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Abstract: Type-1 diabetes mellitus is a chronic disease that is constantly monitored worldwide by
researchers who are strongly determined to establish mathematical and experimental strategies
that lead to a breakthrough toward an immunological treatment or a mathematical model that
would update the UVA/Padova algorithm. In this work, we aim at a nonlinear mathematical analysis
related to a fifth-order ordinary differential equations model that describes the asymmetric relation
between C-peptides, pancreatic cells, and the immunological response. The latter is based on both the
Localization of Compact Invariant Set (LCIS) appliance and Lyapunov’s stability theory to discuss
the viability of implementing a possible treatment that stabilizes a specific set of cell populations. Our
main result is to establish conditions for the existence of a localizing compact invariant domain that
contains all the dynamics of diabetes mellitus. These conditions become essential for the localizing
domain and stabilize the cell populations within desired levels, i.e., a state where a patient with
diabetes could consider a healthy stage. Moreover, these domains demonstrate the cell populations’
asymmetric behavior since both the dynamics and the localizing domain of each cell population are
defined into the positive orthant. Furthermore, closed-loop analysis is discussed by proposing two
regulatory inputs opening the possibility of nonlinear control. Additionally, numerical simulations
show that all trajectories converge inside the positive domain once given an initial condition. Finally,
there is a discussion about the biological implications derived from the analytical results.

Keywords: type-1 diabetes mellitus; global analysis; β cells; regulatory system

1. Introduction

Diabetes is a severe long-term condition ranking as one of the first ten causes of death
in adults; according to global estimations, around four million people worldwide died in
2017 from this disease. Since the year 2000, the International Diabetes Federation (IDF)
has reported the regional, national, and global occurrence of diabetes, indicating that the
worldwide population with diabetes may increase from 463 to 700 million in the next two
decades [1]. Diabetes mellitus (DM) is a long-term condition resulting from the inability of
the pancreas to produce enough insulin (type 1 diabetes, T1D) or from the incapability of
the pancreas to process the insulin that the body produces (type 2 diabetes, T2D) [2]. Thus,
an increase in blood glucose leads to a non-symmetric behavior in the body over time.

Some complications related with high glucose blood include hypertension, kidney
failure, lower limb amputation, nerve damage, stroke, and blindness [3]. Studies inves-
tigating the trends in diabetes prevalence have been conducted since 2000 [4], including
the diabetes prevalence forecast for 2030 [5], 2035 [6], 2040 [4], 2045 [7], and 2060 [8],
based on the national and regional data, where the results were overwhelming. Recently,
several mathematical models have been published describing the process of glucose-
insulin into the regulatory system, and the so-called Bergman’s Minimal Model is the most
highlighted [9,10].
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Recently, research applying mathematical algorithms to describe diabetes behavior
and its outcomes is gaining attention [11,12]. Some of these algorithms are focused on
both modeling insulin receptor or the body’s insulin-glucose dynamics, diabetes cost-
effectiveness, and glucose tolerance testing [13]. However, models used to describe the
glucose’s dynamic, insulin transport, and accuracy of glucose measurements, are challeng-
ing to assess in vivo.

Therefore, studying these non-symmetrical metabolic processes by mathematical
approaches can help to understand these dynamics [14]. On the other hand, models
based on Ordinary Differential Equations (ODEs) have been widely applied to describe
real-life systems in physics, engineering, economics, and biomedicine. In particular, ODE
models become a promising alternative to describe within-host dynamics, infectious or
viral diseases, and even complex biomedical behaviors of the human body [15].

Currently, clinical studies and in silico data have demonstrated that C-peptide adminis-
tration reduces renal disfunction, and combinations with insulin helps avoid microvascular
issues. Hence, patients with C-peptide persistence are less prone to long-term complica-
tions than those without it [16]. The study of β cell population dynamics in long-time
intervals becomes a key to understand the prevalence of C-peptide secretion in T1D [17].

Some studies demonstrate that C-peptide levels drop exponentially in the first seven
years after diagnosis and could continue dropping throughout the years at a slower rate.
Nonetheless, log-transformed C-peptide levels permit establishing differences, both patho-
physiological and immunological, between glucose and pancreatic cells, giving essential
knowledge to understand β cell survival. Therefore, broader attention should be paid to
the progression of C-peptide loss in a longer duration of T1D, even with special focusing
on the patient’s age [18].

