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Abstract: In this paper, we give an explicit expression for a star product on the super-Minkowski
space written in the supertwistor formalism. The big cell of the super-Grassmannian Gr(2|0, 4|1)
is identified with the chiral, super-Minkowski space. The super-Grassmannian is a homogeneous
space under the action of the complexification SL(4|1) of SU(2, 2|1), the superconformal group in
dimension 4, signature (1,3), and supersymmetry N = 1. The quantization is done by substituting
the groups and homogeneous spaces by their quantum deformed counterparts. The calculations are
done in Manin’s formalism. When we restrict to the big cell, we can explicitly compute an expression
for the super-star product in the Minkowski superspace associated to this deformation and the choice
of a certain basis of monomials.

Keywords: star products; superspace; non-commutative spacetime; quantum groups; quantum
supergroups

1. Introduction

The Twistor theory [1–3] was initiated by Penrose as an alternative way of describing
spacetime. One starts with an abstract, four-dimensional complex vector space ( twistor
space) and the complex, compactified Minkowski space is the set of two planes inside the
twistor space. This is the Grassmannian manifold G(2, 4), which is a homogeneous space
of the group SL(4,C), that is, a homogeneous space of the group SL(4,C). This group is
the spin group of the conformal group of spacetime, namely, SU(2, 2).

One passes from the Minkowski space to a conformal space by a compactification,
and vice versa by restricting to the big cell of the conformal space. Thus, one could think
of a non-conformally-symmetric field theory as a conformal theory broken down to the big
cell by some extra terms.

Conformal symmetry has a fundamental role in the gauge/gravity correspondence [4]
(for a review, see [5,6]) which relates gravity theories to conformal gauge theories defined
on the boundary of spacetime. It would then be interesting to see how conformal theories
can be deformed and what the meaning of the deformation from the gravity point of view
is.

In the original papers [1,2], Penrose believed that the Twistor theory could help to
introduce the indetermination principle in spacetime. The points had to be ‘smeared
out’, since in this formalism a point of spacetime is not a fundamental quantity, but it is
secondary to twistors.

Nevertheless, all the twistor constructions are classical. Our point of view is deforming
the algebra of functions over spacetime to a non-commutative algebra. Because of the
non-commutativity, this will introduce an indetermination principle among the coordinates
of spacetime. A quantum group is a commutative, but non-cocommutative Hopf algebra
depending on an indeterminate parameter q. One can specify q = 1 to recover the original
commutative Hopf algebra, which is just a Lie group.
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The quantum group SLq(4,C) is the quantum conformal group complexified. The
idea underlying the work of [7] was to make such a substitution and then to obtain a
quantum Grassmannian, a quantum Minkowski space, and a quantum Poincaré group
satisfying the same relations among them as their classical counterparts. The scheme is
also generalized to flag manifolds. Thus, the quantum conformal group acts naturally on
the quantum Grassmannian, viewed as a quantum homogeneous space, and the quantum
Poincaré group is identified with the subgroup of it that preserves the big cell [7].

In the super-setting, we have several superspaces that are of interest: the Grassman-
nian supervariety Gr(2|0, 4|1), which corresponds in physical terms to the superalgebra of
chiral superfields and the superflag Fl(2|0, 2|1, 4|1), which is the compactification of the
complexification of the N = 1 Minkowski superspace. The same idea can be applied here
with the supergroup SL(4|1) [8], which can also be deformed to a quantum supergroup.
For a detailed treatment of all the super and non-super, classical, and quantum cases,
see [9]. We will follow Manin’s formalism [10] for quantum supergroups.

Here we deal with both cases, the super and non-super one. We have identified a
quantization of the (super)conformal space as a homogeneous space of SLq(4|1). In the
big cell (the Minkowski (super)space), it can be presented as a concrete star product on
the algebra of functions. There is an atlas of the Grassmannian with six identical cells,
and the (super) star products in the intersections glue in such a way that one can recover
the quantum Grassmannian.

Any conformal theory expressed in terms of twistors would have, presumably with this
procedure, a quantum counterpart, where the word ‘quantum’ here means that we are de-
forming spacetime itself. The observables of such theories will be modified, but to compute
the modifications explicitly it is not enough to look at the abstract algebra defined by gener-
ators and relations. One has to go to a ‘semiclassical’ approach where observables are still
functions on spacetime as the original ones, but with a product that is non-commutative.
This is achieved only if one has an explicit expression for the star product. In fact, the func-
tions become (formal) series in the parameter of the deformation and there is no canonical
choice for the star product among the equivalent ones. This problem is present in general
in deformation quantization. For example, when one quantizes the phase space with a
constant Poisson bracket, there seems to be a choice in which the star product has an easy
computable expression, the Moyal–Weyl star product. Other than this simple case there are
not, to the best of our knowledge, computations showing explicitly different star products,
less being quadratic (at the leading order) deformations. To compute the star product
one has to stick to a basis in the abstract algebra, and the explicit expression for the star
product depends on such a choice. We have chosen here a sort of normal ordering, so the
final expression does not have symmetry between the entries of the star product as the
Moyal–Weyl has. It would have been more difficult to show the existence of a basis where
the star product appears to be more symmetric, and then the calculation of the star product
would have been more involved. For this reason, we have stuck to a normal ordering.
There is one instance, though, were the ordering is not relevant and it is the deformation
to order one in h (q = eh) of the commutator induced by the star product f ? g− g ? f .
This is the Poisson bracket, that we also compute explicitly, with an expression far simpler
than the star product itself. There is always an equivalent deformation where the Poisson
bracket is the first term in the star product itself, so there is no need to antisymmetrize.
Knowing the Poisson bracket would then be useful to compute first-order corrections to
the theories at hand, induced by the non-commutativity of spacetime.

