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Abstract: In soft soil engineering projects, the building loads are always required to be symmetrically
distributed on the surface of the foundation to prevent uneven settlement. Even if the buildings
and soft clay are controlled by engineers, it can still lead to the rheology of the foundation. The
analytical solution based on the Laplace integral transformation method has positive significance
for providing a simple and highly efficient way to solve engineering problems, especially in the
long-term uneven settlement deformation prediction of buildings on soft soil foundations. This paper
proposes an analytical solution to analyze the deformation of soft soil foundations. The methodology
is based on calculus theory, Laplace integral transformation, and viscoelastic theory. It combines
an analytical solution with finite theory to solve the construction sequences and loading processes.
In addition, an improved quantum genetic algorithm is put forward to inverse the parameters of
soft soil foundations. The analytical solution based on Laplace integral transformation is validated
through an engineering case. The results clearly illustrate the accuracy of the method.

Keywords: analytical solution; Laplace integral transformation; improved quantum genetic algo-
rithm; parameter inversion

1. Introduction

“Symmetry” has a precise definition in mathematics. It is usually used to refer to
an object that is invariant under some transformations, including translation, reflection,
rotation, and scaling. In architecture, whether a “symmetrical layout of blocks, masses,
and structures” or “wings and balance of masses” is more artistic has been a popular topic
of discussion. For structural engineers, a symmetrical structure is not only artistic, but
it also guarantees safety and durability, especially in bad geological conditions. In soft
soil engineering projects, high water content, large void ratio, low shear strength, high
compressibility, and poor permeability are the typical properties of soft clay [1]. Even if the
building is of the required symmetry and the soft clay is reinforced, it can still lead to the
rheology of the foundation. A soft soil foundation is mainly composed of soft soil with fine
particles of clay and silt, organic soil with large pores, peat, and loose sand. The ground on
which the filling and structures stand is unstable and subsided due to high groundwater
levels. Long-term monitoring data show that most buildings on soft soil foundations in
Chinese coastal areas still maintain a settlement rate of about 1 cm per year; some buildings
even reach a settlement rate of 3–4 cm per year. The rheology property results in significant
alterations of the stability of a building [2]. The long-term uneven settlement deformation
prediction of buildings on soft soil foundations is the primary work that can assure the
safety and durability of engineering [3]. In addition, the soft soil parameters are accurately
obtained based on engineering, which also faces great challenges.

The roots of research on rheology go well back into the 1930s [4]. During that pe-
riod, the time dependencies of the stress–strain behavior of materials were calculated
following the Bingham theory [5]. The applicability of Bingham’s law to soil was verified
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by Genie and Zongji in 1948 [6]. After the third ICSMFE conference, the rheology study
of soil became popular. The nonlinear rheology deformation characteristics of soil were
clear after a lot of experimental research [7]. At present, the rheological models for soft
soils mainly include component models, yield surface models, damage rheology model,
and empirical models. The component models are comprised of varying series-parallel
of Hooke and Kelvin units, such as the Kelvin model, the Maxwell model, and Burger’s
model [8]. Su et al. [9] analyzed the rheological behavior of soft soil using the Maxwell
model. Wang and Wang [10] presented a semianalytical method to analyze the creep and
thermal consolidation behaviors of layered saturated clays. The yield surface is changed
in yield surface models when soil creeps. A large number of scholars have studied the
change of yield surfaces. These models have features for choosing a correlation or non-
correlation criterion [11], isotropy or anisotropy [12], a single yield surface or a double
yield surface [13], and over-consolidated soils or normally consolidated soils [14]. Different
damage evolution equations are applied in damage rheology models. Singh adopted a
creep rate and a creep function to construct a famous empirical creep model [15]. These
rheology studies of soft soil have made great contributions to engineering. Although many
studies have been published on the rheological models of soft soil, there is still a lack of
analytical solutions.