The Localization of Compact Invariant Set (LCIS) method is a reliable method com-
monly used in nonlinear ODE models with mathematical-biological implications, see [19,20].
This method helps to provide sufficient or necessary conditions that lead to a broad under-
standing of the long-term behavior of a dynamical model, even to establish requirements
for possible treatments or reduce some undesired cell populations proliferation [19–21].

In the particular case of T1D, the LCIS method permits analysis of the β cell behavior
in the presence of glucose [22] or with the immunological response [23]. The ODE’s
mathematical model was initially presented in [24] describing the dynamics between
cytotoxic T cells, the β cell population, and the peptide level as a result of their interactions.

Our objective is to provide the conditions for a localizing domain, understand the
global behavior of T1D’s cell dynamics, and give viable cells stabilization conditions.
Hence, our hypothesis aims at how maximum population cells behave in time, based on
upper bounds computations.

The organized sections of this work are presented as follows. The first section describes
a general scheme for the fifth-order nonlinear mathematical model where upper bounds
for all variable states hold when the positive orthant domain is satisfied by the nonlinear
model’s positiveness. Some of the proposed localizing functions have no mathematical
restriction on how they are defined or in the quantity limitations associated with a particular
upper bound; however, the proposed function must not be the first integral, see [25,26].
Discussion resulting from applying local asymptotic stability by Lyapunov indirect method
given the equilibrium point led to analyzing the stability criteria by closed-loop Lyapunov
in which the input controls are analyzed. The second section shows some simulations
that validate our previous mathematical results, and the last section presents the main
conclusions of this research.

2. Preliminaries of Localization of Compact Invarian Sets Method

This section presents the necessary background to define the localizing domain that
contains all the compact invariant sets of a nonlinear system represented by first-order
ODEs. The general method of LCIS was proposed by Krishchenko and Starkov in [25,26] to
determine the domain where all compact invariant sets of a differential equations system
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are located. This method is helpful to understand the long-time behavior of first-order
ODE systems. This is considered an autonomous nonlinear system represented by:

ẋ = f (x), (1)

where x ∈ Rn, f (x) = ( f1(x), . . . , fn(x))T is a differentiable vector field. Let h(x) ∈ C∞(Rn)
be a function such that h is not the first integral of the system (1). The function h is
exploited in the solution of the localization problem of compact invariant sets and is
called a localizing function. By h|U we denote the restriction of h on a set U ⊂ Rn.
S(h) denotes the set {x ∈ Rn | L f h(x) = 0}, where L f h(x) is the Lie derivative in the
vector field of f (x). In order to determine the localizing set, it is necessary to define
hinf(U) := inf{h(x) | x ∈ U ∩ S(h)} and hsup(U) := sup{h(x) | x ∈ U ∩ S(h)}.

Therefore, for any h(x) ∈ C∞(Rn), all compact invariant sets of the system (1) located
in U are contained in the set K(U; h) defined as {x ∈ U | hinf(U) ≤ h(x) ≤ hsup(U)}, as
well as, if U ∩ S(h) = ∅, then there are no compact invariant sets located in U. Moreover,
the Iterative Theorem can be applied to refine the localizing domain K(h); this theorem is
defined as follows [19–21,23]:

Theorem 1 (Iterative Theorem). Let hm(x) be a sequence of C∞ differentiable functions where
m = 0, 1, 2.... Sets

K0 = K(h0), Km = Km−1 ∩ Km−1,m, m > 0,

with
Km−1,m =

{
x | hm,inf ≤ hm(x) ≤ hm,sup

}
,

hm,sup = sup
S(hm)∩Km−1

hm(x),

hm,inf = inf
S(hm)∩Km−1

hm(x),

contain any compact invariant set of the system (1) and

K0 ⊇ K1 ⊇ · · · ⊇ Km ⊇ . . . .

In summary, the general methodology to compute the LCIS of a nonlinear dynamical
system described by first-order ODEs is as follows [27]:

1. A localizing function denoted as h(x) must be proposed. h(x) is a function that can
represent a specific shape, such as a plane, hyperplane, cylinder, or sphere; in terms
of the system’s parameters and state variables.

