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Abstract: This article is devoted to the unique recovering of the domain of the Sturm–Liouville
operator on a star graph. The domain of the Sturm–Liouville operator is uniquely identified from
the set of spectra of a finite number of specially selected canonical problems. In the general case,
the domain of the definition of the original operator can be specified by integro-differential linear
forms. In the case when the domain of the Sturm–Liouville operator on a star graph corresponds
to the boundary value problem, it is sufficient to choose only finite parts of the spectra of canonical
problems for a unique identification of the boundary form. Moreover, the above statement is valid
only for a symmetric star graph.

Keywords: boundary conditions; boundary value problems; canonical problems

1. Introduction

The following result was presented in the well-known work of Borg [1]. The eigenval-
ues of the problem:

− y′′(x) + q(x)y(x) = λy(x), 0 < x < π, (1)

y′(0)− hy(0) = 0, y′(π) + Hy(π) = 0, (2)

are denoted by λ1, λ2, . . . , where q(x) is a real-valued function that is continuous on the
interval [0, π] and h, H are real numbers. In a similar way, the eigenvalues of Equation (1)
with boundary conditions:

y′(0)− h1y(0) = 0, y′(π) + Hy(π) = 0, (3)

are denoted by µ1, µ2, . . . , where h1 6= h. Then, the sequences {λn} and {µn} uniquely
define the function q(x) and numbers h, h1, and H. Thus, Borg introduced the spectra of
two canonical problems E1 and E2. Here:

E1 is the first canonical problem (1)–(3);
E2 is the second canonical problem (1)–(2).

The canonical problem E2 coincides with the original problem (1) and (2), which must
be recovered from the set of spectra of the canonical problems E1 and E2. The necessary
and sufficient conditions are formulated and proven in order for these sequences {λn} and
{µn} to be two spectra of problems E1 and E2 in [2]. Plaksina [3] studied on the interval
[0, π] inverse problems for operators generated by operation l = (− d2

dx2 + q(x)) and general
nonseparated self-adjoint boundary conditions, which have the following form:{

y′(0) + βy(0) + eiαy(π) = 0,

y′(π)− e−iαy(0) + γy(π) = 0,
(4)
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where α, β, γ are real numbers. In [3], three canonical problems E1, E2, and E3 were
introduced. By the spectra of these canonical problems, the function q(x) and numbers α,
β, γ can be identified. The canonical problem E1 is given by Equation (1) and separated
boundary conditions:

y(0) = 0, y′(π) + γy(π) = 0. (5)

Canonical problem E2 is defined by Equation (1) and nonseparated boundary conditions of
the form (4), with parameter α in (4), which should be replaced by α1, keeping all other
boundary coefficients. Canonical problem E3 coincides with the problem (1)–(4). It turns
out that for a unique recovering function q(x) and numbers α, β, γ, α1, it is not sufficient
to give three spectra of canonical problems E1, E2, and E3. For a unique recovering q(x),
α, β, γ, α1, we need to add to the set of spectra of canonical problems E1, E2, and E3 a
certain set of sign sequences {δn}, where each of δn is either +1 or −1. We note that in [3],
the necessary and sufficient conditions were given for the above four sequences to be
three spectra of canonical problems E1, E2, and E3. Similar inverse spectral problems for
differential operators on graphs were studied in [4].

Along with the above-mentioned statements of inverse problems by a set of spectra of
canonical problems, it is of interest to study the possibility of uniquely recovering only the
boundary conditions of canonical problems. In this case, it is assumed that the coefficient
q(x) of the differential expression is defined on the entire interval [0, π]. Such problems
are called problems of the identification of boundary conditions [5,6]. Sometimes, this
problem is called the problem of identifying the domain of the Sturm–Liouville operator,
since the domain of the operator can be specified by different (but equivalent) sets of
boundary conditions.

The problems of identifying the boundary conditions of canonical problems usually
require a unique recovering of a finite number of boundary coefficients. In the case of Borg,
only three real numbers h, h1, and H need to be recovered. In Plaksina’s case, four numbers
α, β, γ, and α1 must be recovered. Hence, it can be understood that to recover a finite
number of boundary coefficients, it is not necessary to indicate sets of complete spectra
of canonical problems. In [7], it was proven that for a unique recovering of the boundary
conditions for higher order differential operators, it is sufficient to indicate only a finite
number of eigenvalues from each canonical problem. In this paper, a similar result was
proven for the Sturm—Liouville operator on a star graph. Other inverse spectral problems
for Dirac operators on a star graph were studied in [8]. In our case, special attention was
paid to nonseparated boundary conditions. In brief, we note that Theorem 5 holds only
for a symmetric star graph. A star graph with all edges of the same length is called a
symmetric star. Consequently, the main result of this article is: uniquely recovering the
domain of a second-order differential operator on a star graph is valid only if the graph
is symmetric.