Deformation monitoring of soft soil foundations has made a great contribution to
forward analysis and inversion analysis [16]. Forward analysis is aimed at predicting the
future status of engineering by building a regression model between environmental loads
and displacement [17,18]. Inversion analysis is devoted to checking stability using the
mechanical parameters of the foundation [19]. The latter is more widely accepted because
it allows further research on the constitutive models. To achieve parameter inversion,
heuristic algorithms are the main methods of optimizing parameters in the feasible region.
The quantum genetic algorithm (QGA) was proposed by Narayanan in 1996 [20]. It uses
quantum theory in a genetic algorithm (GA) and has excellent searchability for a global
optimal solution [21]. The QGA has attracted wide attention and has been developed by
scholars. Draa et al. [22] presented a quantum-inspired differential evolution algorithm
for solving the N-queens problem. Ma and Jin [23] presented a parallel quantum genetic
algorithm. Laboudi and Chikhi [24] made a comparison of GA and QGA. These results
show that QGA is a promising tool for exploring search spaces. However, QGA has not
been used in the parameter inversion of soft soil foundations.

Laplace integral transformation is an important integral transformation method. It has
a good performance in finding analytical solutions of partial differential equations [25]. The
research on this method is of concern to mathematicians and engineers. Mathematicians
are devoted to modifying the Laplace transform and applying this method to get analytical
solutions to classical or modern mathematical problems [26,27]. These modified Laplace
transformations always have more useful properties and formulas in theorems [28]. Engi-
neers concentrate on applying the method to engineering projects, such as the rheological
property of soil and rock [29], thermal problems [30], thermal viscoelastic problems [31],
and so on.

In this paper, we will first show the connection of elastic solutions under normal and
tangential distributed force to that under concentrated force. Then, the viscoelastic solutions
based on Laplace integral transformation are obtained. The influence of construction
sequences and loading is considered through finite element theory. The computational
efficiency of the QGA is improved through the features of soft engineering. An engineering
case is verified by this method.

Compared with previous research on analytical solutions for soft soil foundations, our
contributions in this paper are as follows:

(1) A three-dimensional analytical viscoelastic deformation solution of soft soil foun-
dations is obtained by us. Some previous studies only considered one-dimensional
or two-dimensional conditions. The analytical solution in this paper is simple and
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has few parameters. The construction sequences and loading processes can also be
considered. It shows good adaptability to engineering applications.

(2) On the basis of our model, an improved quantum genetic algorithm is put forward
to inverse the parameters of soft soil foundations. It provides a simple and highly
efficient way to predict the long-term deformation of soft soil foundations.

2. The Viscoelastic Solutions to Soft Soil Foundations Based on Laplace
Integral Transformation
2.1. Assumptions

The elastic solution is based on elastic mechanics. It has these assumptions:

(1) It is assumed that the object is continuous, that is, the entire volume of the object is
filled by the medium that composes the object, leaving no gaps and maintaining its
continuity throughout the deformation process.

(2) It is assumed that the object is completely elastic. After removing the external force,
the object can completely restore its original shape and size. The deformation of the
object corresponds to the external force it receives.

(3) It is assumed that the object is uniform. All parts of the entire object have the same
elastic properties.

(4) It is assumed that the object is isotropic. The elastic properties are the same in all
directions, regardless of the direction of investigation.

(5) It is assumed that the object only has infinitesimal motion. The displacement of the
object is much smaller than the size of the object.

The viscoelastic solution is put forward based on the elastic solution. In addition to
the above elastic assumptions, the viscoelasticity assumptions are as follows:

(1) Boltzmann’s superposition principle. The viscoelastic displacement of an object has
linear viscoelastic behavior. The creep of the object is a function of the entire loading
history. The contribution of the load applied at each stage to the final deformation is
independent.

(2) Elastic–viscoelastic correspondence principle. The linear viscoelastic problem is the
transformed linear elastic problem in the Laplace transformed state. The viscoelastic
solution can be obtained through the elastic solution and Laplace transformation.