2. Computing the Lie derivative of h(x), defined as L f h.
3. Calculate the infimum (hin f ) and supremum (hsup) by computing L f h = 0. From the

latter, two cases can result:

(a) S(h) is compact, the Lagrange multiplier method or the polytope approxima-
tion may be applied;

(b) the sign of S(h) cannot be defined, a mapping must be performed to determine
the sign of h(x)|S(h).

4. If it is not possible to define the sign of S(h), the localization problem is not yet solved;
therefore, a new localizing function must be proposed, and the process is restarted.

5. In the case of a satisfactory localizing domain, Theorem (1) could be applied to refine
the localizing domain K(h).

This methodology can be applied until a satisfactory solution is achieved.

3. Mathematical Model of Type-1 Diabetes Mellitus Related to C-Peptide

The mathematical model of Type-1 Diabetes Mellitus (T1DM) related to C-peptides
was proposed by Mahay and Edelstein-Keshet, in 2007 [24], involving the immune response
as the main factor that leads to a decrease in the β cell population in the body. It consists
of five first-order ODEs describing the dynamical interaction between activated T cells
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(A(t)), memory T cells (M(t)), effector T cells (E(t)), the C-peptide level (p(t)), and the β
cell (B(t)) populations at time t. Therefore, the T1DM model related to the C-peptide is
given as follows:

dA
dt

= (σ + αM)
pn

kn
1 + pn − (β + δA)A− εA2, (2)

dM
dt

= β2m1
akm

2
km

2 + pm A− pn

kn
1 + pn αM− δM M, (3)

dE
dt

= β2m2(1−
akm

2
km

2 + pm )A− δEE, (4)

dp
dt

= REB− δp p, (5)

dB
dt

= −κEB; (6)

where Equations (2)–(4) correspond to the population level of activated, memory, and
effector T cells; Equation (5) represents the peptide level and the remaining population of β
cells by Equation (6). The parametrization and units of the model’s equations are presented
in Table 1.

Furthermore, to fulfill the positivity of the system (2)–(6), we evaluated each state
variable at the border, i.e., A = E = M = p = B = 0. Evaluating Equation (6), we obtained
that dB

dt = 0; Equation (5) gives that dp
dt = REB; Equation (4) gives that dE

dt = β2m2(1−
akm

2
km

2 +pm )A; whereas Equation (3) gives that dM
dt = β2m1

akm
2

km
2 +pm ; finally, from Equation (2), we

obtained that dA
dt = (σ + αM) pn

kn
1+pn ; allowing us to conclude that, given nonnegative initial

conditions, the system’s dynamics are located in the non-negative orthant, i.e., they are
located into the following domain:

R5
+,0 = {A(t) ≥ 0, M(t) ≥ 0, E(t) ≥ 0, p(t) ≥ 0, B(t) ≥ 0}. (7)

Table 1. Parameter description and units of T1DM related to C-peptides [24].

Parameter Description Value Units

σ Influence of naive T cells in the thymus 1–10 day−1

α Production rate of A per M 1–5 day−1

β Cell division rate 1–6 day−1

δA Mortality index, activated T cells ≈0.01 day−1

δM Mortality index, memory T cells ≈0.01 day−1

δE Mortality index, effector T cells 0.3 day−1

δp Peptide turnover rate 0–1 day−1

ε Competition parameter T cell 1–5 × 10−2 cells−1day−1

k1 Peptide level for 1/2 of maximum
activation 2 peptide units

k2 Peptide level for 1/2 of the maximum
memory cells 1 peptide units

m Hill’s coefficient, production of
memory cells 2 −

n Hill’s coefficient for activation of T cells 3 −
2m1 Maximum number of memory cells

produced by T cells proliferating 8 −
2m2 Number of effector cells produced by

proliferating T cells 60 −
a Maximum fraction of memory cells

produced <1 −
R Peptide accumulation rate 10−5 cells−1day−1

κ Death of β cells by effector T cells 0.14× 10−6 cells−1day−1
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4. Localization of Compact Invariant Sets-Peptide Variable Analysis

Localizing the compact invariant domain of a dynamical system depends on the
system’s complexity. Sometimes, it is possible to define the domain of attraction that
contains all compact invariant sets by employing only one localizing function, resulting in
symmetric shapes, such as ellipsoids, paraboloids, and cylinders [26]. These shapes are
frequently obtained in three-dimensional systems.