Let the ends of the (m + 1)-th rod be elastically connected to each other at one node.
The free ends of m rods are somehow fixed and inaccessible to visual observation. The free
visible end of one rod can be hit with a hammer, and the eigenfrequencies of longitudinal
vibrations of the coupling structures can be measured. The paper states that there exists a
finite set of eigenfrequencies, which uniquely determines the anchoring of the ends of the
rods that are inaccessible to visual observation. Such problems are related to the problems
of acoustic diagnostics. The mathematical model of the elastic connection of the (m + 1)-th
rod is defined by a star graph on which the Sturm–Liouville operator is defined with some
boundary conditions. The paper proved the possibility of uniquely recovering the domain
of the Sturm–Liouville operator on a star graph by a set of spectra of special canonical
problems. It was proven in the work that a finite number of eigenfrequencies is sufficient
for uniquely recovering the fixings of the ends of the rods. Moreover, the total number of
eigenfrequencies required for unambiguous restoration of boundary restraints does not
exceed 2(m + 1)2. In [9], the problem of recovering the coefficients of differential equations
from a finite set of eigenvalues of a boundary value problem with nonseparated boundary
conditions was considered.
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Identification of the boundary damage for coupling structures consisting of solids
remains a challenging topic due to the influence of the solids on each other and experi-
mental conditions. Identification of the boundary damage is difficult if the ends of the
coupling structure are not accessible for visual inspection. Therefore, in this work, the
eigenfrequencies of longitudinal vibrations of coupling structures were used to identify
boundary damage, since the eigenfrequencies of vibrations of connecting structures can be
measured by engineering sensors.

2. Solution of the Cauchy Problem for the Sturm–Liouville Equation on a Star Graph

Let Γ = {V, E} be a star graph, where V is the set of vertices, numbered from zero to
m + 1 and E is the set of edges e1, . . . , em+1 of the graph Γ = {V, E} [10]. On each edge ej,
the following j-th differential equation:

− y′′j (xj) + pj(xj)yj(xj) = f j(xj), 0 < xj < bj (6)

holds. Further, we assumed that pj(x), j ≥ 1 are real-valued continuous functions on ej.
Vertex (m + 1) ∈ V is called the inner vertex of the star graph. At the inner vertex (m + 1),
Kirchhoff’s laws [11]: {

ym+1(bm+1) = y1(0) = · · · = ym(0),

y′m+1(bm+1) = y′1(0) + · · ·+ y′m(0)
(7)

hold.
Vertices 0, 1, . . . , m are called boundary vertices of the star graph (Figure 1).

Figure 1. Star graph.

The set of boundary conditions:

Uk(y1, . . . , ym+1) =
2

∑
j=1

[αkjy
(j−1)
1 (b1) + αk(2+j)y

(j−1)
2 (b2) + . . .

+ αk(2m−2+j)y
(j−1)
m (bm) + αk(2m+j)y

(j−1)
m+1 (0)] = 0 (8)

holds at the boundary vertices {k ∈ 0, 1, . . . , m}, where αks are complex numbers. Further,
it is convenient to introduce the functions cj(xj), sj(xj), j = 1, 2, . . . , m + 1. Functions cj(xj),
sj(xj) are solutions of the homogeneous differential equations:

− y′′j (xj) + pj(xj)yj(xj) = 0, 0 < xj < bj (9)

with initial conditions:{
cj(0) = s′j(0) = 1, c′j(0) = sj(0) = 0, j = 1, 2, . . . , m,

cm+1(bm+1) = s′m+1(bm+1) = 1, c′m+1(bm+1) = sm+1(bm+1) = 0

for each j. Since the star graph is a tree [12], there exists only one path connecting Vertex 0
to vertex j, where j = 1, . . . , m. We denote this path by Sj = em+1 ∪ ej. It is convenient to
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represent the indicated path Sj as a union of intervals (0, bm+1) and (bm+1, bm+1 + bj). We
introduce the differential equations:

− ϕ′′(x) + qj(x)ϕj(x) = Fj(x), x ∈ (0, bm+1) ∪ (bm+1, bm+1 + bj) (10)

on the unions of intervals Sj = (0, bm+1) ∪ (bm+1, bm+1 + bj), where:

qj(x) = pm+1(x), Fj(x) = fm+1(x), if 0 < x < bm+1,

qj(x) = pj(x), Fj(x) = f j(x), if bm+1 < x < bm+1 + bj.

We require the following condition:

ϕj(bm+1 − 0) = ϕj(bm+1 + 0), Aj ϕ
′
j(bm+1 − 0) = ϕ′j(bm+1 + 0) (11)

at the point x = bm+1, where {Aj} are arbitrary constants subject to a single requirement:

A1 + A2 + · · ·+ Am = 1. (12)

Let A1, A2, . . . , Am be fixed numbers that satisfy the equality (12). We also assume that
the functions ϕj(x), ϕ′j(x) are continuous from the left, that is ϕj(bm+1 − 0) = ϕj(bm+1),
ϕ′j(bm+1 − 0) = ϕ′j(bm+1). By Φj(x) and Ψj(x), we denote the solutions of Equation (10)
with Fj(x) ≡ 0 on the path Sj, subject to conditions (11), as well as conditions:

Φj(bm+1 − 0) = Ψ′j(bm+1 − 0) = 1, Φ′j(bm+1 − 0) = Ψj(bm+1 − 0) = 0. (13)

We introduce a particular solution of Equation (10) by the formula:

ϕj(x) =
x∫

0

∣∣∣∣Φj(x) Ψj(x)
Φj(t) Ψj(t)