2.2. Elastic Solution under Normal and Tangential Distributed Force

The elastic solution of a semi-infinite space, subject to a normal and tangential concen-
trated force on the boundary, is as follows [32]: uzz =

(1+µ)P
2πER

[
2(1− µ) + z2

R2

]
uzr =

(1+µ)P
2πER

[
rz
R2 −

(1−2µ)r
R+z

] (1)


uxx = (1+µ)P

2πER

{
1 + x2

R2 + (1− 2µ)

[
R

R+z −
x2

(R+z)2

]}
uxy = (1+µ)P

2πER

[
xy
R2 −

(1−2µ)xy
(R+z)2

]
uxz =

(1+µ)P
2πER

[
xy
R2 +

(1−2µ)x
R+z

] (2)

where uzz, uzr are the normal and radial deformation; P is the concentrated force; E is
the elasticity modulus; µ is Poisson’s ratio; R is the distance from a point to the origin of
coordinates, R2 = r2 + z2 = x2 + y2 + z2. uxx, uxy, uxz are the deformation values in the x,
y, z directions under tangential force.

The elastic solutions, subject to concentrated force, can be generalized to the dis-
tributed force, which is shown as:

dP =
dηdξ

ab
(3)
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where a, b are the length and width of the distributed force; ξ, η are the length and width of
the differential distributed force.

On the surface of the foundation, z is zero. From Equations (1)–(3), the elastic solutions
under normal and tangential distributed force are shown as:

δxx = 1+µ
abπE

[
(1− µ)

∫ η=x+ a
2

η=x− a
2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη√
ξ2+η2

+ µx2
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη

(ξ2+η2)
3
2

]
δxy = (1+µ)µ

abπE xy
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη

(ξ2+η2)
3
2

δxz =
(1+µ)(1−2µ)

2abπE x
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη

(ξ2+η2)

δzx = (1+µ)(2µ−1)
abπE

∫ η=x+ a
2

η=x− a
2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη√
ξ2+η2

x√
x2+y2

δzy = (1+µ)(2µ−1)
abπE

∫ η=x+ a
2

η=x− a
2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη√
ξ2+η2

y√
x2+y2

δzz =
1−µ2

abπE

∫ η=x+ a
2

η=x− a
2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη√
ξ2+η2

(4)

where δzx, δzy, δzz are the deformation in the x, y and z directions under normal distribu-
tion force; δxx, δxy, δxz are the deformation in the x, y and z directions under tangential
distribution force.

2.3. Viscoelastic Solutions Based on Laplace Integral Transformation

Viscoelastic models usually consist of one or several Hooke elastomers and Newton
viscous bodies. The equations are shown as [33]:{

∑l
k=0 p′k

dk

dtk sij = ∑r
k=0 q′k

dk

dtk eij

∑l1
k=0 p′′k

dk

dtk σii = ∑r1
k=0 q′′k

dk

dtk εii
(5)

where σ = 3Ke, Sij = 2Geij, Sij is the deviatoric tensor of stress, eij is the deviatoric tensor
of strain, K is the bulk modulus, G is the shear modulus; pk and qk are soil property
parameters. Applying the Laplace transform to Equation (5), one obtains:{

∑l
k=0 p′kskSij(s) = ∑r

k=0 q′kskeij(s)
∑l1

k=0 p′′k skσii(s) = ∑r1
k=0 q′′k skεii(s)

(6)

where ∑l
k=0 p′ksk = P′(s), ∑r

k=0 q′ksk = Q′ (s), ∑l1
k=0 p′′k sk = P′′ (s), ∑r1

k=0 q′′k sk = Q′′ (s). The
time dependence of the elasticity modulus and Poisson’s ratio in the Maxwell model are
shown as: {

E(s) = 9K·x
6K+x

µ(s) = 3K−x
6K+x

, x = 2
(G3 + q1s)
(1 + p1s)

, p1 =
η1

G2
, q1 =

(
G3

G2
+ 1
)

η1 (7)

where G1 G2 G3 are the parameters of shear stiffness; K is the bulk modulus; η1 is the
coefficient of viscosity. From Equations (3) and (7), the viscoelastic deformation based on
the Maxwell model and Laplace transforms can be expressed by us, as follows:
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δxx =
4G3Fi+3KFi−2G3Fgx2+3KFgx2

4G3abπ(G3+3K) − 3η1e
− t(G2G3+3G2K)