We first deal with the non-super case [11]. We work in the algebraic category, so we
first give an explicit formula for the star product among two polynomials in the big cell
of the Grassmannian. Since the quantum algebras that we present here are deformations
of the algebra of polynomials on the Minkowski space, the star product that we obtain is
also algebraic.

In the same reference [11] it is shown that this deformation can be extended to the set
of smooth functions in terms of a differential star product. Since a differential operator is
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determined once it is given on polynomials, the bidifferential operators appearing in the
star product are completely determined. The Poisson bracket leading the deformation is a
quadratic one, so the Poisson structure is neither symplectic nor regular. For the super case
we obtain that, at least to the first order in h, the differentiability property is maintained.

Examples of such transitions from the category of algebraic varieties to the category
of differential manifolds in the quantum theory are given in [12–14]. There, the authors
consider coadjoint orbits with the Kirillov–Kostant–Souriau symplectic form. It was shown
that some algebraic star products do not have differential counterparts (not even modulo
an equivalence transformation), so the results of [11] are non-trivial. It is remarkable that
one of the algebraic star products that does not have a differential extension is the star
product on the coadjoint orbits of SU(2), associated to the standard quantization of angular
momentum. For algebraic star products and their classification, see also [15].

Other works also deal with the quantization of spacetime in terms of the twistor space.
A very interesting work [16] applies the methods of geometric quantization to the twistor
space.

The Weyl–Moyal star product is, in some sense, the simplest formal deformation that
one can construct on Rn. It requires a constant Poisson bracket:

{ f (x), g(x)} = Bµν∂µ f (x)∂νg(x), f , g ∈ C∞(Rn) ,

where Bµν is any constant, antisymmetric matrix. The associative, non-commutative star
product is given by [17,18]:

f ? g(x) =
∞

∑
n=0

hn

n!
Bµ1ν1 · · · Bµnνn ∂µ1 . . . ∂µn f (x)∂ν1 . . . ∂νn g(x) .

In [19], the Minkowski space is endowed, first, with a constant Poisson bracket as
above. Then, using the R-matrix approach, the authors construct the action of the conformal
group on the non-commutative space, which gives a deformation similar to the one used
in [20].

The Moyal deformation of space-time has been used in String theory (the original
references are [21,22]). In String theory, the presence of a Bµν field with a non-zero vacuum
expectation value can be interpreted as a deformation of space-time with the Moyal–Weyl
deformation induced by 〈Bµν〉. This is a genuine non-commutative structure of spacetime.
However, one has to take into account that it breaks the Lorentz invariance.

For the super case, there is also this type of ‘Moyal–Weyl’ deformation. It is known
that the quantization of a Grassmann algebra is a Clifford algebra of split signature (n, n).

There are very few deformations that can be given explicitly as a star product in closed
form [23]. A general formula is known for an arbitrary Poisson bracket (Kontsevich’s
formula, [24]), but it is extremely hard to work out the coefficients for the differential
operators appearing in the deformation, even for simpler, linear Poisson brackets. For many
deformations, we only know how to express them in terms of generators and relations.
While this may be enough from a mathematical point of view, it is often not enough
for applications. The formula that we give is involved but it is explicit, and this is a
real advantage.

In order to quantize the Grassmannian, one can also use the fact that the Grassmannian
G(m, n) ' SL(n)/P, with P a parabolic subgroup is, as a real manifold, a coadjoint orbit
of the group SL(n). In fact, any flag manifold is so, being the full flag Fl(1, 2, 3, . . . , n),
the regular (maximal dimension) orbit, and all the others non-regular. The approaches
of [12,13,25–27] would then be relevant here. The Kirillov–Kostant–Soriau Poisson bracket
on the coadjoint algebra given essentially by the Lie bracket, is a linear Poisson bracket. It
restricts to a symplectic Poisson bracket on the orbits. The star product is obtained from
the enveloping algebra but it is only explicit once one takes symplectic coordinates on an
open set of the orbit, in which case it is, locally, a Moyal–Weyl star product. It is then a
star product equivariant under the action of the group. In the works mentioned above, the
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quantization is given in terms of generators and relations so it is an algebraic deformation,
but then in [14] the relation with differential star products was studied. This mechanism
could, in principle, be extended to the super case.

Another approach to the quantization of coadjoint orbits has been undertaken also in
the Refs. [28–30] using the so-called it Shapovalov pairing of Verma modules.

Grassmannians have also been quantized as fuzzy spaces. A fuzzy space is built by
using harmonic functions on the coset space and truncating the expansion at some level.
The functions can be expressed as matrices in a certain basis and a product on the truncated
space is defined just using matrix multiplication. We find this approach in [31,32].