∣∣∣∣∣∣∣∣∣Φ′j(t) Ψ′j(t)
Φj(t) Ψj(t)

∣∣∣∣∣
Fj(x)dt (14)

for any j from the set {1, . . . , m} and x ∈ Sj. It is clear that the functions ϕ1(x), ϕ2(x), . . . , ϕm(x)
defined by Formula (14) satisfy the Kirchhoff conditions (7) at the point x = bm+1. Indeed,
we can write:

ϕj(x) =
x∫

0

∣∣∣∣cm+1(x) sm+1(x)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt, x ∈ (0, bm+1),

ϕj(x + bm+1) =

bm+1∫
0

∣∣∣∣ Φj(x + bm+1) Ψj(x + bm+1)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt

+

x∫
0

∣∣∣∣ cj(x) sj(x)
cj(t) sj(t)

∣∣∣∣ f j(t)dt, x ∈ (0, bj)

at x ∈ (0, bm+1) ∪ (bm+1, bm+1 + bj). We note that the following representation:

Φj(x + bm+1) = cj(x), Ψj(x + bm+1) = Ajsj(x)

holds for x ∈ (0, bj) and the following representation:

Φj(x) = cm+1(x), Ψj(x) = sm+1(x)

holds for x ∈ (0, bm+1). Thus, we state the following theorem.
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Theorem 1. The solution of the Cauchy problem for the Sturm–Liouville Equations (6) and (7)
with Cauchy conditions:

θm+1(0) = 0, θ′m+1(0) = 0 (15)

at the point xm+1 = 0, we denote by Θ = (θ1(x1), θ2(x2), . . . , θm+1(xm+1)), and it has the
following representation:

θm+1(xm+1) =

xm+1∫
0

∣∣∣∣cm+1(xm+1) sm+1(xm+1)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt, xm+1 ∈ em+1,

θj(xj) =

bm+1∫
0

∣∣∣∣ cj(xj) Ajsj(xj)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt

+

xj∫
0

∣∣∣∣cj(xj) sj(xj)
cj(t) sj(t)

∣∣∣∣ f j(t)dt, xj ∈ ej, j = 1, 2, . . . , m,

where A1, A2, . . . , Am are arbitrary numbers subject to requirement (12).

Remark 1. Theorem 1 implies that the solution to the Cauchy problem (6), (7), (15) depends on
arbitrary (m− 1) constants. Constants A1, A2, . . . , Am that satisfy the requirement (12) determine
at the point xm+1 = bm+1 the portions of flow along the edges e1, e2, . . . , em with respect to the flow
on the edges em+1. The numbers A1, A2, . . . , Am we call the connecting constants.

3. Construction of a Biorthogonal System of Solutions for a Set of
Boundary Conditions

Let a set of boundary conditions (8) be given by boundary forms U0(·), . . . , Um(·). The
system of solutions Rj = r1j(x1), . . . , rm+1,j(xm+1) of the problem (7)–(9) for j = 0, 1, . . . , m
is called biorthogonal to the boundary forms U0(·), . . . , Um(·), if the following requirement:

Uk(Rj) = δkj, k, j = 0, 1, . . . , m (16)

holds, where δkj is the Kronecker delta.
In this section, we find sufficient conditions for the existence of a biorthogonal

system of solutions. In other words, what conditions must the set of boundary forms
{Uk, k = 0,1,. . . ,m} satisfy in order for a biorthogonal system of solutions to the problem
(7)–(9) to exist? We introduce the following matrix:

T =


U0(c1, c2, . . . , cm+1) U1

0(s1) U2
0(s2) . . . Um

0 (sm) Um+1
0 (sm+1)

U1(c1, c2, . . . , cm+1) U1
1(s1) U2

1(s2) . . . Um
1 (sm) Um+1

1 (sm+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Um(c1, c2, . . . , cm+1) U1
m(s1) U2

m(s2) . . . Um
m (sm) Um+1

m (sm+1)
0 1 1 . . . 1 −1

,

where:

Uk
i (sk) =

2

∑
j=1

αi(2k−2+j)s
(j−1)
k (bk), k ≥ 1, i ≥ 0,

Um+1
i (sm+1) =

2

∑
j=1

αi(2m+j)s
(j−1)
m+1 (0). (17)

Theorem 2. Let a set of boundary forms U0(·), . . . , Um(·) be such that:

detT 6= 0.
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Then, there exists a unique system of solutions to the problem (7)–(9), which is biorthogonal to
forms {U0, . . . , Um}.

Proof of Theorem 2. Let us write down the general solution of the homogeneous system
of differential Equation (9) subject to the Kirchhoff conditions (7):

ym+1(xm+1) = Dcm+1(xm+1) + Esm+1(xm+1), x ∈ em+1, (18)

yj(xj) = Dcj(xj) + EAjsj(xj), x ∈ ej, j = 1, . . . , m. (19)

Here, D, E and A1, . . . , Am are arbitrary numbers subject to the condition (12). Let us prove
that there exist R that satisfy the following equalities:

U0(R) = 1, U1(R) = 0, . . . , Um(R) = 0. (20)

We seek function R = (r1(x), r2(x), . . . , rm+1(x)) in the forms (18) and (19). By substituting
the expressions (18) and (19) into the equalities (20), we obtain a system of algebraic
equations with respect to D, E, A1E, A2E, . . . , AmE :

Tz = l1, (21)

where:
z = [D, A1E, A2E, . . . , AmE, E]T , l1 = [1, 0, 0, . . . , 0]T .