However, biological systems are often modeled by more than three dimensions, mak-
ing it impossible to define symmetric shapes by only one function and, at the same time,
ensure all the dynamics of a system are bounded. Biological systems usually need more
than one localizing function to describe the system’s variables’ maximum and minimum
bounds [19]; therefore, the compact localizing domain is characterized by an asymmetric
domain. Hence, the compact localizing domain and ultimate bounds for a T1DM related
to C-peptide are achieved by exploring three localizing functions. First, we compute the
maximum population of β cells with the following localizing function

h1 = B− ln B, (8)

whose Lie derivative is given by L f h1 = −κEB −
[
−κEB

B

]
, defining the set S(h1) ={

L f h1 = 0
}

as
S(h1) = {−κEB + κE = 0}, (9)

and, after solving for B, the set S(h1) is defined as

S(h1) = {B = 1}; (10)

further, expressing the constraint h1|S(h1)
= B− ln B, and substituting S(h1), the maximum

value of the function h1 is as follows

K(h1) =
{

h1 ≤ h1|S(h1)
:= 1

}
. (11)

Therefore, the location set of the β cell population is

KB = {B(t) ≤ Bmax := 1}. (12)

Now, to determine the upper bound for the C-peptide level, the following localizing
function is proposed

h2 = p− ln p + B, (13)

where its Lie derivative is defined by L f h2 = REB− δp p−
[

REB−δp p
p

]
− κEB. The set is

determined and analyzed by S(h2) =
{

L f h2 = 0
}

, giving

S(h2) =

{
REB− δp p− REB

p
+ δp − κEB = 0

}
, (14)

and it can be defined in terms of the interest variable of the localizing function as S(h2) ={
p = 1− REB

δp p − (κ − R) EB
δp

}
, where, after some algebraic manipulation gives

S(h2) = {p = 1}, (15)

as long as the following condition can be satisfied

R ≤ κ. (16)
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It is important that the constraint can be expressed by h2|S(h2)
= p− ln p + B. Substi-

tuting (15) into h2|S(h2)
and applying Theorem (1), the set K(h2) is defined as

K(h2) ∩ K(h1) =
{

h2 ≤ h2|S(h2)
:= 1 + Bmax

}
; (17)

allowing us to compute the set K(h2), which defines the maximum C-peptide level as

Kp = {p(t) ≤ pmax := 2}. (18)

Finally, an upper bound for T cells is computed through the following localizing function

h3 = A + M + E, (19)

whose Lie derivative is given by

L f h3 = {(σ + αM− αM)
pn

kn
1 + pn + (β2m2 − β− δA − εA)A (20)

+(2m1 − 2m2)
βakm

2
km

2 + pm A− δM M− δEE}; (21)

hence, after some algebraic rearrangement and mathematical analysis, the set S(h3) ={
L f h3 = 0

}
is defined as

S(h3) =

{
A =

σpn

δA(kn
1 + pn)

+
(β2m2 − β)

δA
A− ε

δA
A2 − δM

δA
M− δE

δA
E
}

, (22)

as long as the next condition holds
2m1 ≤ 2m2 . (23)

Now, substituting the previous results and some algebraic manipulation, the constrain
h3|S(h3)

= A + M + E is defined by

h3|S(h3)
=

σ

δA
+

(β2m2 − β)2

4εδA
,

as long as the following conditions must be satisfied at all time

δA ≤ δM, (24)

δA ≤ δE; (25)

then, it is possible to define the set K(h3) as

K(h3) =

{
h3 ≤ h3|S(h3)

:=
σ

δA
+

(β2m2 − β)2

4εδA

}
.

Summarizing the results shown through this section, the following statement is formulated
regarding the ultimate bounds for the T1DM related to the C-peptide system.

