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Abstract: Structural monitoring provides valuable information on the state of structural health, which
is helpful for structural damage detection and structural state assessment. However, when the sensors
are exposed to harsh environmental conditions, various anomalies caused by sensor failure or damage
lead to abnormalities of the monitoring data. It is inefficient to remove abnormal data by manual
elimination because of the massive number of data obtained by monitoring systems. In this paper,
a data anomaly detection method based on structural vibration signals and a convolutional neural
network (CNN) is proposed, which can automatically identify and eliminate abnormal data. First,
the anomaly detection problem is modeled as a time series classification problem. Data preprocessing
and data augmentation, including data expansion and down-sampling to construct new samples, are
employed to process the original time series. For a small number of samples in the data set, randomly
increase outliers, symmetrical flipping, and noise addition methods are used for data expansion, and
samples with the same label are added without increasing the original samples. The down-sampling
method of symmetrically extracting the maximum value and the minimum value at the same time
can effectively reduce the dimensionality of the input sample, while retaining the characteristics of
the data to the greatest extent. Using hyperparameter tuning of the classification weights, CNN is
more effective in dealing with unbalanced training sets. Finally, the effectiveness of the proposed
method is proved by the anomaly detection of acceleration data on a long-span bridge. For the
anomaly detection problem modeled as a time series classification problem, the proposed method
can effectively identify various abnormal patterns.

Keywords: structural health monitoring; deep learning; data anomaly detection; convolutional
neural network

1. Introduction

In the field of structural health monitoring, the problem of data accumulation has
been paid more and more attention. During the real-time monitoring of bridges, a large
number of data are generated every day. These data containing the damage information of
the bridge structure are the basis of bridge state assessment and long-term performance
prediction. However, the installed sensors are exposed to harsh environments. As the
working time increases, the performance of the sensor will decrease, which may cause sen-
sor failure or data anomalies [1]. In the absence of an effective data processing mechanism,
anomalies not only increase the cost of storage but also fail to guide the formulation of
bridge maintenance strategies.

The existing data anomaly detection methods can generally be divided into model-
based methods and data-driven methods. Basically, model-based methods rely on finite
element models to reflect inherent structural characteristics. A series of statistical and
mechanical models have been established to predict the output of the measurement [2–5].
Model-based methods can achieve better detection accuracy. However, when dealing with
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large numbers of SHM data, it is difficult to create a reliable explicit finite element model
to describe the structural behavior of the structure in service [6].

Data-driven methods include statistical process control and machine learning meth-
ods. They do not rely on finite element models and directly analyze measured time series
data, which hopefully alleviates the shortcomings of model-based methods [7]. Among
data-driven methods, deep-learning-based methods have the potential to learn from big
data containing abnormal data to automatically diagnose various abnormal data. Recently,
deep learning has been increasingly applied to solve time-series-related tasks [8–10], in-
cluding time series classification, time series prediction, and time series anomaly detection.
Bao [11] et al. proposed a data anomaly detection method based on computer vision and
deep learning. The original time series measurement values are first converted into image
vectors, and then these image vectors are input to a deep neural network (DNN) to identify
various anomalies. Tang et al. [12] proposed a new anomaly detection method using com-
puter vision and deep learning methods. This method first converts the original time series
data into images, imitating human-vision-based data collection, and then trains CNN for
abnormal classification. Mao et al. [13] combined the generative adversarial network with
an autoencoder to improve the performance of existing unsupervised learning methods
and used two data sets from full-scale bridges to verify the proposed method.

Supervised deep learning relies heavily on a large number of labeled training data
to train the network. However, many abnormal data patterns in actual projects do not
have enough labeled data. Therefore, how to efficiently generate a large number of labeled
synthetic data with fewer samples is a problem worthy of attention. As an effective tool to
improve the quantity and quality of training data, data augmentation is essential for the
successful application of deep learning models. The basic idea of data augmentation is
to allow limited data to generate more value when new data are not added substantially
while maintaining correct labels. Data augmentation has achieved good results in many
application scenarios [14]. Sun et al. [15] proposed a simple but effective data augmenta-
tion method for generating multi-view 2D pose annotations. Liu et al. [16] proposed an
image generation technique to enhance the robustness of the convolutional neural network
model. Time-domain transformation is the most direct data augmentation method for time
series data. Most of them directly process the original input time series. Cui et al. [17]
proposed a sliding window method combined with a Multi-scale Convolutional Neural
Network (MCNN) to solve the time series classification problem and achieved good results
on a large number of benchmark data sets. Fawaz et al. [18] proposed a new method
for generating new time series with DTW and ensembled them by a weighted version
of the DBA algorithm. Wen et al. [19] used data augmentation methods such as random
mutation and adding random trends in different data sets and proposed a time series seg-
mentation approach based on convolutional neural networks (CNN) and transfer learning.
Gao et al. [20] proposed a label expansion method to change those data points near the
labeled anomalies and their labels as anomalies, which brings performance improvement
for time series anomaly detection.