Since detT 6= 0, the numbers E, A1, A2, . . . , Am, D are uniquely found from the
system (21). Therefore, R0 is determined from the conditions (16) for j = 0 in a unique
way. It is also checked in the same way that R1, R2, . . . , Rm are determined from the
conditions (16) for j ≥ 1 in a unique way. The proof of Theorem 2 is complete.

4. An Equivalent Set of Boundary Forms That Have an Integral Form

In this section, the set of boundary forms {U0, . . . , Um} from (8) is replaced by an equiv-
alent set of boundary forms {W0, . . . , Wm}. Let the number Am = 1− A1 − · · · − Am−1
and the numbers A1, A2, . . . , Am−1 be arbitrary numbers. To represent the explicit form of
the boundary forms {W0, . . . , Wm}, we introduce the following functions:

ρ
(1)
k (t) =

m

∑
i=0

rm+1 i(0)
∣∣∣∣Uk

i (ck) Uk
i (sk)

ck(t) sk(t)

∣∣∣∣, t ∈ ek, k ≤ m,

ρ
(1)
m+1(t) =

m

∑
i=0

rm+1 i(0)

(∣∣∣∣Um+1
i (cm+1) Um+1

i (sm+1)
cm+1(t) sm+1(t)

∣∣∣∣
+

m

∑
i=1

∣∣∣∣ Ui
i (ci) AiUi

i (si)
cm+1(t) sm+1(t)

∣∣∣∣
)

, t ∈ em+1,

ρ
(2)
k (t) =

m

∑
i=0

r′m+1 i(0)
∣∣∣∣Uk

i (ck) Uk
i (sk)

ck(t) sk(t)

∣∣∣∣, t ∈ ek, k ≤ m,

ρ
(2)
m+1(t) =

m

∑
i=0

r′m+1 i(0)

(∣∣∣∣Um+1
i (cm+1) Um+1

i (sm+1)
cm+1(t) sm+1(t)

∣∣∣∣
+

m

∑
l=1

∣∣∣∣ Ul
i (ci) AiUi

i (sl)
cm+1(t) sm+1(t)

∣∣∣∣
)

, t ∈ em+1,

ρ
(j+2)
k (t) =

m

∑
i=0

(r′j i(0)− Ajr′m+1 i(bm+1))

∣∣∣∣Uk
i (ck) Uk

i (sk)
ck(t) sk(t),

∣∣∣∣ t ∈ em+1, k ≤ m,



Symmetry 2021, 13, 1210 7 of 15

ccρ
(j+2)
m+1 (t) =

m

∑
i=0

(r′j i(0)− Ajr′m+1 i(bm+1))

(∣∣∣∣Um+1
i (cm+1) Um+1

i (sm+1)
cm+1(t) sm+1(t)

∣∣∣∣
+

m

∑
i=1

∣∣∣∣ Ui
i (ci) AiUi

i (si)
cm+1(t) sm+1(t)

∣∣∣∣
)

, t ∈ em+1. (22)

Now, we define new boundary forms by the following formulas:

W0(y1, y2, . . . , ym+1) = ym+1(0) +
m+1

∑
k=1

bk∫
0

ρ1
k(t)(−y′′k (t) + pk(t)yk(t))dt,

W1(y1, y2, . . . , ym+1) = y′m+1(0) +
m+1

∑
k=1

bk∫
0

ρ2
k(t)(−y′′k (t) + pk(t)yk(t))dt,

Wj+1(y1, y2, . . . , ym+1) = y′j(0)− Ajy′m+1(bm+1)

+
m+1

∑
k=1

bk∫
0

ρ
j+2
k (t)(−y′′k (t) + pk(t)yk(t))dt, j = 1, . . . , m− 1.

Theorem 3. Let the problem (6)–(8) have a unique solution Y = (y1(x), y2(x), . . . , ym+1(x)).
Then, the set of boundary conditions (8) is equivalent to the following boundary conditions:

Wk(y1, y2, . . . , ym+1) = 0, k = 0, 1, . . . , m. (23)

The boundary conditions defined by Theorem 1 are called canonical boundary conditions or normal-
ized boundary conditions [7]. Therefore, instead of restoring the boundary conditions (8), we restore
the boundary conditions (23).

Remark 2. We note that the functions ρ
(j)
k (t) for a fixed k from the set {1, . . . , m + 1} are defined

on the edge ek and represent the solutions of the homogeneous Equation (9).

Proof of Theorem 3. By Theorem 1, we define a solution to the Cauchy problem as follows:

θj(xj) =

bm+1∫
0

∣∣∣∣ cj(xj) Ajsj(xj)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt

+

xj∫
0

∣∣∣∣cj(xj) sj(xj)
cj(t) sj(t)

∣∣∣∣ f j(t)dt, xj ∈ ej, j = 1, 2, . . . , m,

θm+1(xm+1) =

xm+1∫
0

∣∣∣∣cm+1(xm+1) sm+1(xm+1)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt, xm+1 ∈ em+1. (24)

By direct verification, we can check that the following functions:

ϑj(xj) = θj(xj)−
m

∑
i=0

Ui(θ)rji(xj), j = 1, 2, . . . , m + 1 (25)
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satisfy the boundary condition (8). Let us introduce the notation V = (ϑ1(x1), . . . , ϑm+1(xm+1)).