We believe that the three approaches just mentioned must be linked in some way, since
the quantizations are equivariant under the classical group (SL(4,C) in this case) and all of
them are intimately related to the representation theory. It is, however, not straightforward
to compare them.

Interesting as these works are, our deformation is a different one. The Poisson bracket
that we obtain on the Minkowski (super)space is a quadratic one (in particular, not sym-
plectic) and the star product is then non-equivalent to a Weyl–Moyal one. Additionally, the
equivariance of the star product is achieved only by deforming the group to a quantum
group, contrary to the above-mentioned approaches. Nevertheless, we are able to give an
explicit formula for it in terms of a recursive expression. The formulas for the non-super
case are involved but manageable. For the super case, we have put the star product in terms
of the non-super one, otherwise the notation becomes very heavy. This is an example of
how a standard ordering in the generators of the quantum Minkowski (super)space induce
a (super) star product that is not at all trivial. Contrary to many other deformations, whose
algebra is given in terms of generators and relations, here we have an explicit (although
involved) formula for the calculation of the star product of two monomials.

The organization of the paper is as follows:
In Section 2 we review the classical picture, also for the super case, and settle the

notation for the algebraic approach. In Section 3 we describe the quantum super-Minkowski
space obtained in the Reference [8], together with the corresponding quantum super groups.
In Section 4 we tackle the even case studied in [11] and give the explicit formula for the star
product between two polynomials on Minkowski space. We refer to that same paper to see
how the differentiability of the star product is proven. Finally, in Section 5, based on the
results obtained in the previous section, we obtain the star product for the super-Minkowski
space.

For completeness, in Appendix A we have given a basis of the super Poincaré group
in terms of its usual generators.

2. The Classical Chiral Conformal and Minkowski Superspaces

We describe here the N = 1 chiral conformal superspace as the super-Grassmannian
Gr := Gr(2|0, 4|1). The superspace Gr is a homogeneous superspace under the action
of supergroup SL(4|1), which is the complexification of the conformal supergroup in
Minkowskian signature, namely, SU(2, 2|1). The chiral Minkowski superspaceM is real-
ized as the big cell inside Gr and the action of the Poincaré supergroup as the symmetries
of Gr stabilizingM.

For an explicit construction of this picture, see [8,9,33,34]. For the ordinary, non-super
counterpart description, see also [3,11,33]. We briefly describe it here.

Let Gr0 = Gr(2, 4) denote the Grassmannian of 2-dimensional subspaces of C4.
The space T0 = C4 is called the twistor space. The Grassmannian Gr0 = Gr(2, 4) is
a complex analytic manifold, a projective algebraic variety, and a homogeneous space
under the action of the group SL(4,C). In fact, a two-dimensional subspace is given by
two independent vectors:

π = (a, b) =


a1 b1
a2 b2
a3 b3
a4 b4

. (1)
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There is a natural right action of SL(2,C) corresponding to basis change. The left ac-
tion of SL(4,C) is the obvious one and it is a transitive action. Selecting one element,
say π0 = (e1, e2) with {ei}4

i=1 the canonical basis in C4, we find that the isotropy group of
π0 is the upper parabolic subgroup

Pu
0 =

{(
L M
0 R

)
∈ SL(4,C)

∣∣ det L · det R = 1
}

, ,

where R, L and M are 2× 2-matrices. Thus,

Gr0 = SL(4,C)/Pu
0 .

The big cell of Gr0 is the set of points such that

det
(

a1 b1
a2 b2

)
6= 0 . (2)

By a right SL(2,C) transformation, we can bring (1) to the standard form

U12 :=




1 0
0 1

t31 t32
t41 t42

 =

(
11
t

) (3)

with t unconstrained. The big cell is then U12 ≈ C4. The subset of SL(4,C) leaving the big
cell invariant is the lower parabolic subgroup

Pl
0 =

{(
x 0

Tx y

)
∈ SL(4,C)

∣∣ det x · det y = 1
}

,

where the unconstrained matrix Tx is written in this way to see the action better on the big
cell. We have

t −→ ytx−1 + T .

Thus, Pl
0 is the Poincaré group including the dilations and the big cell is the Minkowski

space, with its more familiar form t = xµσµ in terms of the Pauli matrices.
As algebraic groups, the coordinate algebras of SL4 := SL(4,C) and its subgroup

Pl
0 are

C[SL4] = C[gij]/(det g− 1), i, j = 1, . . . , 4 (4)

C(Pl
0) = C[xij, ykl , Tkj]/(det x det y− 1), i, j = 1, 2, and k, l = 3, 4 . (5)

These algebras carry a well-known commutative Hopf algebra structure.
We can associate with Gr0 the Z-graded ordinary algebra O(Gr0) given by its Plücker

embedding in the projective space P5 (see, for example, [8,33] or [9] Ch. 2) in terms of six
indeterminates qij and the Plücker relation described below:

O(Gr0) := C[qij]/IP0, 1 ≤ i < j ≤ 4 ,

where IP0 is the ideal generated by the Plücker relation:

q12q34 − q13q24 + q14q23 = 0 . (6)

The interesting observation here, that will be key to obtain the quantization, is that O(Gr0)
can be retrieved as a subalgebra of C[SL4]. If we write the generators of C[SL4] in its usual
matrix form
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g =


g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44

 , (7)

the determinants dij = gi1gj2 − gi2gj1 with 1 ≤ i < j ≤ 4, that is, all possible determinants
of the two first columns, satisfy the Plücker relation (6) and this is the only independent
relation that they satisfy (see [9]). Therefore,

O(Gr0) ∼= C[dij] ⊂ C[SL4], 1 ≤ i < j ≤ 4 .

