ, τ) = (b− 4) exp(ψ)
1

Γ(δ + 1)
τδ;

for m = 1,

ρ2(ψ, τ) = (b− 4)2 exp(ψ)
1

Γ(2δ + 1)
τ2δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 1) are easy to obtain. So, we
define the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + · · ·

ρ(ψ, τ) = exp(ψ) + (b− 4) exp(ψ)
1

Γ(δ + 1)
τδ + (b− 4)2 exp(ψ)

1
Γ(2δ + 1)

τ2δ + · · ·

Exact solution for (51) at δ = 1 is

ρ(ψ, τ) = exp(ψ)Eδ((b− 4)τδ). (59)

The Figure 5 shows the ETDM graph for Example 5 at various fractional order.
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Figure 5. (a). the solution of ETDM at different fractional-order δ. (b). the graph show that the close
relation with each other.

Example 6. Consider the following non-linear time-fractional S-H equation

∂δρ(ψ, τ)

∂τδ
+ (1− b)ρ(ψ, τ) + 2

∂2ρ(ψ, τ)

∂ψ2 − σ
∂3ρ(ψ, τ)

∂ψ3

+
∂4ρ(ψ, τ)

∂ψ4 − ρ2(ψ, τ) +

(
∂ρ(ψ, τ)

∂ψ

)2

= 0, 0 < δ ≤ 1 (60)

with initial condition
ρ(ψ, 0) = exp(ψ). (61)

Taking Elzaki transformation of (59), we obtain

E
{

∂δρ

∂τδ

}
= E

[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

+ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

,

1
sδ

E{ρ(ψ, τ)} − s2−δρ(ψ, 0) = E
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

+ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

.

The above algorithm’s simplified form is

E{ρ(ψ, τ)} = s2{ρ(ψ, 0)}+ sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 − ∂4ρ(ψ, τ)

∂ψ4

+ρ2(ψ, τ)−
(

∂ρ(ψ, τ)

∂ψ

)2
]

. (62)

Using inverse Elzaki transformation, we get

ρ(ψ, τ) = ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3 + ρ2(ψ, τ)

−
(

∂ρ(ψ, τ)

∂ψ

)2
]]

. (63)
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Assume that the unknown ρ(ψ, τ) function, in infinite series form, has the following solution

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ), (64)

where the Adomian polynomials ρ2 = ∑∞
m=0Am and (ρψ)2 = ∑∞

m=0 Bm and the nonlinear terms
have been characterised. (61) can be rewritten in the form using certain terms

∞

∑
m=0

ρm(ψ, τ) =ρ(ψ, 0) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3

−∂4ρ(ψ, τ)

∂ψ4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

]]
,

∞

∑
m=0

ρm(ψ, τ) = exp(ψ) + E−
[

sδE
[
−(1− b)ρ(ψ, τ)− 2

∂2ρ(ψ, τ)

∂ψ2 + σ
∂3ρ(ψ, τ)

∂ψ3

−∂4ρ(ψ, τ)

∂ψ4 +
∞

∑
m=0
Am −

∞

∑
m=0
Bm

]]
. (65)

The decomposition of nonlinear terms by Adomian polynomials is defined as, according to (20),

A0 = ρ2
0, A1 = 2ρ0ρ1,

B0 = (ρ0ψ)
2, B1 = 2ρ0ψρ1ψ.

Thus, by comparing both sides of (63), we have

ρ0(ψ, τ) = exp(ψ);

for m = 0,

ρ1(ψ, τ) = (b− 4 + σ) exp(ψ)
1

Γ(δ + 1)
τδ;

for m = 1,

ρ2(ψ, τ) = (b− 4 + σ)2 exp(ψ)
1

Γ(2δ + 1)
τ2δ.

Similarly, the remaining ETDM solution elements ρm (m ≥ 1) are easy to get. Thus, we define
the sequence of alternatives as

ρ(ψ, τ) =
∞

∑
m=0

ρm(ψ, τ) = ρ0(ψ, τ) + ρ1(ψ, τ) + ρ2(ψ, τ) + · · · ,

ρ(ψ, τ) = exp(ψ) + (b− 4 + σ) exp(ψ)
1

Γ(δ + 1)
τδ + (b− 4 + σ)2 exp(ψ)

1
Γ(2δ + 1)

τ2δ + · · · .

Exact solution for (58) at δ = 1 is

ρ(ψ, τ) = exp(ψ)Eδ((b− 4 + σ)τδ). (66)

The Figure 6 shows the ETDM graph for Example 6 at various fractional order.
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Figure 6. (a). the solution of ETDM at different fractional-order δ (b). the graph show that the close
relation with each other.

6. Results and Discussion

In this paper, ETDM is implemented to solve time-fractional Swift–Hohenberg equa-
tions. The results, we get by using suggested technique are explain with the help of its
graphical representation. Figure 1 show the 3D and 2D graph at different values of δ.
The ETDM solution graph are plotted at b = 5 in the domain −4 ≤ ψ ≤ 4. In Figure 2,
ETDM solutions graphs at (a)δ = 0.25, (b)δ = 0.50 and (a)δ = 0.75 are plotted in which
we fix b = 1 in the given domain −6 ≤ ψ ≤ 6. In Figure 3, the ETDM solutions at frac-
tional orders are drawn. The graph (a) represent the solution of Example 3 at (a)δ = 0.25,
(b)δ = 0.50, while graph (c) is the plotted at δ = 0.75. The given figures are plotted at
b = 1 with ψ ranges from 0 to 1. In Figure 4, the ETDM solutions are plotted at various
fractional order for b = 5, σ = 1 with 0 ≤ ψ ≤ 5. The graph (a) represent the solution
of Example 4 at (a)δ = 0.25, (b)δ = 0.50, while graph (c) is the plotted at δ = 0.75. The
solution in Figure 5 are calculated at different fractional-orders. It is observed that the
solutions at various fractional-orders are converges to he solution of integer-order solution
as fractional-orders approaches to an integer-order. The graphs are plotted at b = 5 having
0 ≤ ψ ≤ 1. In Figure 6, the same graphical representation have been made at b = 5, σ = 1
and −1 ≤ ψ ≤ 1.

7. Conclusions

An efficient analytical technique is used to solve time-fractional Swift–Hohenberg
equations. We take the linear and nonlinear Swift–Hohenberg equations with different
initial conditions to illustrate the effectiveness of such a method. The results we get are
displayed by solution graph for each problem. The present method has simple, accurate,
and straightforward implementation to solve fractional-order Swift–Hohenberg equations.
In conclusion, the suggested approach is considered a sophisticated tool for the solution of
other fractional-order differential equations.
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