G2η1+G3η1+3Kη1 (G2Fi−G2Fgx2)
4abπ(G3+3K)(G2η1+G3η1+3Kη1)

− η1e
− G2G3t

G2η1+G3η1 (G2Fgx2+G2Fi)
4G3abπ(G2η1+G3η1)

δxy =
3G2η1Fgxye

− t(G2G3+3G2K)
G2η1+G3η1+3Kη1

4abπ(G3+3K)(G2η1+G3η1+3Kη1)
− Fgxy(2G3−3K)

4G3abπ(G3+3K) −
G2η1Fgxye

− G2G3t
G2η1+G3η1

4G3abπ(G2η1+G3η1)

δxz =
3Fkx

4abπ(G3+3K) −
3G2η1Fkxe

− t(G2G3+3G2K)
G2η1+G3η1+3Kη1

4abπ(G3+3K)(G2η1+G3η1+3Kη1)

δzx = 3G2η1Fixe
− t(G2G3+3G2K)

G2η1+G3η1+3Kη1

4abπ
√

x2+y2(G3+3K)(G2η1+G3η1+3Kη1)
− 3Fix

4abπ
√

x2+y2(G3+3K)

δzy = 3G2η1Fiye
− t(G2G3+3G2K)

G2η1+G3η1+3Kη1

4abπ
√

x2+y2(G3+3K)(G2η1+G3η1+3Kη1)
− 3Fiy

4abπ
√

x2+y2(G3+3K)

δzz =
Fi(4G3+3K)

4G3abπ(G3+3K) −
3G2η1Fie

− t(G2G3+3G2K)
G2η1+G3η1+3Kη1

4abπ(G3+3K)(G2η1+G3η1+3Kη1)
− G2η1Fke

− G2G3t
G2η1+G3η1

4G3abπ(G2η1+G3η1)

(8)

where δxx δxy δxz are the deformation in the x, y, and z directions under unit distribution
force in the x direction; δzx δzy δzz are the deformation in the x, y, and z directions under unit
distribution force in the z direction; a, b are the length and width of the unit distribution
force; x, y are the surface positions of the soft soil foundation; Fi, Fk, Fg are the integral
formulas. It expresses the influence of distributed force:

Fi =
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη

ξ2+η2

Fk =
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη√
ξ2+η2

Fg =
∫ η=x+ a

2
η=x− a

2

∫ ξ=y+ b
2

ξ=y− b
2

dξdη

(ξ2+η2)
3/2

(9)

3. The Influence of Construction Sequences and Loading

Equation (8) is the analytical solution under unit distribution force. According to the
superposition principle of structural mechanics, the rheology deformation of any point on
the surface of a soft soil foundation can be obtained. Figure 1 is the schematic diagram
of the deformation of any point on the surface under distribution force. The soft soil
foundation acts on the irregularly shaped distribution force. The rheology deformation of
any time is calculated using the following steps:

(1) The irregularly shaped region is dispersed into n little regions. The total time is
dispersed into an l time step.

(2) The irregularly shaped distribution force is dispersed into n distribution forces. The
distribution forces in each region are shown as qx1 . . . qxn, qy1 . . . qyn, qz1 . . . qzn, where
qx1 . . . qxn are the distribution forces in each region in the x direction; qy1 . . . qyn are
the distribution forces in each region in the y direction; qz1 . . . qzn are the distribution
forces in each region in the z direction.

(3) The coordinate systems are set up. It takes each distributed load center point as
the origin. The coordinates of the calculated position in each coordinate system are
recorded as (x1,y1), (x2,y2), . . . , (xn,yn).

(4) According to Equation (8), the deformation of each unit distribution load under each
dispersed region is calculated.