The condition (2) is related to the invertibility of q12 in (6). Introducing q−1
12 with

q12q−1
12 − 1 = 0 and degree−1, the subalgebra ofO(Gr0)[q−1

12 ] of degree 0 is the polynomial
subalgebra freely generated by the elements(

t31 t32
t41 t42

)
=

(
−d23 d13
−d24 d14

)
d−1

12

where dij is the determinant formed by the elements of (7) in the positions of columns 1,2
and rows i, j (i < j). The determinant d34 can be obtained from (6). The calculation follows
by taking the first two columns in (7) and multiplying on the right by(

g11 g12
g21 g22

)−1

=
1

d12

(
g22 −g12
−g21 g11

)
,

and then comparing with (3).
Similarly, we consider the N = 1 supertwistor superspace, C4|1. We have the set

Gr := Gr(2|0, 4|1) of 2|0 subspaces in C4|1. It is naturally an analytic supermanifold, a
projective algebraic supervariety and a homogeneous superspace under the action of the
supergroup SL(4|1). We will use the language of the functor of points (see, for example,
[9,34,35]), better suited to treat supergroups. Thus, one has

SL(4|1)(A) =
{(

gij γi5
γ5j g55

)
, i, j = 1, . . . , 4

}
(8)

whereA is any superalgebra. The Latin letters will represent elements ofA0, and the Greek
ones, elements of A1, unless otherwise stated.

We can give an element in Gr(A), forA local, in terms of two even independent vectors

π = (a, b) =


a1 b1
a2 b2
a3 b3
a4 b4
α5 β5

 (9)

that, as before, can be chosen up to the right action of SL2(A). The isotropy group of
{e0, e1}, being {ei, ε5, i = 1, . . . , 4} the canonical basis, is the upper parabolic subgroup

Pu(A) =


L M α

0 R β
0 δ d

 ∈ SL(4|1)(A)
∣∣ det L · det R = d

 ,

so
Gr(A) = SL(4|1)(A)/Pu(A) .

We will say that Gr is the N = 1 chiral superspace.
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The reduced manifold of Gr is Gr0, so the big cell of Gr(A) will be the set of A-
points with

det
(

a1 b1
a2 b2

)
, invertible , (10)

which with a right SL2(A) transformation, can be brought to the standard form
1 0
0 1

t31 t32
t41 t42
τ51 τ52

 =

11
t
τ

 . (11)

We call the set of such matrices the big cell U12; this is an open subsupermanifold of Gr and
U12
∼= C4|2. The subgroup leaving the big cell invariant is the lower parabolic subgroup

of SL(4|1):

Pl =

 x 0 0
Tx y yη
dρ dξ d

 (12)

and the action on the big cell is11
t′

τ′

 =

 11
y(t + ητ)x−1 + T
d(τ + ρ + ξt)x−1

 .

Taking ξ = 0, we obtain the super Poincaré group including dilations. The condition ξ = 0
will be necessary if we also consider the antichiral superspace Gr(2|1, 4|1).

There is a Z-graded superalgebra associated with the super Plücker embedding of Gr
in P6|4 (see [8,9] Ch. 4 for more details) given in terms of seven even indeterminates qij, a55
and four odd indeterminates satisfying the relations described below:

O(Gr) := C[qij, λk, a55]/IP, i, j, k = 1, . . . , 4 , (13)

where IP is the super ideal generated by the super Plücker relations:

q12q34 − q13q24 + q14q23 = 0, (classical Plücker relation)

qijλk − qikλj + qjkλi = 0, 1 ≤ i < j < k ≤ 4

λiλj = a55qij 1 ≤ i < j ≤ 4

λia55 = 0 . (14)

As in the non-super case, we consider the first two rows in (8) and construct the quantities

dij = gi1gj2 − gi2gj1, σi = g1iγ52 − g2iγ51, a = γ51γ52 ,

which satisfy the super Plücker relations and no other independent relations. In this way,
one retrieves the algebra C[qij, λi, a55]/IP of the super Plücker embedding as a subalgebra
of SL(4|1).

The condition (10) defining the super-Minkowski space as the big cell in Gr is then
equivalent to q12 6= 0. The superalgebra of polynomials O(M) onM is then retrieved in
O(Gr) as the elements of degree zero in O(Gr)[q−1

12 ].
This subalgebra, O(U12) = O(M) is the polynomial subalgebra generated by the

elements (see (11))
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t31 t32
t41 t42
τ51 τ52

 =

−d23d−1
12 d13d−1

12
−d24d−1

12 d14d−1
12

σ1d−1
12 σ2d−1

12 ,


and the rest of the indeterminates can be obtained from these using the super Plücker
relations (14) (Ref. [9] Ch. 5).