Indeed, the identity Ui(Y) =
m+1
∑

k=1
Uk

i (yk) implies that:

m+1

∑
j=1

U j
0(ϑj) =

m+1

∑
j=0

U j
0(θj)−

m

∑
i=0

U0(θ)
m+1

∑
j=1

U j
0(rji).

The quantity Uk
i (yk) is defined in a similar way as (17). Hence, (16) implies that:

U0(V) = U0(θ)−
m

∑
i=0

Ui(θ)U0(Ri) = 0,

which confirms that the boundary conditions (8) hold. It is not hard to understand that V
is a solution to the problem (6)–(8). The uniqueness of the solution to the problem (6)–(8)
implies that:

Y = V or yj(xj) = ϑj(xj), j = 1, 2, . . . , m + 1. (26)

Formulas (25) and (26) imply the following expressions:

θj(xj) = yj(xj) +
m

∑
i=0

Ui(Θ)rji(xj), j = 1, 2, . . . , m + 1, (27)

since Θ satisfies the following conditions:

θm+1(0) = 0, θ′m+1(0) = 0, θ′j(0)− Ajθ
′
m+1(bm+1) = 0, j = 1, . . . , m− 1. (28)

The substitution on the right-hand side of the relations (27) into the conditions (28) gives:

ym+1(0) +
m

∑
i=0

Ui(Θ)rm+1i(0) = 0,

y′m+1(0) +
m

∑
i=0

Ui(Θ)r′m+1i(0) = 0,

y′j(0)− Ajy′m+1(bm+1) +
m

∑
i=0

Um(Θ)(r′ji(0)

− Ajr′m+1i(bm+1)) = 0, j = 1, . . . , m− 1. (29)

Now, we calculate the values U0(Θ), . . . , Um(Θ) by applying (24). As a result, we have:

Ui(Θ) =
m+1

∑
k=1

Uk
i (Θk) =

m

∑
k=1

bm+1∫
0

∣∣∣∣Uk
i (ck) AkUk

i (sk)
cm+1(t) sm+1(t)

∣∣∣∣ fm+1(t)dt

+
m+1

∑
k=1

bk∫
0

∣∣∣∣Uk
i (ck) Uk

i (sk)
ck(t) sk(t)

∣∣∣∣ fk(t)dt (30)

for i = 0, 1, . . . , m. We substitute the right-hand side of the relations (30) into the
equalities (29), then we have:
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ym+1(0) +
m+1
∑

k=1

bk∫
0

ρ
(1)
k (t) fk(t)dt = 0,

y′m+1(0) +
m+1
∑

k=1

bk∫
0

ρ
(2)
k (t) fk(t)dt = 0,

y′j(0)− Ajy′m+1(bm+1)

+
m+1
∑

k=1

bk∫
0

ρ
(j+2)
k (t) fk(t)dt = 0, j = 1, . . . , m− 1.

(31)

Since fk(t) = −y′′k (t) + pk(t)yk(t) for k ≥ 1, then the relations (31) imply the proof of
Theorem 3.

5. Selection of Canonical Problems and the Statement of the Inverse Problem

In this section, we present the method for the selection of canonical problems, the
spectra of which allow uniquely finding the boundary conditions of the original boundary
value problem or the boundary conditions that are equivalent to them. Therefore, it is
sufficient to determine the functions:

{ρ(j)
k (t), k = 1, . . . , m + 1, j = 1, . . . , m + 2}

by the spectra of the canonical problems. In fact, to determine the boundary coefficients
we use not the entire spectrum of the auxiliary canonical problem, but only its finite part.

The number of auxiliary canonical problems is equal to the number of edges of the
graph-star. Therefore, we build (m + 1) canonical problems. As the first canonical problem,
we chose the problem (6) and (7) with the following boundary conditions:

W0(y) = 0, y′m+1(0) = 0,

y′j(0)− Ajy′m+1(bm+1) = 0, j = 1, . . . , m− 1. (32)

As a second canonical problem, we chose the problem (6) and (7) with the following
boundary conditions:

W0(y) = 0, W1(y) = 0,

y′j(0)− Ajy′m+1(bm+1) = 0, j = 1, . . . , m− 1. (33)

In a similar way, we chose the 3rd, 4th, . . . , (m + 1) − th canonical problems. As the
(m + 1)− th canonical problem, we chose the problem (6), (7), and (23), which is equivalent
to the problem (6)–(8).

We clarify the statement of the problem of recovering the boundary conditions.
The statement of the first problem:
We need to uniquely recover the first boundary vector-function {ρ(1)k (t), k = 1, . . . , m + 1}

by the given differential Equation (6) and by the spectrum of the first canonical problem.
The statement of second inverse problem:
We need to uniquely recover the second boundary vector-function {ρ(2)k (t),

k = 1, . . . , m + 1} by the given differential Equation (6), by boundary vector-function
{ρ(1)k (t), k = 1, . . . , m + 1}, and by the spectrum of the second canonical problem.