(5) The deformation of the calculated position on the surface under distribution force is
shown as:
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Ux = (qx1δxx1 + . . . + qxnδxxn) +

(
qy1δyx + . . . qynδyxn

)
+ (qz1δzx + . . . qznδzxn)

Uy =
(
qx1δxy1 + . . . + qxnδxyn

)
+
(
qy1δyy + . . . qynδyyn

)
+
(
qz1δzy + . . . qznδzyn

)
Uz = (qx1δxz1 + . . . + qxnδxzn) +

(
qy1δyz + . . . qynδyzn

)
+ (qz1δzz + . . . qznδzzn)

(10)

where Ux, Uy, Uz are the deformation of the position in the three directions; δxx1, δxy1, δxz1
are the deformation of the calculated position in the x, y, and z directions under the first
unit distribution force in the x direction; δyx1, δyy1, δyz1 are the deformation of the calculated
position in the x, y, and z directions under the first unit distribution force in the y direction;
δzx1, δzy1, δzz1 are the deformation of the calculated position in the x, y, and z directions
under the first unit distribution force in the z direction; δxxn, δxyn, δxzn are the deformation
of the calculated position in the x, y, and z directions under the nth unit distribution force
in the x direction; δyxn, δyyn, δyzn are the deformation of the calculated position in the x, y,
and z directions under the nth unit distribution force in the y direction; δzxn, δzyn, δzzn are
the deformation of the calculated position in the x, y, and z directions under the nth unit
distribution force in the z direction.

Figure 1. The schematic diagram of the deformation of any point on the surface under distribu-
tion force.

Figure 2 shows the flow chart of soft soil foundation surface deformation. The process
mainly includes three parts: pre-processing, computational process, and post-processing.
In pre-processing, the parameters of the soft soil foundation, the discretization of time, the
discretization of forces, and the deformation of each basic coordinate system are calculated.
In the computational process, the deformation of each time step is calculated. In post-
processing, the results are processed into a graph.
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Figure 2. Flow chart of soft soil foundation surface deformation.

4. The Parameter Inversion of Soft Soil Foundations
4.1. Quantum Genetic Algorithm

Inspired by the theory of quantum mechanics, Narayanan proposed a quantum genetic
algorithm (QGA) in 1996. The QGA uses qubit coding instead of traditional chromosome
coding. Therefore, it has a parallelism property and advantages in finding the global
optimal solution.

The chromosome is shown by quantum states in the QGA method. A quantum state
can be represented as the superposition of two states (0, 1). It is shown as:

|Ψ〉 = α|0〉+ β|1〉 (11)

where |Ψ〉 is a quantum state vector; α, β are the probability of |0〉 and |1〉, α2 + β2 = 1.
Then, the individual qubit Γt

m is shown as:

Γt
m =

[
τt

1τt
2 . . . τt

m
]
=

[
αt

1αt
2 . . . αt

m
βt

1βt
2 . . . βt

m

]
(12)

where τt
1, τt

2, . . . τt
m are each quantum states of the individual qubit. The probability of

an individual qubit |0000 . . . 001〉 is
(
αt

1
)2

+
(
αt

2
)2

+ . . . +
(
αt

m−1
)2

+
(

βt
m
)2. A random

number in the interval of [0, 1] can be used to assign binary 0s and 1s by comparing it with
the probability of the quantum-bit when the chromosome is converted to a binary format.

The evolution of the population is completed by a quantum revolving gate. It is shown as:[
αt

m
′

βt
m
′

]
=

[
cosθt −sinθt
sinθt cosθt

][
αt

m
βt

m

]
(13)

where θt is the parameter of the rotation angle, θt = S(α, β) ∗ δθ; S(α, β) is the direction of
rotation; δθ is the magnitude of the rotation angle.
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4.2. Soft Soil Foundation Parameter Inversion Model

The rheology of soft soil foundations is a typical physical phenomenon. The deforma-
tion can be obtained by in-situ monitoring. The range of soft soil foundation parameters is
shown as: 

E1min ≤ E1 ≤ E1max
E2min ≤ E2 ≤ E2max
η1min ≤ η1 ≤ η1max
µmin ≤ µ ≤ µmax

(14)

The initial parameters are Mini = (Mmin + Mmax)/2, M = E1, E2, µ, η1. From
Equations (8)–(10), the deformation S(xi, yi, ti) of the monitoring positions are calculated.
The optimal fitness for each generation is shown as:

f = −∑n
i=1 ‖ S(xi, yi, ti)− S∗(xi, yi, ti) ‖2

2 (15)

where S∗(xi, yi, ti) are the in-situ monitoring data. The termination conditions are shown as:

f ≥ fk or G ≥ Gmax (16)

where fk is the termination value of the fitness value; Gmax is the maximum number of
generations. If Equation (16) is not true, the quantum revolving gate is used for population
evolution, and the fitness is calculated again until the termination conditions are met.

