Well-Posedness and Porosity for Symmetric Optimization Problems

Alexander J. Zaslavski

Citation: Zaslavski, A.J. Well-Posedness and Porosity for Symmetric Optimization Problems. Symmetry 2021, 13, 1253. https:/ / doi.org/10.3390/sym13071253

Academic Editor: Juan Luis García Guirao

Received: 16 June 2021
Accepted: 12 July 2021
Published: 13 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, The Technion—Israel Institute of Technology, Haifa 32000, Israel; ajzasl@technion.ac.il

Abstract

In the present work, we investigate a collection of symmetric minimization problems, which is identified with a complete metric space of lower semi-continuous and bounded from below functions. In our recent paper, we showed that for a generic objective function, the corresponding symmetric optimization problem possesses two solutions. In this paper, we strengthen this result using a porosity notion. We investigate the collection of all functions such that the corresponding optimization problem is well-posed and prove that its complement is a σ-porous set.

Keywords: complete metric space; generic element; lower semi-continuous function; porous set

JEL Classification: 49J27; 90C31

1. Introduction

In this paper, we study a class of symmetric minimization problems, which was studied recently in our paper [1]. The results of [1] and of the present paper have prototypes in $[2,3]$, where some minimization problems arising in crystallography were considered. It was shown in [2,3] that a typical symmetric minimization problem possesses exactly two minimizers, and every minimizing sequence converges to them in some natural sense. In [1], we extend the results of $[2,3$] for a sufficiently large class of symmetric minimization problems by showing that for a generic objective function, the corresponding symmetric optimization problem possesses two solutions. In this paper, we strengthen this result using a porosity notion. We investigate the collection of all functions such that the corresponding optimization problem is well-posed and prove that its complement is a σ-porous set.

More precisely, we study an optimization problem

$$
g(\xi) \rightarrow \min , \xi \in X
$$

where X is a complete metric space and g is a lower semi-continuous and bounded from below function.

It is well-known that the above problem possesses a minimizer when the space X is compact or when the objective function f possesses a growth property and all bounded subsets of the space X satisfy certain compactness assumptions. Without such assumptions, the existence problem becomes more difficult. This difficulty is overcome by applying the Baire category approach, which was used for many mathematical problems [4-9].

Namely, it is known that the minimization problem stated above can be solved for a generic objective function [8-10]. More precisely, there is a collection \mathcal{F} in a complete metric space of objective functions, which is a countable intersection of open and everywhere dense sets such that for every objective function $f \in \mathcal{F}$, the corresponding minimization problem has a unique solution, which is a limit of every minimizing sequence. See [9], which contains this result and its several extensions and modifications. Note that the generic approach in nonlinear analysis is used in [11-15], generic solvability of best approximation problems are discussed in [4,11,13], while generic existence of fixed points for nonlinear operators is established in [7,12,13].

In our recent paper [1] the goal was to establish a generic solvability of optimization problems with symmetry. These results have applications in crystallography [2,3]. In this paper, we strengthen this result using a porosity notion. We investigate the set of all functions for which the corresponding minimization problem is well-posed and show that its complement is a σ-porous set.

2. The Main Result

We begin this section recalling the following notion of porosity [3,4,7,9,12,13].
Suppose that (Y, d) is a complete metric space and define

$$
B_{d}(y, r)=\{\xi \in X: d(y, \xi) \leq r\} .
$$

We say that a set $E \subset Y$ is porous with respect to d (or just porous if the metric is understood) if there are a real number $\alpha \in(0,1]$ and a positive number r_{0} such that for every positive number $r \leq r_{0}$ and every point $y \in Y$ there is a point $z \in Y$ such that

$$
B_{d}(z, \alpha r) \subset B_{d}(y, r) \backslash E
$$

We say that a set in the complete metric space Y is σ-porous with respect to d (or just σ-porous if the metric is understood) if this set is a countable union of porous (with respect to d) subsets of Y.