In a similar way, we state the 3rd, 4th, . . . , mth inverse problems.
The statement of the (m + 1)th inverse problem:
We need to uniquely recover the (m + 1)th boundary vector-function {ρ(m+1)

k (t),
k = 1, . . . , m + 1} by the given differential Equation (6), by boundary vector-functions
{ρ(1)k (t)}, . . . , {ρ(m)

k (t)}, k = 1, . . . , m + 1, and by the spectrum of the (m + 1)th canonical
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problem. In fact, not the entire spectrum of the canonical problem will be used, but only its
end part. This idea is worked out in more detail in the following sections.

6. A Uniqueness Theorem for Recovering Boundary Functions

The transition from the boundary conditions (8) to equivalent canonical boundary
forms allows us to prove the uniqueness theorem for the recovery of boundary vector-
functions {ρ(1)k (t), k = 1, . . . , m + 1}, . . . , {ρ(m+1)

k (t), k = 1, . . . , m + 1}. Further, the

s-th canonical problem is called problem Es. We denote by
∼
Es the problem of the type Es

with the same Equation (6), but with different parameters in the boundary conditions (7).
Further, we assume that if some symbol denotes an object related to the problem Es, then

the same symbol with a “wave” at the top denotes a similar object of the problem
∼
Es.

Theorem 4. We fix an integer number s in the set {1, . . . , m + 1}. Assume that the spectra of the

problems Es and
∼
Es coincide. If a ρ

(1)
k (t) =

∼
ρ
(1)
k (t), . . . , ρ

(s−1)
k (t) =

∼
ρ
(s−1)
k (t), k = 1, . . . , m + 1

in L2(Γ) and the systems of the root functions of the problems Es and
∼
Es are complete in L2(Γ),

then ρ
(s)
k (t) =

∼
ρ
(s)
k (t) on the space L2(Γ).

We introduce [13] in a natural way the metric topology and Lebesgue measure on the
graph Γ. Space L2(Γ) is understood as the L2-space with respect to this measure. In other
words, in L2(Γ), we introduce the inner product by the formula:

(y, z) =
m+1

∑
j=1

(yj, zj) =
m+1

∑
j=1

bj∫
0

yj(xj)zj(xj)dxj, y, z ∈ L2(Γ). (34)

Then, by (34), the conditions (31) take the following form:
ym+1(0)+ < ρ(1), f >= 0,

y′m+1(0)+ < ρ(2), f >= 0,

y′j(0)− Ajy′m+1(bm+1)+ < ρ(j+2), f >= 0, j = 1, . . . , m− 1,

where:

ρ(1) = (ρ
(1)
1 , . . . , ρ

(j)
m+1) ∈ L2(Γ),

f = ( f1, . . . , fm+1) ∈ L2(Γ).

We note that ft = −y”j(t) + pj(t)yj(t), j = 1, . . . , m + 1. Thus, by our notation, we have:
W0(y) = ym+1(0)+ < ρ(1),−y′′ + py >,
W1(y) = y′m+1(0)+ < ρ(2),−y′′ + py >,
Wj+1(y) = y′j(0)− Ajy′m+1(bm+1)+ < ρ(j+2),−y” + py >, j = 1, . . . , m− 1,

(35)

where py = (p1y1, p2y2, . . . , pm+1ym+1).
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Proof of Theorem 4 for s = 1. By u(1) = (u(1)
1 (x1), u(1)

2 (x2), . . . , u(1)
m+1(xm+1)), we denote

the solution to the Cauchy problem:

− d2

dx2
j

u(1)
j (xj) + pj(xj)u

(1)
j (xj) = λu(1)

j (xj), xj ∈ (0, bj), j = 1, . . . , m + 1,

u(1)
m+1(0) = 1,

du(1)
m+1

dxm+1
(0) = 0,

du(1)
k (xk)

dxk

∣∣∣
xk=0
− Ak

du(1)
m+1(xm+1)

dxm+1

∣∣∣
xm+1=bm+1

= 0, k = 1, . . . , m− 1.

We note that the functions u(1)
j (xj, λ) are entire functions of the parameter λ, since, by

Theorem 1, the Cauchy problem is uniquely solvable for all complex λ. Let λ = λ(1) be the
arbitrary eigenvalue of the problem E1. Then,

u(1)(λ(1)) = (u(1)
1 (x1, λ(1)), u(1)

2 (x2, λ(1)), . . . , u(1)
m+1(xm+1, λ(1)))

is the eigenfunction of the problem E1 corresponding to eigenvalue λ(1). The first boundary
condition of the problem E1 has the following form:

W0(u1(λ(1))) = u(1)
m+1(0, λ(1)) + λ(1) < ρ(1), u(1)(λ(1)) >= 0.

Hence, it follows that:

< ρ(1), u(1)(λ(1)) >= − 1
λ(1)

.