As supergroups, SL(4|1), Pl , and also Pu are super-Hopf algebras. This allows
us to give the coaction of the relevant supergroup on the super-conformal or super-
Minkowski spaces.

3. The Quantum Super-Minkowski Space

We now briefly describe the quantization of super-Minkowski space obtained in [8],
Section 2 (see also in [9] Ch. 5). We consider the quantum supergroup SLq(4|1) in Manin’s
formalism [10]. In this section, we use the same letters for the classical and quantum
generators, while it does not lead to confusion. We have the following definition:

Definition 1. The quantum matrix superalgebra Mq(m|n) is defined as

Mq(m|n) =def Cq〈zij, ξkl〉/IM ,

where Cq〈zij, ξkl〉 denotes the free superalgebra over Cq = C[q, q−1] generated by the even variables

zij, for 1 ≤ i, j ≤ m or m + 1 ≤ i, j ≤ m + n

and by the odd variables

ξkl for 1 ≤ k ≤ m, m + 1 ≤ l ≤ m + n

or m + 1 ≤ k ≤ m + n, 1 ≤ l ≤ m,

satisfying the relations ξ2
kl = 0. IM is an ideal generated by relations that we will describe shortly.

We can visualize the generators as a matrix(
zm×m ξm×n
ξn×m zn×n

)
. (15)

To simplify the notation, it is convenient sometimes to have a common notation for even and
odd variables.

aij =


zij 1 ≤ i, j ≤ m, or m + 1 ≤ i, j ≤ m + n
ξij 1 ≤ i ≤ m, m + 1 ≤ j ≤ m + n, or

m + 1 ≤ i ≤ m + n, 1 ≤ j ≤ m

We assign a parity to the indices p(i) = 0 if 1 ≤ i ≤ m and p(i) = 1 otherwise. Then, the
parity of aij is π(aij) = p(i) + p(j) mod 2. Then, the ideal IM is generated by the relations [10]:

aijail = (−1)π(aij)π(ail)q(−1)p(i)+1
ailaij, for j < l

aijakj = (−1)π(aij)π(akj)q(−1)p(j)+1
akjaij, for i < k

aijakl = (−1)π(aij)π(akl)aklaij, for i < k, j > l

or i > k, j < l

aijakl − (−1)π(aij)π(akl)aklaij = (−1)π(aij)π(akj)(q−1 − q)akjail ,

for i < k, j < l
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There is also a comultiplication

Mq(m|n)
∆−−−−→ Mq(m|n)⊗Mq(m|n)

given formally by matrix multiplication, that is, ∆(aij) = ∑k aik ⊗ akj.
Adjoining the inverse of the quantum Berezinian, which is a central element of the

algebra, one has a suitable antipode map S, unit, and co-unit that define the standard quan-
tum supergroup GLq(4|1). One can restrict to SLq(4|1) by setting the quantum Berezinian
to 1. We conveniently represent the generators in matrix form, as in (15)(

gij γi5
γ5j g55

)
, i, j = 1, . . . , 4 . (16)

As in the classical case, the quantum super-Poincaré group is given by

Oq(P) := O(GLq(4|1))/Iq ,

where Iq is the (two-sided) ideal in O(GLq(4|1)) generated by

g1j, g2j, for j = 3, 4 and γ15, γ25, γ53, γ54 . (17)

We can equivalently write Oq(P) as generated, as in (12), by the following elements: x 0 0
Tx y yη
ρx 0 d

 , (18)

with change of variables

x =

(
g11 g12
g21 g22

)
, T =

(
−q−1D23D−1

12 D13D−1
12

−q−1D24D−1
12 D14D−1

12

)
,

y =

(
g33 g34
g43 g44

)
, d = g55,

ρ = (−q−1D25D−1
12 , D15D−1

12 ), η =

(
−q−1D34

34
−1D45

34

D34
34
−1D35

34

)
.

We have denoted by Dij the determinant of the i, j rows of the first two columns in (17)
(see [9] Ch. 5 for more details).

In the following, it will be necessary to distinguish between (super)commutative and
non-(super)commutative generators, so we put a hat ‘ ˆ ’ over the non-commutative ones.
In the spirit of (15) we introduce the following definition:

Definition 2. The complexified quantum Minkowski superspace is the free algebra in six generators

t̂41, t̂42, t̂31 and t̂32, (even)

τ̂51, τ̂52 (odd)

satisfying the commutation relations
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t̂42 t̂41 = q−1 t̂41 t̂42,

t̂31 t̂41 = q−1 t̂41 t̂31,

t̂32 t̂41 = t̂41 t̂32 + (q−1 − q)t̂42 t̂31,

t̂31 t̂42 = t̂42 t̂31,

t̂32 t̂42 = q−1 t̂42 t̂32,

t̂32 t̂31 = q−1 t̂31 t̂32 , (19)

which would be the commutation relations defining the non-super quantum Minkowski space,
together with

