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Abstract: In the present work, we investigate a collection of symmetric minimization problems,
which is identified with a complete metric space of lower semi-continuous and bounded from below
functions. In our recent paper, we showed that for a generic objective function, the corresponding
symmetric optimization problem possesses two solutions. In this paper, we strengthen this result
using a porosity notion. We investigate the collection of all functions such that the corresponding
optimization problem is well-posed and prove that its complement is a σ-porous set.
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1. Introduction

In this paper, we study a class of symmetric minimization problems, which was
studied recently in our paper [1]. The results of [1] and of the present paper have prototypes
in [2,3], where some minimization problems arising in crystallography were considered.
It was shown in [2,3] that a typical symmetric minimization problem possesses exactly
two minimizers, and every minimizing sequence converges to them in some natural sense.
In [1], we extend the results of [2,3] for a sufficiently large class of symmetric minimization
problems by showing that for a generic objective function, the corresponding symmetric
optimization problem possesses two solutions. In this paper, we strengthen this result using
a porosity notion. We investigate the collection of all functions such that the corresponding
optimization problem is well-posed and prove that its complement is a σ-porous set.

More precisely, we study an optimization problem

g(ξ)→ min, ξ ∈ X,

where X is a complete metric space and g is a lower semi-continuous and bounded from
below function.

It is well-known that the above problem possesses a minimizer when the space X is
compact or when the objective function f possesses a growth property and all bounded
subsets of the space X satisfy certain compactness assumptions. Without such assumptions,
the existence problem becomes more difficult. This difficulty is overcome by applying the
Baire category approach, which was used for many mathematical problems [4–9].

Namely, it is known that the minimization problem stated above can be solved for a
generic objective function [8–10]. More precisely, there is a collectionF in a complete metric
space of objective functions, which is a countable intersection of open and everywhere
dense sets such that for every objective function f ∈ F , the corresponding minimization
problem has a unique solution, which is a limit of every minimizing sequence. See [9],
which contains this result and its several extensions and modifications. Note that the
generic approach in nonlinear analysis is used in [11–15], generic solvability of best ap-
proximation problems are discussed in [4,11,13], while generic existence of fixed points for
nonlinear operators is established in [7,12,13].

Symmetry 2021, 13, 1253. https://doi.org/10.3390/sym13071253 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13071253
https://doi.org/10.3390/sym13071253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13071253
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13071253?type=check_update&version=1


Symmetry 2021, 13, 1253 2 of 7

In our recent paper [1] the goal was to establish a generic solvability of optimization
problems with symmetry. These results have applications in crystallography [2,3]. In
this paper, we strengthen this result using a porosity notion. We investigate the set of all
functions for which the corresponding minimization problem is well-posed and show that
its complement is a σ-porous set.

2. The Main Result

We begin this section recalling the following notion of porosity [3,4,7,9,12,13].
Suppose that (Y, d) is a complete metric space and define

Bd(y, r) = {ξ ∈ X : d(y, ξ) ≤ r}.

We say that a set E ⊂ Y is porous with respect to d (or just porous if the metric is
understood) if there are a real number α ∈ (0, 1] and a positive number r0 such that for
every positive number r ≤ r0 and every point y ∈ Y there is a point z ∈ Y such that

Bd(z, αr) ⊂ Bd(y, r) \ E.

We say that a set in the complete metric space Y is σ-porous with respect to d (or just
σ-porous if the metric is understood) if this set is a countable union of porous (with respect
to d) subsets of Y.

For every function h : Y → (−∞, ∞], where the set Y is nonempty, put

inf(h) = inf{h(ξ) : ξ ∈ Y}

and
dom(h) = {y ∈ Y : h(y) < ∞}.

Suppose that (X, ρ) is a complete metric space. For every z ∈ X and every positive
∆ put

B(z, ∆) = {ξ ∈ X : ρ(z, ξ) ≤ ∆}.

For every z ∈ X and every subset D 6= ∅ of the space X, define

ρ(z, C) = inf{ρ(z, ξ) : ξ ∈ C}.

Denote byMl the collection of all functions f : X → R1 ∪ {∞}, which are bounded
from below, lower semi-continuous, and which are not identical infinity. For each h1, d2 ∈
Ml , define

d̃(h1, h2) = sup{|h1(z)− h2(z)| : z ∈ X}, (1)

d(h1, h2) = d̃(h1, h2)(1 + d̃(h1, h2))
−1. (2)

Note that by convention, d(h1, h2) = 1 when d̃(h1, h2) = ∞.
It is clear that d : Ml ×Ml → [0, ∞) is a complete metric. We denote by Mc the

collection of all continuous finite-valued functions f : X → R1 which are bounded from
below. Clearly,Mc is a closed set in the complete metric space (Ml , d). We endow the
spaceMc with the metric d too.

Suppose that T : X → X is a continuous operator such that

T2(z) = z for every z ∈ X.