Therefore, the eigenvalues of the problem E1 determine the Fourier coefficients of the
function ρ(1) in the system of root functions that is conjugate to the problem E1. Since the
system of the root functions of the problem E1 is complete in the space L2(Γ), then the
system of the root functions of the conjugate problem is also complete in L2(Γ). Thus, if the

spectra of the problems Es and
∼
Es coincide, then the Fourier coefficients of the functions

ρ(1) and
∼
ρ
(1)

coincide by the same complete system of the space L2(Γ). Therefore, in the

space L2(Γ), functions ρ(1) and
∼
ρ
(1)

coincide. This proof corresponds to the case of the

simple eigenvalues of the problems Es and
∼
Es. In the case of multiple eigenvalues, the

reasoning requires a slight modification.

Proof of Theorem 4 for s = 2. By u(2) = (u(2)
1 (x1), u(2)

2 (x2), . . . , u(2)
m+1(xm+1)), we denote

the solution to the Cauchy problem:

− d2

dx2
j

u(2)
j (xj) + pj(xj)u

(2)
j (xj) = λu(2)

j (xj), xj ∈ (0, bj), j = 1, . . . , m + 1,

W0(u(2)) = 0,
du(2)

m+1
dxm+1

(0) = 0,

du(2)
k (xk)

dxk

∣∣∣
xk=0
− Ak

du(2)
m+1(xm+1)

dxm+1

∣∣∣
xm+1=bm+1

= 0, k = 1, . . . , m− 1.

Let λ = λ(2) be an arbitrary eigenvalue of the problem E2. Then,

u(2)(λ(2)) = (u(2)
1 (x1, λ(2)), u(2)

2 (x2, λ(2)), . . . , u(2)
m+1(xm+1, λ(2)))
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is the eigenvalue of the problem E2 corresponding to eigenvalue λ(2). The second boundary
condition of the problem E2 can be represented as follows:

W1(u(2)(λ(2))) =
d

dxm+1
u(2)

m+1(xm+1, λ(2))
∣∣∣
xm+1=0

+ λ(2) < ρ(2), u(2)(λ(2)) >= 0

Hence, it follows that:

< ρ(2), u(2)(λ(2)) >= − 1
λ(2)

.

The further reasoning repeats the proof of Theorem 4 for s = 1. The case, when problems
E1 and E2 have common eigenvalues, requires a slight modification in the reasoning. The
proofs of Theorem 4 for other s are similar. The proof of Theorem 4 is complete.

7. Refinement of the Uniqueness Theorem in the Case of Boundary Value Problems

In this section, we refine Theorem 4 for boundary value problems. In Section 4
of this article, we presented Formula (22), which connects the functions ρ

(j)
k (xk) for

j, k = 1, . . . , m+ 1 with the values of the boundary forms {Uk
i (ck), Uk

i (sk), k = 1, . . . , m+ 1,

i = 1, . . . , m + 1}. Formula (22) implies that the functions ρ
(j)
k (xk) for all j = 1, . . . , m + 1

are solutions to the homogeneous equations −y′′k (xk) + pk(xk)yk(xk) = 0, k = 1, . . . , m + 1.
Since the coefficients p1(x1), . . . , pm+1(xm+1) are given, then the solutions {ck(xk), sk(xk),
k = 1, . . . , m + 1} are also known. We fix j in the set {1, . . . , m + 1}.

Let:

ρ
(j)
k (xk) = h(j)

1k ck(xk) + h(j)
2k sk(xk), xk ∈ (0, bk), k = 1, . . . , m + 1.

with unknown constants h(j)
1k , h(j)

2k . Section 6 of this article provided a connection between

the Fourier coefficients of the boundary function ρ(j) = (ρ
(j)
1 (x1), . . . , ρ

(j)
m+1(xm+1)) and the

given eigenvalues of the problem Ej. Recall that:

< ρ(j), u(j)(λ(j)) >= − 1
λ(j)

,

where u(j)(λ(j)) is the eigenfunction of problem Ej corresponding to the eigenvalue λ(j).
Consequently, we obtain a system of equations:

m+1

∑
k=1

(
h(j)

1k

b∫
0

ck(xk)u
(j)
k (xk, λ(j)) + h(j)

2k

b∫
0

sk(xk)u
(j)
k (xk, λ(j))

)
= − 1

λ(j)

for unknown constants h(j)
11 , h(j)

12 , h(j)
1m+1, h(j)

21 , . . . , h(j)
2m+1. Thus, to uniquely determine the

unknown constants h(j)
11 , h(j)

12 , h(j)
1m+1, h(j)

21 , . . . , h(j)
2m+1, it is sufficient to choose eigenvalues

{λ(j)
1 , λ

(j)
2 , . . . , λ

(j)
2m+2} of problem Ej so that the determinant Z = (Zij) is nonzero, where:

Zk l+m+1 =

b1∫
0

sl(xl)u(j)(xl , λ
(j)
k )dxl ,

Zkl =

bl∫
0

cl(xl)u(j)(xl , λ
(j)
k )dxl , l = 1, . . . , m + 1, k = 1, . . . , 2m + 2.