For every function $h: Y \rightarrow(-\infty, \infty]$, where the set Y is nonempty, put

$$
\inf (h)=\inf \{h(\xi): \xi \in Y\}
$$

and

$$
\operatorname{dom}(h)=\{y \in Y: h(y)<\infty\}
$$

Suppose that (X, ρ) is a complete metric space. For every $z \in X$ and every positive Δ put

$$
B(z, \Delta)=\{\xi \in X: \rho(z, \xi) \leq \Delta\} .
$$

For every $z \in X$ and every subset $D \neq \varnothing$ of the space X, define

$$
\rho(z, C)=\inf \{\rho(z, \xi): \xi \in C\} .
$$

Denote by \mathcal{M}_{l} the collection of all functions $f: X \rightarrow R^{1} \cup\{\infty\}$, which are bounded from below, lower semi-continuous, and which are not identical infinity. For each $h_{1}, d_{2} \in$ \mathcal{M}_{l}, define

$$
\begin{gather*}
\tilde{d}\left(h_{1}, h_{2}\right)=\sup \left\{\left|h_{1}(z)-h_{2}(z)\right|: z \in X\right\} \tag{1}\\
d\left(h_{1}, h_{2}\right)=\tilde{d}\left(h_{1}, h_{2}\right)\left(1+\tilde{d}\left(h_{1}, h_{2}\right)\right)^{-1} \tag{2}
\end{gather*}
$$

Note that by convention, $d\left(h_{1}, h_{2}\right)=1$ when $\tilde{d}\left(h_{1}, h_{2}\right)=\infty$.
It is clear that $d: \mathcal{M}_{l} \times \mathcal{M}_{l} \rightarrow[0, \infty)$ is a complete metric. We denote by \mathcal{M}_{c} the collection of all continuous finite-valued functions $f: X \rightarrow R^{1}$ which are bounded from below. Clearly, \mathcal{M}_{c} is a closed set in the complete metric space $\left(\mathcal{M}_{l}, d\right)$. We endow the space \mathcal{M}_{c} with the metric d too.

Suppose that $T: X \rightarrow X$ is a continuous operator such that

$$
T^{2}(z)=z \text { for every } z \in X
$$

We denote by $\mathcal{M}_{l, T}$ the collection of all functions $f \in \mathcal{M}_{l}$ for which

$$
f(T(x))=f(x) \text { for every point } x \in X
$$

and define

$$
\mathcal{M}_{c, T}=\left\{f \in \mathcal{M}_{c}: f \circ T=f\right\}
$$

Evidently, $\mathcal{M}_{l, T}$ and $\mathcal{M}_{c, T}$ are closed subsets of the complete metric space \mathcal{M}_{l}. We endow them with the same metric d too.

We investigate the optimization problem

$$
f(x) \rightarrow \min , x \in X
$$

where the objective function $f \in \mathcal{M}_{l, T}$.
Given $f \in \mathcal{M}_{l, T}$, we say that the problem of minimization for f on X is well-posed with respect to $\left(\mathcal{M}_{l}, d\right)$ if the following properties are true:

There exists $x_{f} \in X$, which satisfies

$$
\{x \in X: f(x)=\inf (f)\}=\left\{x_{f}, T\left(x_{f}\right)\right\}
$$

and for every $\epsilon>0$ there are an open neighborhood \mathcal{U} of f in \mathcal{M}_{l} and a positive number δ such that if a function $g \in \mathcal{U}$ and if a point $z \in X$ satisfies $g(z) \leq \inf (g)+\delta$, then

$$
\left|g(z)-f\left(x_{f}\right)\right| \leq \epsilon
$$

and

$$
\min \left\{\rho\left(z,\left\{x_{f}, T\left(x_{f}\right)\right\}\right), \rho\left(T(z),\left\{x_{f}, T\left(x_{f}\right)\right\}\right)\right\} \leq \epsilon
$$

This notion has an analog in the optimization theory [9], where the set of minimizers is a singleton. Here, since the problem is symmetric, the set of minimizers contains two points in general.