4.3. Improved Quantum Genetic Algorithm

In engineering projects, parameter inversion always needs to be calculated with a large
amount of data. The QGA method has low computational efficiency in actual engineering
calculations. It needs to be improved. The quantum genetic algorithm improves this in
two ways. The algorithm processes of the QGA and IQGA are shown in Figure 3.

(1) In each generation calculation, some individuals, similar to the optimal individuals of
the previous generation, are formed so that individuals with certain guiding effects
are produced in the next generation. The number of similar individuals, N, can be
decided as shown:

N =

[(
1− G

Gmax

)
10
]

, [·] is integral f unction (17)

where G is the number of generations.

(2) The rotation angle is not a constant. The rotation angle is a big value when the
number of generations is small. The rotation angle is a small value when the number
of generations is big. It can be shown as:{

δθ = 0.1π, G
Gmax

< 0.5;
δθ = 0.01π, G

Gmax
≥ 0.5;

(18)

Overall, computational efficiency can be accelerated in these theories by generating
optimal individuals with high similarity and controlling the mutation process.
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Figure 3. The algorithm processes of QGA and IQGA.

5. Case Study

In hydraulic engineering, ship locks are always built on lakes and rivers. These
foundations are mainly composed of clay and silt. Affected by the gravity of the structure,
the uneven settlement of these soft soil foundations is serious. The monitoring data
and construction processes of ship locks are shown in [34]. The ship lock diagram and
construction processes are shown in Figure 4. The vertical view and side elevation of a
ship lock and the measurement position are shown in Figure 5. The construction processes
mainly contain: 1© a bottom plate, 2© a corridor and an empty box, 3© the first gravel, 4©
the second gravel, and 5© store water. The length and width of gravel soil in the west are 25
and 30 m. The length and width of gravel soil in the east are 20 and 30 m. The length and
width of the ship lock are 40 and 30 m. The bottom plate is finished on the 25th day. The
first gravel soil is finished on the 125th day. The corridor and the empty box are finished
on the 225th day. The second gravel soil is finished on the 250th day. The store water is
finished on the 450th day. The water level is 6 m. The construction processes and simplified
loading distribution are shown in Table 1. The density of plate, corridor, and empty box
are 2400 kg/m3. The density of gravel soil is 1700 kg/m3. The density of store water is
1000 kg/m3. According to these materials’ densities, the gravity of each part is changed to
the area loads.

Figure 4. The ship lock diagram and construction processes.
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Figure 5. The vertical view and side elevation of the ship lock and the measurement position (descriptions of 1©, 2©, 3©, 4©,
and 5© are shown in Figure 4).

Table 1. The construction processes and simplified loading distribution.

Construction
Processes Time

Loads

Backfill in
West (N/m2)

Bottom Plate
in West (N/m2)

Middle Plate
(N/m2)

Bottom Plate
in East (N/m2)

Backfill in East
(N/m2)

1© Bottom plate 2,160,000 s 0 72,000 72,000 72,000 0
2© Corridor and

empty-box 10,800,000 s 0 236,000 72,000 200,000 0

3© First gravel 19,440,000 s 68,000 236,000 72,000 200,000 68,000
4© Second gravel 21,600,000 s 102,000 236,000 72,000 200,000 102,000

5© Store water 38,880,000 s 102,000 236,000 132,000 200,000 102,000

The range of parameters is shown in Table 2.

Table 2. The range of parameters.