Theorem 2. If the conditions (16), (24), (25) are fulfilled, all the compact invariant sets of the
T1DM related to C-peptide system (2)–(6) lie within the following domain location

Kse = KB ∩ Kp ∩ KA ∩ KM ∩ KE, (26)
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where

KB = {B(t) ≤ Bmax := 1}; (27)

Kp = {p(t) ≤ pmax := 2}; (28)

KA =

{
A(t) ≤ Amax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
; (29)

KM =

{
M(t) ≤ Mmax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
; (30)

KE =

{
E(t) ≤ Emax :=

σ

δA
+

(β2m2 − β)2

4εδA

}
. (31)

The skewness correlation between C-peptides and cells was also demonstrated in [24],
as the time scale of the peptide dynamics is faster (hours) than the time scale of the cell
dynamics (days), and thus an almost steady state is assumed in the peptide. The C-peptide
clinical test, which is widely applied to measure pancreatic β cell function [28].

Considering the mathematical function dp/dt = 0, leads to the variable C-peptide
as p = (REB/δp). In this case, the state variable is far from being defined as an invariant
plane in the mathematical scope; further, C-peptide represents a function that relays in the
β cell population with the immune response’s presence through effector cell populations.
A disadvantage of analyzing the C-peptide in terms of other variables implies that the
maximum carrying capacity of β cells can be estimated in a general scheme. This research
contributes by analyzing a whole model with the LCIS method to establish a scheme where
the clinical test interpretation can lead to a mathematical preamble approach.

4.1. Local Stability

In this subsection is presented the mathematical results applying the Lyapunov in-
direct method and considering the equilibrium point (A∗, M∗, E∗, p∗, B∗) = (0, 0, 0, 0, 0)
in the positive orthant. To determine if the equilibrium is locally stable, the system of
Equations (2)–(6) is linearized. First, the system’s Jacobian matrix (J) is defined as follows

J =


−(β + δA)− 2εA α

pn

kn
1+pn

0 (σ + αM)φ2 0

β2m1 φ3 − pn

kn
1+pn

α− δM 0 φ12m1 − φ2αM 0
β2m2(1− φ3) 0 −δE −φ12m2 0

0 0 RB −δp RE
0 0 −kB 0 −kE

, (32)

where

φ1 = β
amkm

2 pm−1(
km

2 + pm
)2 A, (33)

φ2 =
nkn

1 pn−1(
kn

1 + pn
)2 , (34)

φ3 =
akm

2
km

2 + pm ; (35)

evaluating matrix J at the equilibrium point, we obtained the expression

J(A∗, M∗, E∗, p∗, B∗) =


−(β + δA) 0 0 0 0

β2m1 a −δM 0 0 0
β2m2(1− a) 0 −δE 0 0

0 0 RB −δp 0
0 0 −kB 0 0

; (36)
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thus, the eigenvalues of (36) are λ1 = −(β + δA), λ2 = −δM, λ3 = −δE, λ4 = −δp, and
λ5 = 0.

Since λ5 = 0, it is impossible to conclude local stability for the equilibrium by applying
the Lyapunov indirect method theorem in Equation (36). In summary, the system of
Equations (2)–(6) has only one equilibrium point; therefore, local asymptotic stability is not
evident. Hence, the design criteria in which the authors initially based the system (2)–(6)
in [24] opens the possibility of considering control inputs to define a complementary model.

However, implementing the LCIS method provided a positive domain where all non-
linear system’s trajectories were held without a linear scheme or numerical approach;
thus, establishing a solution to the system by defining the upper bounds given the
conditions (16), (24), and (25). The domain defined by (26) contains the cell population;
however, it is considered asymmetric regarding each cell dynamic.

Closed-Loop Analysis via Lyapunov Stability Criteria

In the particular case of biological models, proposing control inputs are complex to
determine unless a real-world known variable can be measured or supplied in a laboratory,
such as insulin. In this work, insulin is not directly involved; instead, we assumed that a
more comprehensive understanding of blocking a direct targeting of the effector cells to
the pancreatic cells would lead to unnecessary antigen scheme behavior.

Recent research suggests that a more in-depth development of the insulin proliferation
due to the β cell behavior. In [29], the authors concluded that researchers worldwide must
continue monitoring T1D incidence trends. In contrast, research associated with prevention
areas, early detection, and improved TID treatment continues. Furthermore, in [30], the
authors tackled the use of protein biomarkers associated with risk factors in developing
cardiovascular diseases when diabetes family antecedents prevail and pass in offspring
from the gestational diabetes stage. They concluded that a deeper understanding of a
leading cause that diabetes develops could improve this research topic.