Here, u(j)(λ
(j)
1 ), . . . , u(j)(λ

(j)
2m+2) are eigenfunctions of the problem Ej corresponding to the

chosen eigenvalues.
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Lemma 1. Let b1 = b2 = · · · = bm+1 = b. Suppose that the coefficients of the differential
expressions p1(x), . . . , pm+1(x) are chosen so that the system of functions

{c1(x), s1(x), c2(x), s2(x), . . . , cm+1(x), sm+1(x)} is linear independent on the interval
[0, b]. Let problem Ej have infinitely many eigenvalues. Then, there exists a set of eigenvalues

{λ(j)
n , n = n1, . . . , n2m+2} of the problem Ej such that the determinant Z is nonzero. Here,

λ
(j)
1 = λ

(j)
n1 , . . . , λ

(j)
n2m+2 = λ

(j)
n2m+2

are some eigenvalues of the canonical problem Ej.

Proof of Lemma 1. We prove by contradiction. Suppose that for any set of eigenvalues
{λ(j)

n , n = n1, . . . , n2m+2} of problem Ej, the determinant is equal to zero: Z = 0. We
put n1 = 1, . . . , n2m+1 = 2m + 1. Since the problem Ej has infinitely many eigenvalues,

assume that λ
(j)
n , n = n2m+2 runs through the entire spectrum of the problem Ej. Since

Z = 0, then the system of homogeneous linear algebraic equations Z
−→
h = 0 has a nonzero

solution, where:

−→
h = [h(j)

11 , . . . , h(j)
1m+1 h(j)

21 , . . . , h(j)
2m+1]

has a nonzero solution. We assume that h(j)
11 6= 0. Consequently, the Fourier coeffi-

cients of the function c1(x) are linearly expressed in terms of the Fourier coefficients of
the functions {s1(x), c2(x), s2(x), . . . , cm+1(x), sm+1(x)}. If all the Fourier coefficients
of the function c1(x) can be linearly expressed in terms of the Fourier coefficients
of the functions {s1(x), c2(x), s2(x), . . . , cm+1(x), sm+1(x)}, then the system of functions
{c1(x), s1(x), c2(x), s2(x), . . . , cm+1(x), sm+1(x)} represents the linear dependent system.
We have a contradiction. If h(j)

11 6= 0 is not satisfied, then some modification in the
reasoning is required. The proof of the lemma is complete.

Lemma 1 and Theorem 4 imply the following theorem.

Theorem 5. We fix j in the set {1, . . . , m + 1}. Let b1 = b2 = · · · = bm+1 = b. Suppose that
the coefficients p1(x), . . . , pm+1(x) of the differential expressions are chosen so that the system of
functions {c1(x), s1(x), c2(x), s2(x), . . . , cm+1(x), sm+1(x)} is linear independent on the interval

[0, b]. Let finite sets of eigenvalues of problems Ej and
∼
Ej from Lemma 1 coincide. If ρ(1) =

∼
ρ
(1)

, . . . , ρ(j−1) =
∼
ρ
(j−1)

in L2(Γ), then ρ(j) =
∼
ρ
(j)

in L2(Γ).

In the proof of Theorem 4, it was established that the eigenfunctions Ej and
∼
Ej coincide

if the corresponding eigenvalues coincide. This fact plays an essential role in the proof
of Theorem 5. In conclusion, note that some of the constructions presented here can
be found in [5,6]. In [14], examples of uniform beams with different boundary anchors
having infinitely many identical eigenfrequencies of transverse vibrations were given.
In Theorem 5, it was stated that a finite number of eigenfrequencies is sufficient for the
unique recovering of boundary anchors. This does not contradict the above results of [14],
since Theorem 5 states that the eigenfrequencies must be specially selected for the unique
recovering of the boundary anchors of the beam.

8. Conclusions

Boundary value problems for differential equations on compact graphs can be speci-
fied by integro-differential conditions. The problem of determining the functions included
in the integro-differential conditions is related to inverse problems. The recovery of the
functions included in the integro-differential conditions was divided into three steps. In
the first step, the integro-differential conditions were reduced to a normalized form. In
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the second step, we chose the canonical problems, by the spectra of which the integro-
differential conditions would be restored. In the final step, a procedure was proposed to
restore the functions included in the integro- differential conditions.

The paper proved the possibility of uniquely recovering the domain of the Sturm–
Liouville operator on a star graph by the set of spectra of special canonical problems. In a
particular case, when the domain of the operator is specified by boundary conditions, then
for the unique recovery of the boundary coefficients, it is sufficient to specify only a finite
set of its eigenvalues for each canonical problem. The total number of eigenvalues required
to uniquely recover the boundary coefficients on a star graph with an (m + 1) edge does
not exceed 2(m + 1)2. The question of determining the minimum number of eigenvalues
for the unique determination of the boundary coefficients seems to be interesting.

In this paper, the first two steps of the recovering of functions included in the integro-
differential conditions were described in detail. The third step of the constructive restora-
tion of functions requires its development. Only the recovery scheme was specified here.
The modification to the recovery procedure is a question of interest, since interest is grow-
ing in the problem connected with identifying the boundary conditions of the differential
operators on symmetric graph-like spaces.

The result of the work can be used to detect boundary defects in structures consist-
ing of rods elastically connected in one node. The eigenfrequencies of the longitudinal
vibrations of such structures can be measured by technical sensors. Based on the found
eigenfrequencies, applying the results of this article, it is possible to identify boundary
damage. The results of this article were theoretical, but in the future, they can be brought
to constructively realizable algorithms for engineers.
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