We denote byMl,T the collection of all functions f ∈ Ml for which

f (T(x)) = f (x) for every point x ∈ X

and define
Mc,T = { f ∈ Mc : f ◦ T = f }.
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Evidently,Ml,T andMc,T are closed subsets of the complete metric spaceMl . We
endow them with the same metric d too.

We investigate the optimization problem

f (x)→ min, x ∈ X,

where the objective function f ∈ Ml,T .
Given f ∈ Ml,T , we say that the problem of minimization for f on X is well-posed

with respect to (Ml , d) if the following properties are true:
There exists x f ∈ X, which satisfies

{x ∈ X : f (x) = inf( f )} = {x f , T(x f )}

and for every ε > 0 there are an open neighborhood U of f inMl and a positive number δ
such that if a function g ∈ U and if a point z ∈ X satisfies g(z) ≤ inf(g) + δ, then

|g(z)− f (x f )| ≤ ε

and
min{ρ(z, {x f , T(x f )}), ρ(T(z), {x f , T(x f )})} ≤ ε.

This notion has an analog in the optimization theory [9], where the set of minimizers
is a singleton. Here, since the problem is symmetric, the set of minimizers contains two
points in general.

The next theorem is our sole main result.

Theorem 1. Suppose that A is eitherMl,T orMc,T . Then, there is a set B ⊂ A such that its
complement A \ B is σ-porous in the metric space (A, d) and that for every function f ∈ B the
minimization problem for f on the space X is well-posed with respect to (Ml , d).

3. Auxiliary Results

Lemma 1. For every positive number r ≤ 1, each f , g ∈ Ml , which satisfy d( f , g) ≤ 4−1r and
each x ∈ X,

|g(x)− f (x)| ≤ r.

Proof. Let r ∈ (0, 1], f , g ∈ Ml satisfy

d( f , g) ≤ 4−1r (3)

and let x ∈ X be given. By (2) and (3),

d( f , g) ≤ 4−1,

d̃( f , g) = d( f , g)(1− d( f , g))−1 ≤ 2d( f , g) ≤ 2−1r.

In view of (1) and the equation above,

|g(x)− f (x)| ≤ 2−1r.

Lemma 2. Suppose that f ∈ Ml,T , ε ∈ (0, 1), r ∈ (0, 1]. Then there are f̄ ∈ Ml,T and x̄ ∈ X
such that f̄ ∈ Mc,T if f ∈ Mc,T ,

f (x) ≤ f̄ (x) ≤ f (x) + r/2, x ∈ X (4)
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and that for each y ∈ X, which satisfies

f̄ (y) ≤ inf( f̄ ) + εr/4 (5)

the equation
min{ρ(y, x̄), ρ(T(y), x̄)} ≤ ε

is true.

Proof. There exists x̄ ∈ X satisfying

f (x̄) ≤ inf( f ) + εr/4.

Define a function f̄ ∈ Ml as follows:

f̄ (x) = f (x) + 2−1r min{ρ(x, x̄), ρ(T(x), x̄), 1}, x ∈ X. (6)

Clearly, f̄ ∈ Ml,T , and f̄ ∈ Mc,T if f ∈ Mc,T and (4) is true. Let y ∈ X and (5) hold.
By (5) and (6),

f (y) + 2−1r min{ρ(y, x̄), ρ(T(y), x̄), 1} = f̄ (y) ≤ inf( f̄ ) + εr/4

≤ f̄ (x̄) + εr/4 = f (x̄) + εr/4 ≤ f (y) + εr/2.

Therefore,
min{ρ(y, x̄), ρ(T(y), x̄)} ≤ ε.

4. Proof of Theorem 1

For every integer n ≥ 1 let An be the collection of all functions f ∈ A such that:
(i) there are a point x̄ ∈ X and δ > 0 such that if z ∈ X and f (z) ≤ inf( f ) + δ, then the

inequality ρ(x̄, {z, T(z)}) ≤ 1/n is valid.
Let a natural number n be given. We claim that the set A \An is porous.
By Lemma 1, for every positive number r ≤ 1, each f , g ∈ Ml satisfying d( f , g) ≤ 4−1r

and each x ∈ X,
|g(x)− f (x)| ≤ r. (7)

By Lemma 2 applied with ε = (2n)−1, the following property is valid:
(ii) for each function f ∈ A and every positive number r ≤ 1, there exist f̄ ∈ A and

x̄ ∈ X such that
d̃( f , f̄ ) ≤ r/4 (8)

and that for each y ∈ X satisfying

f̄ (y) ≤ inf( f̄ ) + 16−1rn−1 (9)

the equation
min{ρ(y, x̄), ρ(T(y), x̄)} ≤ (2n)−1. (10)

is valid.
Fix

r̄ = 4−1, α = 80−1n−1. (11)

Let f ∈ A and a positive number r ≤ r̄ be given. By property (ii), there exist f̄ ∈ A
and x̄ ∈ X such that

d̃( f , f̄ ) ≤ r/4 (12)

and that the next property is true:
(iii) for every point y ∈ X satisfying (9), Equation (10) is true.
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Let a function g ∈ A satisfy
d(g, f̄ ) ≤ αr. (13)