τ̂51τ̂52 = −q−1τ̂52τ̂51

t̂31τ̂51 = q−1τ̂51 t̂31 t̂32τ̂52 = q−1τ̂52 t̂32

t̂41τ̂51 = q−1τ̂51 t̂41, t̂42τ̂52 = q−1τ̂52 t̂42

t̂31τ̂52 = τ̂52 t̂31 t̂41τ̂52 = τ̂52 t̂41

t̂32τ̂51 − τ̂51 t̂32 = (q− q−1)t̂31τ̂52 t̂42τ̂51 − τ̂51 t̂42 = (q− q−1)t̂41τ̂52 (20)

This algebra will be denoted as Oq(M), and it is a subalgebra of Mq(2|1) in Definition 1.
If we denote the ideal given by (19) and (20) as IqM, then we have that

Oq(M) ≡ Cq〈t̂41, t̂42, t̂31, t̂32, τ̂51, τ̂52〉/IqM .

The commutation relations of the generators of the quantum Poincaré supergroup
O(Pq) Oq(P) (17), (18), are not trivial and are listed in [9] (pages 305–306) in a very similar
notation. There is a natural coaction of Oq(P) on Oq(M), which is Proposition 7.5 of [8].
We give it here:

Proposition 1. The quantum chiral super-Minkowski space Oq(M) admits a coaction of the
quantum chiral Poincaré supergroup Oq(P):

Oq(M)
∆̂−−−−→ Oq(P)⊗Oq(M) .

∆̂t̂ij = tij ⊗ 11 + ŷiaS(x̂)bj ⊗ t̂ab + ŷiη̂aS(x̂)bj ⊗ ρ̂jb,

∆̂τ̂j = (d̂⊗ 11)(τ̂a ⊗ 11 + 11⊗ ρ̂a)(S(x̂)aj ⊗ 1) .

4. The Star Product in the Even Case

The star product allows us to recover the interpretation of the quantum algebra as the
space of formal power series of standard polynomials, where a non-commutative product
is defined. For the even case, the star product was computed in [11]. We will later make the
generalization to the super case, but we first need to recall the construction in the non-super
case.

Definition 3. The complexified quantum Minkowski space is the free algebra in four generators

t̂41, t̂42, t̂31 and t̂32 ,

satisfying the relations (19).
This algebra will be denoted as Oq(M0). If we denote the ideal (19) by IM0q , then we

have that
Oq(M0) ≡ Cq〈t̂41, t̂42, t̂31, t̂32〉/IM0q .
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Let Cq = C[q, q−1]. We have:

Proposition 2. There is an isomorphismO(M0)[q, q−1] ≈ Oq(M0) as modules over Cq. In fact,
the map

Cq[t41, t42, t31, t32]
QM0−−−−→ Oq(M0)

ta
41tb

42tc
31td

32 −−−−→ t̂a
41 t̂b

42 t̂c
31 t̂d

32

(21)

is a module isomorphism (so it has an inverse).

Proof. The ordering used here is the normal ordering given in [10]. The Theorem 1.14 in
this Reference says that such monomials are a basis for the algebra generated by the entries
of the quantum matrix (

t̂32 t̂31
t̂42 t̂41

)
with commutation relations of the Manin relations (1) in the purely even, n = 2 case.
The proof of the proposition then follows.

A map like QM0 is called an ordering rule or quantization map. In particular,
Proposition 2 is telling us that Oq(M0) is a free module over Cq, with a basis of the set of
standard monomials.

We can pull back the product on Oq(M0) to O(M0)[q, q−1].

Definition 4. The star product on O(M0)[q, q−1] is defined as

f ?even g = Q−1
M0

(
QM0( f )QM0(g)

)
, f , g ∈ O(M0)[q, q−1]. (22)

By construction, the star product satisfies associativity. The algebra (O(M0)[q, q−1], ? )
is then isomorphic to Oq(M).

To give it explicitly [11], we first need a couple of partial results. We begin by comput-
ing some auxiliary relations.

Lemma 1. The following commutation rules are satisfied in Oq(M0):

t̂m
42 t̂n

41 = q−mn t̂n
41 t̂m

42,

t̂m
31 t̂n

41 = q−mn t̂n
41 t̂m

31,

t̂m
31 t̂n

42 = t̂n
42 t̂m

31,

t̂m
32 t̂n

42 = q−mn t̂n
42 t̂m

32,

t̂m
32 t̂n

31 = q−mn t̂n
31 t̂m

32,

and

t̂m
32 t̂n

41 = t̂n
41 t̂m

32 +
µ

∑
k=1

Fk(q, m, n)t̂n−k
41 t̂k

42 t̂k
31 t̂m−k

32 ,

where µ = min(m, n) and

Fk(q, m, n) = βk(q, m)
k−1

∏
l=0

F(q, n− l) with F(q, n) =
(

1
q2n−1 − q

)
and βk(q, m) is defined by the recursive relation

β0(q, m) = βm(q, m) = 1, and βk(q, m + 1) = βk−1(q, m) + βk(q, m)q−2k.

Moreover, βk(q, m) = 0 if k < 0 or if k > m.
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Proof. The proof is just a (lengthy) computation.