The next theorem is our sole main result.
Theorem 1. Suppose that \mathcal{A} is either $\mathcal{M}_{l, T}$ or $\mathcal{M}_{c, T}$. Then, there is a set $\mathcal{B} \subset \mathcal{A}$ such that its complement $\mathcal{A} \backslash \mathcal{B}$ is σ-porous in the metric space (\mathcal{A}, d) and that for every function $f \in \mathcal{B}$ the minimization problem for f on the space X is well-posed with respect to $\left(\mathcal{M}_{l}, d\right)$.

3. Auxiliary Results

Lemma 1. For every positive number $r \leq 1$, each $f, g \in \mathcal{M}_{l}$, which satisfy $d(f, g) \leq 4^{-1} r$ and each $x \in X$,

$$
|g(x)-f(x)| \leq r
$$

Proof. Let $r \in(0,1], f, g \in \mathcal{M}_{l}$ satisfy

$$
\begin{equation*}
d(f, g) \leq 4^{-1} r \tag{3}
\end{equation*}
$$

and let $x \in X$ be given. By (2) and (3),

$$
\begin{gathered}
d(f, g) \leq 4^{-1} \\
\tilde{d}(f, g)=d(f, g)(1-d(f, g))^{-1} \leq 2 d(f, g) \leq 2^{-1} r
\end{gathered}
$$

In view of (1) and the equation above,

$$
|g(x)-f(x)| \leq 2^{-1} r
$$

Lemma 2. Suppose that $f \in \mathcal{M}_{l, T}, \epsilon \in(0,1), r \in(0,1]$. Then there are $\bar{f} \in \mathcal{M}_{l, T}$ and $\bar{x} \in X$ such that $\bar{f} \in \mathcal{M}_{c, T}$ if $f \in \mathcal{M}_{c, T}$,

$$
\begin{equation*}
f(x) \leq \bar{f}(x) \leq f(x)+r / 2, x \in X \tag{4}
\end{equation*}
$$

and that for each $y \in X$, which satisfies

$$
\begin{equation*}
\bar{f}(y) \leq \inf (\bar{f})+\epsilon r / 4 \tag{5}
\end{equation*}
$$

the equation

$$
\min \{\rho(y, \bar{x}), \rho(T(y), \bar{x})\} \leq \epsilon
$$

is true.
Proof. There exists $\bar{x} \in X$ satisfying

$$
f(\bar{x}) \leq \inf (f)+\epsilon r / 4
$$

Define a function $\bar{f} \in \mathcal{M}_{l}$ as follows:

$$
\begin{equation*}
\bar{f}(x)=f(x)+2^{-1} r \min \{\rho(x, \bar{x}), \rho(T(x), \bar{x}), 1\}, x \in X \tag{6}
\end{equation*}
$$

Clearly, $\bar{f} \in \mathcal{M}_{l, T}$, and $\bar{f} \in \mathcal{M}_{c, T}$ if $f \in \mathcal{M}_{c, T}$ and (4) is true. Let $y \in X$ and (5) hold. By (5) and (6),

$$
\begin{gathered}
f(y)+2^{-1} r \min \{\rho(y, \bar{x}), \rho(T(y), \bar{x}), 1\}=\bar{f}(y) \leq \inf (\bar{f})+\epsilon r / 4 \\
\leq \bar{f}(\bar{x})+\epsilon r / 4=f(\bar{x})+\epsilon r / 4 \leq f(y)+\epsilon r / 2
\end{gathered}
$$

Therefore,

$$
\min \{\rho(y, \bar{x}), \rho(T(y), \bar{x})\} \leq \epsilon
$$

4. Proof of Theorem 1

For every integer $n \geq 1$ let \mathcal{A}_{n} be the collection of all functions $f \in \mathcal{A}$ such that:
(i) there are a point $\bar{x} \in X$ and $\delta>0$ such that if $z \in X$ and $f(z) \leq \inf (f)+\delta$, then the inequality $\rho(\bar{x},\{z, T(z)\}) \leq 1 / n$ is valid.