Therefore, considering the system dynamic and the obtained previous results, we
decided to analyze the system in a closed-loop scheme, proposing control inputs that
guarantee its overall stability. The model described by Equations (2)–(6) is expressed
as follows:

dA
dt

= (σ + αM)
pn

kn
1 + pn − (β + δA)A− εA2 + U1, (37)

dM
dt

= β2m1
akm

2
km

2 + pm A− pn

kn
1 + pn αM− δM M, (38)

dE
dt

= β2m2(1−
akm

2
km

2 + pm )A− δEE + U2, (39)

dp
dt

= REB− δp p, (40)

dB
dt

= −κEB; (41)

where U1 and U2 represent the control inputs that could regulate the T cell population
increase rate. To determine the criteria for each input, we propose the following candidate
Lyapunov function

V = q1 A + q2M + q3E + q4 p + q5B, (42)
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where its derivative is given by V̇ = q1 Ȧ + q2Ṁ + q3Ė + q4 ṗ + q5Ḃ, with q1, q2, q3, q4, and
q5 as free parameters, after substituting Equations (37)–(41) into the derivative gives

V̇ = q1

[
σ

pn

kn
1 + pn

+ αM
pn

kn
1 + pn

− (β + δA)A− εA2 + U1

]
+q2

[
β2m1

akm
2

km
2 + pm A− pn

kn
1 + pn

αM− δM M
]

(43)

+q3

[
β2m2 A−

akm
2

km
2 + pm β2m2 A− δEE + U2

]
+ q4

[
REB− δp p

]
+ q5[−κEB].

Now, analyzing the Equation (43), we concluded that U1 and U2 are able to establish
stability conditions; therefore, U1 and U2 are defined as

U1 = −σ
pn

kn
1 + pn

− αM
pn

kn
1 + pn

, (44)

U2 = −β2m2 A, (45)

as long as the condition (46) holds
2m1 < 2m2 , (46)

with

q1 = q2 = q3 = q4 = 1, (47)

q5 <
R
κ

, (48)

and, in order to guarantee asymptotically stability by the Lyapunov direct method, also the
following inequality must hold

ε

(
A +

(β + δA)

2ε

)
+ δM M + δEE + δp p >

(β + δA)
2

4ε
. (49)

In summary, the condition for q5, inequality (48), implies that, given the Equation (16),
when R = κ, then q5 < 1, in comparison with the positive free parameters (47) that are
equal to one. Meanwhile, condition (46) holds as condition (23). This implies that set K(h3)
in Equation (26) encompasses the system (37)–(41) only when R = κ; thus, Equation (49)
is also contained in the positive domain of K(h3); leading us to a mathematical preamble
that the system (2)–(6) is a baseline model that can guide a mathematical revaluation, i.e., a
model where cell populations could be modified, in view of a possible treatment.

5. Numerical Simulations

This section presents numerical simulations obtained with the LCIS method. Figure 1,
shows the behavior of the activated, effector, and memory T cells, as well as the behavior
of the population level of β cells and C-peptides. The parameters considered were those
corresponding to Table 1, and the initial conditions were A(0) = 0.5, M(0) = 0, E(0) = 1,
p(0) = 0, and B(0) = 1. Figure 1 shows the number of circulating cells (scaled) against
time (days); A(t) is expressed as ×103 cells. M(t)(×104), E(t)(×106), p(t) tends to be a
small population of cells, and B(t) is a fraction of the remaining β cell mass. The β cell
population decreased by 40% during the immune attack. Since the model does not address
the replenishment of the β cells by reproduction or stem cell differentiation, the β cell mass
remains constant after this isolated immune response, [31]. The proposed initial conditions
leading to the immune response was resolved without chronic disease or cyclic waves.

In Figure 2, we present a first approach of the upper bound for the variable A(t), only
if the conditions (24) and (25) are fulfilled; whereas, the immunological response in the
presence of β cell behavior is presented in Figure 3. Effector and memory cell dynamics are
under the upper bound set K(h3), implying that C-peptide has a direct impact on them;
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therefore, in mathematical sense, the model has a proximity approach to the biological
scheme. Clinical procedures need to be considered to ensure a reliable approach between
the mathematical and the physical dynamics.