Theorem 1. The star product given in Definition 22 is given in two arbitrary monomials as

(ta
41tb

42tc
31td

32) ?even (tm
41tn

42tp
31tr

32) = q−mc−mb−nd−dpta+m
41 tb+n

42 tc+p
31 td+r

32 +

µ=min(d,m)

∑
k=1

q−(m−k)c−(m−k)b−n(d−k)−p(d−k)Fk(q, d, m)· (23)

ta+m−k
41 tb+k+n

42 tc+k+p
31 td−k+r

32 (24)

We consider now a change in the parameter, q = exp h. The classic limit is then
obtained as h → 0. One can expand (24) in powers of h. In [11] it is shown that, at each
order in h, the star product can be written as a bidifferential operator. Then the extension
of the star product to C∞ functions is unique.

It is interesting to compute the antisymmetrization of the term of order 1 in h, which
is the Poisson bracket

{ f , g}even =t41t31(∂41 f ∂31g− ∂41g∂31 f ) + t42t41(∂41 f ∂42g− ∂41g∂42 f )+

t32t42(∂42 f ∂32g− ∂42g∂32 f ) + t32t31(∂31 f ∂32g− ∂31g∂32 f )+

2t42t31(∂41 f ∂32g− ∂41g∂32 f ) . (25)

We can express the Poisson bracket in terms of the usual variables in the Minkowski space.
The coordinate change is(

t31 t32
t41 t42

)
= xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
,

and the inverse change is

x0 =
1
2
(t31 + t42), x1 =

1
2
(t32 + t41), x2 =

i
2
(t32 − t41), x3 =

1
2
(t31 − t42).

In these variables, the Poisson bracket becomes

{ f , g}even =i
((

(x0)2 − (x3)2
)
(∂1 f ∂2g− ∂1g∂2 f ) + x0x1(∂0 f ∂2g− ∂0g∂2 f )−

x0x2(∂0 f ∂1g− ∂0g∂1 f )− x1x3(∂2 f ∂3g− ∂2g∂3 f )+

x2x3(∂1 f ∂3g− ∂1g∂3 f )
)

.

The Poisson bracket that we obtain is quadratic in the variables, and it is non-trivial.

5. The Super-Star Product

We want to repeat the procedure of Section 4. We start by giving an ordering which
defines a quantization map.

Proposition 3. There is an isomorphism

O(M)[q, q−1] = Cq[τ51, τ52, t41, t42, t31, t32] ≈ Oq(M)

as modules over Cq. In fact, for a, b, c, d = 0, 1, 2 . . . and e, f = 0, 1 the map

O(M)[q, q−1]
QM−−−−→ Oq(M)

τe
51τ

f
52ta

41tb
42tc

31td
32 −−−−→ τ̂e

51τ̂
f

52 t̂a
41 t̂b

42 t̂c
31 t̂d

32

(26)

is a module isomorphism (so it has an inverse).
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Proof. The ordering used here is the normal ordering used in Theorem 1.14 of [10].
For the even part, we are in the situation of Proposition (2). Adding the odd variables

in that reference says that such monomials are a basis for the algebra generated by the
entries of the (non-square) quantum matrix t̂32 t̂31

t̂42 t̂41
τ̂52 τ̂51


with commutation relations the Manin relations (1). To add the odd variables, one has
to check that they do not introduce other generators with the commutation relations, the
Manin relations (1). These relations are the same (up to a sign) for even or odd generators.
Hence, the normal ordering in Theorem 1.14 of [10] will give us the result using the same
argument as in Prop. 2.

We first need a couple of partial results:

Lemma 2. For a, b, c, d = 0, 1, 2, . . . we have the following commutation relations:

t̂a
41τ̂52 = q−aτ̂52 t̂a

41 t̂b
42τ̂52 = q−bτ̂52 t̂b

42

t̂c
31τ̂52 = τ̂52 t̂c

31 t̂d
32τ̂52 = q−dτ̂52 t̂d

32

t̂a
41τ̂51 = q−aτ̂51 t̂a

41

t̂b
42τ̂51 = τ̂51 t̂b

42 + (q− q−2b+1)τ52t41tb−1
42

t̂c
31τ̂51 = q−cτ̂51 t̂c

31

t̂d
32τ̂51 = τ̂51 t̂d

32 + (q− q−2d+1)τ52t31td−1
32

Lemma 3. For a, b, c, d = 0, 1, 2, . . .

ta
41tb

42tc
31td

32τ51 = q−(a+c)τ51ta
41tb

42tc
31td

32 + q−(a+c)(q− q−2b+1)τ52ta+1
41 tb−1

42 tc
31td

32+

q−(a+b)(q− q−2d+1)τ52ta
41tb

42tc+1
31 td−1

32

ta
41tb

42tc
31td

32τ52 = q−(a+b+d)τ52ta
41tb

42tc
31td

32

In order to simplify the notation, we define

T(a, b, c, d) = ta
41tb

42tc
31td

32 .