Let a natural number n be given. We claim that the set $\mathcal{A} \backslash \mathcal{A}_{n}$ is porous.
By Lemma 1, for every positive number $r \leq 1$, each $f, g \in \mathcal{M}_{l}$ satisfying $d(f, g) \leq 4^{-1} r$ and each $x \in X$,

$$
\begin{equation*}
|g(x)-f(x)| \leq r \tag{7}
\end{equation*}
$$

By Lemma 2 applied with $\epsilon=(2 n)^{-1}$, the following property is valid:
(ii) for each function $f \in \mathcal{A}$ and every positive number $r \leq 1$, there exist $\bar{f} \in \mathcal{A}$ and $\bar{x} \in X$ such that

$$
\begin{equation*}
\tilde{d}(f, \bar{f}) \leq r / 4 \tag{8}
\end{equation*}
$$

and that for each $y \in X$ satisfying

$$
\begin{equation*}
\bar{f}(y) \leq \inf (\bar{f})+16^{-1} r n^{-1} \tag{9}
\end{equation*}
$$

the equation

$$
\begin{equation*}
\min \{\rho(y, \bar{x}), \rho(T(y), \bar{x})\} \leq(2 n)^{-1} \tag{10}
\end{equation*}
$$

is valid.
Fix

$$
\begin{equation*}
\bar{r}=4^{-1}, \alpha=80^{-1} n^{-1} \tag{11}
\end{equation*}
$$

Let $f \in \mathcal{A}$ and a positive number $r \leq \bar{r}$ be given. By property (ii), there exist $\bar{f} \in \mathcal{A}$ and $\bar{x} \in X$ such that

$$
\begin{equation*}
\tilde{d}(f, \bar{f}) \leq r / 4 \tag{12}
\end{equation*}
$$

and that the next property is true:
(iii) for every point $y \in X$ satisfying (9), Equation (10) is true.

Let a function $g \in \mathcal{A}$ satisfy

$$
\begin{equation*}
d(g, \bar{f}) \leq \alpha r \tag{13}
\end{equation*}
$$

By (2) and (11)-(13),

$$
\begin{equation*}
d(g, f) \leq \alpha r+r / 4 \leq r / 2 \tag{14}
\end{equation*}
$$

By (2), (11) and (13),

$$
\begin{align*}
\tilde{d}(g, \bar{f}) & \leq d(g, \bar{f})(1-d(g, \bar{f}))^{-1} \\
& \leq \alpha r(1-\alpha r)^{-1} \leq 2 \alpha r \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
|\inf (\bar{f})-\inf (g)| \leq 2 \alpha r . \tag{16}
\end{equation*}
$$

Let a point $z \in X$ satisfy the inequality

$$
\begin{equation*}
g(z) \leq \inf (g)+\alpha r \tag{17}
\end{equation*}
$$

By (15),

$$
\begin{equation*}
|g(z)-\bar{f}(z)| \leq 2 \alpha r \tag{18}
\end{equation*}
$$

By (11) and (16)-(18),

$$
\begin{align*}
\bar{f}(z) \leq g(z)+ & 2 \alpha r \leq \inf (g)+3 \alpha r \leq \inf (\bar{f})+5 \alpha r \\
& \leq \inf (\bar{f})+16^{-1} r n^{-1} \tag{19}
\end{align*}
$$

Property (iii), (9), (10) and (19) imply that

$$
\min \{\rho(z, \bar{x}), \rho(T(z), \bar{x})\} \leq(2 n)^{-1}
$$

Thus

$$
g \in \mathcal{A}_{n}
$$

by definition. Together with (14), this implies that

$$
\{g \in \mathcal{A}: d(g, \bar{f}) \leq \alpha r\} \subset\{g \in \mathcal{A}: d(g, f) \leq r\} \cap \mathcal{A}_{n}
$$

Thus, the set $\mathcal{A} \backslash \mathcal{A}_{n}$ is σ-porous. Then the set

$$
\mathcal{A} \backslash \cap_{n=1}^{\infty} \mathcal{A}_{n}=\cup_{n=1}\left(\mathcal{A} \backslash \mathcal{A}_{n}\right)
$$

is σ-porous.
Let

$$
\begin{equation*}
f \in \cap_{n=1}^{\infty} \mathcal{A}_{n} \tag{20}
\end{equation*}
$$

By (20), for every integer $n \geq 1$, there are $x_{n} \in X$ and $\delta_{n}>0$ such that the following property is valid:
(iv) if a point $z \in X$ satisfies the inequality $f(z) \leq \inf (f)+\delta_{n}$, then the equation $\rho\left(x_{n},\{z, T(z)\}\right) \leq 1 / n$ holds.