Parameters Range

E1 1.2× 107 Pa ∼ 2× 107 Pa
E2 1.2× 107 Pa ∼ 2× 107 Pa
η1 5.18× 1013 Pa·s ∼ 7.78× 1013 Pa·s
µ 0.15 ~ 0.40

Population size 40
Maximum generation 50

The inversion parameters, using the QGA and IQGA methods, are shown as:

QGA :


E1 = 1.87013× 107 Pa
E2 = 1.59643× 107 Pa

η1 = 5.20775× 1013 Pa·s
µ = 0.3520

; IQGA :


E1 = 1.82161× 107 Pa
E2 = 1.56227× 107 Pa

η1 = 4.82339× 1013 Pa·s
µ = 0.3718

(19)

The inversion parameters of the two methods are similar and can be used as soft
soil foundation parameters. Figure 6 is the convergence of the best fitness value for
each generation. The figure shows that the optimal fitness value increases gradually
with the increase in generations. The IQGA method converges to the optimal solution
in the 20th generation. The QGA method converges to the optimal solution in the 40th
generation. IQGA has faster convergence speed than QGA. The calculation efficiency is
greatly improved.
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Figure 6. Convergence of the optimal fitness for each generation.

Table 3 shows the comparison between the measured values and calculated values of
each position. It can be seen from the table that the calculated values at each location are in
good agreement with the measured values. The parameters of the Maxwell viscoelastic soft
soil foundation obtained by inversion in this paper are reliable. Figure 7 is the prediction
displacement of the soft soil foundation in the z direction at each time. The gravity of
gravel soil significantly changes the deformation distribution. The maximum deformation
position is under the corridor. The creep of soil causes a 0.05–0.08 m settlement of the
structure at 51,840,000 s. The displacement of each position in the z direction is shown in
Figure 8. As the construction continues, the displacement of the foundation will increase
rapidly after each process. At the end of calculation time, the displacement also has a
tendency to increase. The measurement displacement can reach −0.075 m.

Table 3. The comparison of calculated values and measured values (unit: m).

Position Data
Time

2,160,000 s 10,800,000 s 19,440,000 s 21,600,000 s 38,880,000 s 51,840,000 s

1 Measured −0.0192 −0.0399 −0.0542 −0.0548 −0.0609 −0.0721
QGA −0.0171 −0.0381 −0.0527 −0.0541 −0.0607 −0.0744
IQGA −0.0169 −0.0378 −0.0526 −0.0541 −0.0608 −0.0744

2 Measured −0.0191 −0.0378 −0.0619 −0.0631 −0.0793 −0.0850
QGA −0.0176 −0.0333 −0.0461 −0.0473 −0.0529 −0.0694
IQGA −0.0173 −0.0331 −0.0461 −0.0473 −0.0530 −0.0694

3 Measured −0.0173 −0.0302 −0.0404 −0.0400 −0.0467 −0.0599
QGA −0.0161 −0.0345 −0.0479 −0.0492 −0.0550 −0.0698
IQGA −0.0160 −0.0343 −0.0479 −0.0492 −0.0550 −0.0699

4 Measured −0.0177 −0.0314 −0.0430 −0.0435 −0.0589 −0.0638
QGA −0.0145 −0.0387 −0.0546 −0.0562 −0.0633 −0.0751
IQGA −0.0145 −0.0386 −0.0547 −0.0563 −0.0635 −0.0754
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Figure 7. The prediction displacement of the soft soil foundation in the z direction at each time.
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Figure 8. The displacement of each position in the z direction (descriptions of 1©, 2©, 3©, 4© and 5©
are shown in Figure 4).

6. Conclusions

This paper reports a methodology to analyze the rheology of soft soil. Viscoelastic
solutions under normal and tangential distributed force were obtained. The influence of
construction sequences and loading was considered. An improved quantum genetic algo-
rithm method was used to inverse the parameters of soft soil foundations. An engineering
case was used to verify the accuracy of the method. The following important conclusions
are summarized:

(1) The viscoelastic solution of soft soil is based on calculus theory, Laplace integral
transformation, and finite theory. The model is simple and has few parameters. The
error between the predicted value and the measured value is acceptable.

(2) The improved quantum genetic algorithm has a faster convergence speed than the
quantum genetic algorithm. It is well applied to engineering.

(3) The case shows that this method can be well appropriated for inversing the parameters
of soft soil foundations and predicting the long-term uneven settlement deformation
of buildings on soft soil foundations. It can be widely used in soft soil engineering.
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