As in the non-super case, we have:

Definition 5. The super-star product on O(M0)[q, q−1] is defined as

f ? g = Q−1
M
(
QM( f )QM(g)

)
, f , g ∈ O(M)[q, q−1]. (27)

Theorem 2. The super-star product of two monomials in the given basis

S = τe
51τ

f
52T(a, b, c, d) ? τu

51τv
52T(m, n, p, r) ,

with e, f , u, v = 0, 1 and a, b, c, d, m, n, p, r = 0, 1, 2, . . . is given, in terms of the even star product
by (22) (the exponents of the odd variables are always taken mod(2), so they take values 0 or 1):
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S =δu0δv0τe
51τ

f
52 T(a, b, c, d) ?even T(m, n, p, r)+

δu0δv1

(
q−(a+b+d)τe

51τ
f+1

52 T(a, b, c, d) ?even T(m, n, p, r)
)

δu1δv0

(
(−1) f q f−a−cτe+1

51 τ
f

52 T(a, b, c, d) ?even T(m, n, p, r)+

q−a−c(q− q−2b+1)τe
51τ

f+1
52 T(a + 1, b− 1, c, d) ?even T(m, n, p, r)+

q−a−b(q− q−2d+1)τe
51τ

f+1
52 T(a, b, c + 1, d− 1) ?even T(m, n, p, r)

)
+

δu1δv1

(
(−1) f q−2a−b−c−d+ f τe+1

51 τ
f+1

52 T(a, b, c, d) ?even T(m, n, p, r)+

q−2a−b−c−d+1)(q− q−2b+1)τe
51τ

f
52 T(a + 1, b− 1, c, d) ?even T(m, n, p, r)+

q−2a−2b−d+1(q− q−2d+1)τe
51τ

f
52 T(a, b, c + 1, d− 1) ?even T(m, n, p, r)

)
, (28)

where the star products between the Ts are given in Theorem 1. It is a quantum deformation
of O(M).

Proof. For the proof, we have to reorder according to 3. It is easy to check that for q = 1,
one obtains the standard, (super)commutative product on O(M).

The antisymmetrization of the first order in h of the star product gives the Poisson
bracket. To make the notation even lighter, we will write

RA = τe
51τ

f
52ta

41tb
42tc

31td
32, RM = τu

51τv
52tm

41tn
42tr

31tp
32 ,

R+
A = τe

51τ
f

52ta+1
41 tb−1

42 tc
31td

32, R−A = τe
51τ

f
52ta

41tb
42tc+1

31 td−1
32 ,

when there is no possibility of confusion. Let us denote S1(RA, RM) the term of order h in
(28). We denote by C1 the same term in (22).

S1(RA, RM) =C1(RA, RM) + δu0δv1(−(a + b + d)RARM)

δu1δv0
(
( f − a− c)RARM + 2bR+

A RM + 2dR−A RM
)

δu1δv1
(
(−2a− b− c + f )RARM + 2bR+

A RM + 2dR−A RM
)

. (29)

We now take into account that for u, v = 0, 1

δu0 = 1− u, δv0 = 1− v,

δu1 = u, δv1 = v .

Then the terms proportional to uv in (29) cancel out, so we are left with

S1(RA, RM) =C1(RA, RM)− (a + b + d)RA · vRM + ( f − a− c)RA · uRM+

2bR+
A · uRM + 2dR−A · uRM.

This expression can be written in terms of differential operators. We have, for exam-
ple, that

aRA = t41∂t41 RA, bR+
A = t41∂t42 RA, uRM = τ51∂τ51 RM , ...

The result is

S1(RA, RM) =C1(RA, RM) + (t41∂t41 + t42∂t42 + t32∂t32)RA · τ52∂τ52 RM+

(−τ52∂τ52 − t41∂t41 − t31∂t31 + 2t41∂t42 + 2t31∂t32)RA · τ51∂τ51 RM ,
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which satisfies the Leibniz rule in both arguments. Its (anti)symmetrization is the Pois-
son bracket

{RA, RM} = S1(RA, RM)− (−1)pA pM S1(RM, RA) .

At this order, the star product is differential. Presumably, it will be differential at all orders,
as its non-super counterpart [11].
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Appendix A. A Basis for the Poincaré Quantum Supergroup

In this appendix, we give a brief sketch of the fact that the ordered monomials—according
to a given ordering—of the generators super of the Poincaré quantum group form a basis
for its quantum superalgebra. This is a non-trivial result based on the classical work by
Bergman [36], but it is a modification of the argument in [11].

We recall the following key result.

Theorem A1. (Diamond Lemma). Let R be the ring defined by generators and relations as:

R := Cq〈xi〉/(XIk − fk, k = 1 . . . s) .

If Π = {XIk , fk}k=1,...,s is compatible with the ordering < and all ambiguities are resolvable,
then the set of ordered monomials Π is a basis for R. Hence, R is a free module over Cq.

Let us fix a total order O on the variables x, y, t, τ as follows:

τ52 > τ51 > t32 > t31 > t42 > t41 >

x11 > x12 > x21 > x22 > y33 > y34 > y43 > y44 .

Theorem A2. Let Oq(P) = Cq〈xij, ykl , til〉/IP be the algebra corresponding to the quantum
Poincaré group. Then, the monomials in the order O as above are a basis for Oq(P).

The proof of this result is completely analogous to the non-super setting. It is an
application of the Diamond Lemma, where we resolve all ambiguities using the Manin
relations, whose form, in fact, does not depend on the generators having parity.
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