Suppose that a sequence $\left\{z_{i}\right\}_{i=1}^{\infty} \subset X$ satisfies

$$
\begin{equation*}
\lim _{i \rightarrow \infty} f\left(z_{i}\right)=\inf (f) \tag{21}
\end{equation*}
$$

Let a natural number n be given. By (21) and property (iv), for every large enough positive integer i,

$$
\left\{\rho\left(x_{n},\left\{z_{i}, T\left(z_{i}\right)\right\}\right) \leq n^{-1}\right.
$$

Since n is an arbitrary positive integer, there is a sub-sequence $\left\{z_{i_{p}}\right\}_{p=1}^{\infty}$ such that at least one of the sequences $\left\{z_{i_{p}}\right\}_{p=1}^{\infty}$ and $\left\{T\left(z_{i_{p}}\right)\right\}_{p=1}^{\infty}$ converges. Since T is continuous and T^{2} is the identity operator, they both converge and

$$
\begin{equation*}
T\left(\lim _{p \rightarrow \infty} z_{i_{p}}\right)=\lim _{p \rightarrow \infty} T\left(z_{i_{p}}\right) . \tag{22}
\end{equation*}
$$

Set

$$
\begin{equation*}
x_{f}=\lim _{p \rightarrow \infty} z_{i_{p}} \tag{23}
\end{equation*}
$$

By (21), (23) and the lower semi-continuity of f,

$$
\begin{equation*}
f\left(x_{f}\right)=f\left(T\left(x_{f}\right)\right)=\inf (f) \tag{24}
\end{equation*}
$$

Applying property (iv) with $z_{i}=x_{f}$ for every natural number i, we obtain that

$$
\begin{equation*}
\rho\left(x_{n},\left\{x_{f}, T\left(x_{f}\right)\right\}\right) \leq n^{-1} \text { for every natural number } n \geq 1 \tag{25}
\end{equation*}
$$

Let $\xi \in X$ be such that

$$
\begin{equation*}
f(\xi)=\inf (f) \tag{26}
\end{equation*}
$$

By (26) and property (iv) applied with $z_{i}=\xi$ for every integer $i \geq 1$ we obtain that

$$
\begin{equation*}
\rho\left(x_{n},\{\xi, T(\xi)\}\right) \leq n^{-1} \text { for every natural number } n \tag{27}
\end{equation*}
$$

Equations (25) and (27) imply that

$$
\min \left\{\rho\left(\xi, x_{f}\right), \rho\left(T(\xi), x_{f}\right), \rho\left(\xi, T\left(x_{f}\right)\right), \rho\left(T(\xi), T\left(x_{f}\right)\right)\right\} \leq 2 n^{-1}
$$

Since n is an arbitrary positive integer, we conclude that and at least one of the following equalities is true:

$$
\xi=x_{f}, \xi=T\left(x_{f}\right)
$$

Thus

$$
\begin{equation*}
\{x \in X: f(x)=\inf (f)\}=\left\{x_{f}, T\left(x_{f}\right)\right\} . \tag{28}
\end{equation*}
$$

Let $\epsilon>0$. Fix a natural number n such that

$$
\begin{equation*}
4 n^{-1}<\epsilon \tag{29}
\end{equation*}
$$

Property (iv) and (25) imply that for every $z \in X$ which satisfies the inequality

$$
f(z) \leq \inf (f)+\delta_{n}
$$

we have

$$
\begin{equation*}
\rho\left(x_{n},\{z, T(z)\}\right) \leq 1 / n \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\rho\left(z, x_{f}\right), \rho\left(T(z), x_{f}\right), \rho\left(z, T\left(x_{f}\right)\right), \rho\left(T(z), T\left(x_{f}\right)\right)\right\} \leq 2 n^{-1} \tag{31}
\end{equation*}
$$