Figure 3 and 4 show the maximum value of the set K(h3) for the two types of T cells.
The condition of δA, in (25), implies that the death rate of the memory T cells must be lower
than the death rate by effector cells. Figure 5 presents the dynamics under the upper bound
Kp, given by the localizing function h2 and satisfying the condition (16). The secretion of
the peptide is directly associated with the activation of T cells. When the C-peptide reaches
high levels, memory cell production stops, and, consequently, the C-peptide is gradually
cleared. High T cell levels are associated with an immune response to attack the β cell
population, while the C-peptide attempts to avoid their destruction.

Using the LCIS method, we determined the maximum β cell population; therefore,
when the β cells are at the maximum, then the C-peptide level is at the minimum as
long as the T cells remain inactivated, see Figure 1. However, the C-peptide secretion
stops when the β cells are gone; otherwise, its secretion remains active and waiting for
the following β cell-level change. An increased incidence of microvascular complications
are correlated with low C-peptide levels. It would be interesting to determine whether
C-peptide concentrations are associated with increased macrovascular morbidity and
mortality. Moreover, the maximum population of β cells is given by the set KB, see
Figure 6.

Figure 1. The dynamics of the circulating cell populations over time. A(t) [×103 cells]. M(t) [×104

cells], E(t) [×106 cells], p(t) [tends to be a small population o f cells], and B(t) [a f raction o f the β cell
mass remaining].
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Figure 2. The presence of the upper bound for activated T cells by the set K(h3).
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Figure 3. The immunological response in the presence of β cell behavior.
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Figure 4. Effector cell dynamics under the upper bound set K(h3).
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Figure 5. Upper bound for the C-peptide cell population by the set Kp.
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Figure 6. Upper bound for β cell population by the set KB.

6. Conclusions

The localizing compact invariant set method provides the mathematical preamble to
define the bounded positive invariant domain, i.e., the domain where all trajectories of the
cell populations involved in T1DM are contained. It was also possible to mathematically
describe the C-peptide level by proposing linear type localizing functions. The particularity
in which the mathematical model is presented in [24], and discussed in this research implies
that it represents a feasible scheme to analyze β cell targeting by the immune response.
Thus, the estimated numerical values in Table 1 hold a reliable approach that can lead to a
deeper pancreatic cell population understanding for experimental research in the future.

C-peptides are a useful indicator of β cell function, allowing discrimination between
insulin-sufficient and insulin-deficient individuals with diabetes. Potential future uses
of C-peptide are broad, including aiding appropriate diagnosis, guiding therapy choices,
and predicting morbidity in diabetes; hence, the set of Equations (2)–(4) is one of the first
nonlinear models involving a variable for C-peptide, and our results aim to contribute to
future research involving a mathematical preamble.

The local stability of the systems through linearization was not concluded, since, in
both cases, a matrix with a null eigenvalue was obtained, that is, one of the eigenvalues is
equal to zero. Thus, this indicates the possibility of needing control inputs to ensure that
the system regulates and breaks even.

The mathematical analysis of closed-loop systems suggests two control inputs directly
related to the population of activated T cells and effector T cells. The control input U1,
see condition (44), implies the existence of a counterpart that prevents an increase in the
population of activated T cells under the presence of β cells by suppressing the C-peptide
level and the number of memory T cells produced by the body. On the other hand, the
control input U2, see (45), is associated with the effector T cell population’s level, suggesting
a population reduction effect of activated T cells to proliferate.

Therefore, a mathematical analysis considering control inputs based on a closed-loop
system provides a theoretical basis to implement an immunotherapy treatment, if and
only if, the conditions (46), (47), and (48) hold and, as a consequence, the condition (49)
is also satisfied. In other words, these control inputs permit the conduction of all the cell
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populations to the desired state of equilibrium, i.e., being in symmetry with the desired
level of each cell population.

This work did not discuss the idea of a nonlinear controller design at the moment;
however, this is considered as future work given the conditions (44) and (45). We also intend
to carry out the design of observers. We assumed, that the mathematical purpose of the
observer is to identify or estimate those model’s variables for feedback and to implement it
as a possible or feasible treatment. Since the model deals with cell populations that do not
have an easy way to measure themselves, considering their development outside the body
is still a goal for the future.
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