By (2) and (11)–(13),
d(g, f ) ≤ αr + r/4 ≤ r/2. (14)

By (2), (11) and (13),

d̃(g, f̄ ) ≤ d(g, f̄ )(1− d(g, f̄ ))−1

≤ αr(1− αr)−1 ≤ 2αr (15)

and
| inf( f̄ )− inf(g)| ≤ 2αr. (16)

Let a point z ∈ X satisfy the inequality

g(z) ≤ inf(g) + αr. (17)

By (15),
|g(z)− f̄ (z)| ≤ 2αr. (18)

By (11) and (16)–(18),

f̄ (z) ≤ g(z) + 2αr ≤ inf(g) + 3αr ≤ inf( f̄ ) + 5αr

≤ inf( f̄ ) + 16−1rn−1. (19)

Property (iii), (9), (10) and (19) imply that

min{ρ(z, x̄), ρ(T(z), x̄)} ≤ (2n)−1.

Thus
g ∈ An

by definition. Together with (14), this implies that

{g ∈ A : d(g, f̄ ) ≤ αr} ⊂ {g ∈ A : d(g, f ) ≤ r} ∩ An.

Thus, the set A \An is σ-porous. Then the set

A \ ∩∞
n=1An = ∪n=1(A \An)

is σ-porous.
Let

f ∈ ∩∞
n=1An. (20)

By (20), for every integer n ≥ 1, there are xn ∈ X and δn > 0 such that the following
property is valid:

(iv) if a point z ∈ X satisfies the inequality f (z) ≤ inf( f ) + δn, then the equation
ρ(xn, {z, T(z)}) ≤ 1/n holds.

Suppose that a sequence {zi}∞
i=1 ⊂ X satisfies

lim
i→∞

f (zi) = inf( f ). (21)

Let a natural number n be given. By (21) and property (iv), for every large enough
positive integer i,

{ρ(xn, {zi, T(zi)}) ≤ n−1.
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Since n is an arbitrary positive integer, there is a sub-sequence {zip}∞
p=1 such that at

least one of the sequences {zip}∞
p=1 and {T(zip)}∞

p=1 converges. Since T is continuous and
T2 is the identity operator, they both converge and

T( lim
p→∞

zip) = lim
p→∞

T(zip). (22)

Set
x f = lim

p→∞
zip . (23)

By (21), (23) and the lower semi-continuity of f ,

f (x f ) = f (T(x f )) = inf( f ). (24)

Applying property (iv) with zi = x f for every natural number i, we obtain that

ρ(xn, {x f , T(x f )}) ≤ n−1 for every natural number n ≥ 1. (25)

Let ξ ∈ X be such that
f (ξ) = inf( f ). (26)

By (26) and property (iv) applied with zi = ξ for every integer i ≥ 1 we obtain that

ρ(xn, {ξ, T(ξ)}) ≤ n−1 for every natural number n. (27)

Equations (25) and (27) imply that

min{ρ(ξ, x f ), ρ(T(ξ), x f ), ρ(ξ, T(x f )), ρ(T(ξ), T(x f ))} ≤ 2n−1.

Since n is an arbitrary positive integer, we conclude that and at least one of the
following equalities is true:

ξ = x f , ξ = T(x f ).

Thus
{x ∈ X : f (x) = inf( f )} = {x f , T(x f )}. (28)

Let ε > 0. Fix a natural number n such that

4n−1 < ε. (29)

Property (iv) and (25) imply that for every z ∈ X which satisfies the inequality

f (z) ≤ inf( f ) + δn,

we have
ρ(xn, {z, T(z)}) ≤ 1/n (30)

and
min{ρ(z, x f ), ρ(T(z), x f ), ρ(z, T(x f )), ρ(T(z), T(x f ))} ≤ 2n−1. (31)

Fix a positive number
δ < min{3−1δn, 8−1ε}. (32)

Let a function g ∈ Ml satisfy
d̃(g, f ) ≤ δ (33)

and let a point z ∈ X be such that

g(z) ≤ inf(g) + δ. (34)
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By Equations (32)–(34), we have

f (z) ≤ g(z) + δ ≤ inf(g) + 2δ ≤ inf( f ) + 3δ ≤ inf( f ) + δn. (35)

It follows from (29), (31) and (35) that

min{ρ(z, x f ), ρ(T(z), x f ), ρ(z, T(x f )), ρ(T(z), T(x f ))} ≤ 2n−1 < ε. (36)

Thus, (28) holds and for each function g ∈ Ml which satisfies (33) and every point
z ∈ X satisfying (34) Equation (36) holds. By Equations (33) and (34), we have

|g(z)− inf( f )| ≤ 2δ < ε.

Thus, the minimization problem for f on X is well-posed with respect to (Ml , d) for
all f ∈ ∩∞

n=1An. Theorem 1 is proved.
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