Fix a positive number

$$
\begin{equation*}
\delta<\min \left\{3^{-1} \delta_{n}, 8^{-1} \epsilon\right\} \tag{32}
\end{equation*}
$$

Let a function $g \in \mathcal{M}_{l}$ satisfy

$$
\begin{equation*}
\tilde{d}(g, f) \leq \delta \tag{33}
\end{equation*}
$$

and let a point $z \in X$ be such that

$$
\begin{equation*}
g(z) \leq \inf (g)+\delta \tag{34}
\end{equation*}
$$

By Equations (32)-(34), we have

$$
\begin{equation*}
f(z) \leq g(z)+\delta \leq \inf (g)+2 \delta \leq \inf (f)+3 \delta \leq \inf (f)+\delta_{n} \tag{35}
\end{equation*}
$$

It follows from (29), (31) and (35) that

$$
\begin{equation*}
\min \left\{\rho\left(z, x_{f}\right), \rho\left(T(z), x_{f}\right), \rho\left(z, T\left(x_{f}\right)\right), \rho\left(T(z), T\left(x_{f}\right)\right)\right\} \leq 2 n^{-1}<\epsilon \tag{36}
\end{equation*}
$$

Thus, (28) holds and for each function $g \in \mathcal{M}_{l}$ which satisfies (33) and every point $z \in X$ satisfying (34) Equation (36) holds. By Equations (33) and (34), we have

$$
|g(z)-\inf (f)| \leq 2 \delta<\epsilon
$$

Thus, the minimization problem for f on X is well-posed with respect to $\left(\mathcal{M}_{l}, d\right)$ for all $f \in \cap_{n=1}^{\infty} \mathcal{A}_{n}$. Theorem 1 is proved.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Zaslavski, A.J. Generic existence of solutions of symmetric optimization problems. Symmetry 2020, 12, 2004. [CrossRef]
2. Mizel, V.J.; Zaslavski, A.J. Anisotropic functions: A genericity result with crystallographic implications. Esaim Control. Optim. Calculus Var. 2004, 10, 624-633. [CrossRef]
3. Zaslavski, A.J. A porosity result for variational problems arising in crystallography. Commun. Appl. Anal. 2006, 10, 537-548.
4. Boulos, W.; Reich, S. Porosity results for two-set nearest and farthest point problems. Rend. Circ. Mat. Palermo 2015, 2, 493-507. [CrossRef]
5. Peng, J.D.; Yu, T.; Xiu, N.H. Generic uniqueness of solutions for a class of vector Ky Fan inequalities. J. Optim. Theory Appl. 2012, 155, 165-179. [CrossRef]
6. Peng, D.T.; Yu, J.; Xiu, N.H. Generic uniqueness theorems with some applications. J. Glob. Optim. 2013, 56, 713-725. [CrossRef]
7. Peng, L.; Li, C. Porosity and fixed points of nonexpansive set-valued maps. Set-Valued Var. Anal. 2014, 22, 333-348. [CrossRef]
8. Planiden, C.; Wang, X. Most convex functions have unique minimizers. J. Convex Anal. 2016, 23, 877-892.
9. Zaslavski, A.J. Optimization on metric and normed spaces. In Springer Optimization and Its Applications; Springer: New York, NY, USA, 2010.
10. Planiden, C.; Wang, X. Strongly convex functions, Moreau envelopes, and the generic nature of convex functions with strong minimizers. SIAM J. Optim. 2016, 26, 1341-1364. [CrossRef]
11. Li, C. On well posed generalized best approximation problems. J. Approx. Theory 2000, 107, 96-108. [CrossRef]
12. Peng, L.; Li, C.; Yao, J.-C. Porosity results on fixed points for nonexpansive set-valued maps in hyperbolic spaces. J. Math. Anal. Appl. 2015, 428, 989-1004. [CrossRef]
13. Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014.
14. Vanderwerff, J. On the residuality of certain classes of convex functions. Pure Appl. Funct. Anal. 2020, 5, 791-806.
15. Wang, X. Most maximally monotone operators have a unique zero and a super-regular resolvent. Nonlinear Anal. 2013, 87, 69-82. [CrossRef]