For the time series classification problem, most studies model the problem as a classi-
fication problem based on computer vision, while the classification method directly based
on vibration signals is rarely studied. In addition, less research uses time series data aug-
mentation to obtain a more balanced sample set. However, one-dimensional convolutional
networks, which are faster for time series problems, are also used in rare cases. In this
paper, a data anomaly identification method using one-dimensional CNN is proposed
based on bridge monitoring acceleration data, in which data augmentation is employed to
process the samples.

2. Data Anomaly Classification Method Based on 1D-CNN
2.1. Bridge Overview and Data Set Composition

This research uses the health monitoring data set of a large-span cable-stayed bridge
in China. The main span of the bridge is 1088 m long, and the two side spans are 300 m
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each, including two 306 m-high towers. The structural health monitoring system of the
bridge consists of 38 sensors. The position on the bridge is shown in Figure 1. Sensors
include accelerometers, anemometers, strain gauges, global positioning systems (GPS),
and thermometers. For this research, one-month (1 January–31 January 2012) acceleration
data from all 38 sensors of the SHM system were used for data anomaly detection. The
sampling frequency of the accelerometer is 20 Hz. The original continuous measurement
data are divided into one-hour time periods, and in a one-month time period, through the
method of non-overlapping windows, 744 time series measurement data of each sensor are
obtained so as to obtain a total of 28,272 (744 × 38) data. The dimensions of a single data
point are 1 × 72,000. Figure 2a–g shows an example of each type of data pattern. Table 1
describes the quantity and characteristics of normal data and six types of abnormal data.
Each data point has a real category label. The normal time series measurement data are
marked as 1, and the other six abnormal data patterns are marked as 2–7. It can be seen that
nearly 52% of the data are abnormal. “Trend” is the main abnormal pattern that constitutes
20% of the data set, followed by “missing” and “square”, each accounting for about 10%.
On the other hand, the “outlier” only accounts for 1.9% of the data set, followed by “drift”,
which accounts for 2.4% of the data.

2.2. Data Preprocessing

Since there may be missing values or calculation errors in the process of data acquisi-
tion, data cleaning is performed on all data to remove missing or calculated incorrect values,
which is reflected in MATLAB as “NAN”. In order to keep the data length unchanged as
the input of the neural network, all “NAN” values are replaced with 0.
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Figure 2. The example for each data pattern. (a) Normal data; (b) Missing data; (c) Minor data; (d) Outlier data; (e) Square
data; (f) Trend data; (g) Drift data.

Table 1. Description of each type of data pattern.

No. Anomaly
Patterns Description Quantity

1 Normal The time response is normal oscillation curve; frequency
response is peak-like (may differ between bridges)

13575
(48%)

2 Missing Most/all of the time response is missing, which makes the
time and frequency response zero

2942
(10.4%)

3 Minor Relative to normal sensor data, the amplitude is very small
in the time domain

1775
(6.3%)

4 Outlier One or more outliers appear in the time response 527
(1.9%)

5 Square The time response is like a square wave 2996
(10.6%)

6 Trend The data has an obvious trend in the time domain and has
an obvious peak value in the frequency domain

5778
(20.4%)

7 Drift The vibration response is non-stationary, with random drift 679
(2.4%)

Zero-mean normalization is used to process the data for one hour so that the normal-
ized data are normally distributed; that is, the mean is zero, and the standard deviation
is one. This method can eliminate errors caused by self-variation or large differences in
values, making the data more beneficial for subsequent steps. As shown in Equation (1),

x∗ =
x− µ

σ
(1)

Where x is a one-hour time series {x1, x2, . . . , xN}, µ is the mean of all sampling points,
σ is the standard deviation of all sampling points, and x* is the normalized time series.
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2.3. Data Augmentation

Augmentation methods should always be selected appropriately for the case under
consideration [14]. For example, when applied to a time series containing outliers, the
sliding window may not be able to capture the mutation features. Therefore, this research
deals with every hour, that is, the full length of the sample.

Data enhancement includes two steps: data expansion of a small number of data
samples and down-sampling of all samples.

Data expansion is applied to a small number of samples, namely outlier and drift, in
the numerical simulation. Not all abnormal samples need to be expanded.

Outlier data can be defined as individual points of the normal data whose amplitude
greatly exceeds the normal range. Therefore, a data expansion method that magnifies
individual points is used for outlier samples. x is a normal sample {x1, x2, . . . , xN}, and the
proposed method is shown in Equation (2),

x(p) = mean + β× range (2)

where p is a random number between 10 and 60, mean is the mean value of x, β is a
random number between −2 and 2, and range is the difference between the maximum and
minimum values in x.

The method of symmetrical flipping and noise addition is used to expand the data
of drift samples. The drift data has a random drift upwards or downwards. Therefore,
the method of up-and-down symmetrical flipping can construct an effective sample. For
the time series {x1, x2, . . . , xN}, symmetrical flipping can generate a new time series
{x′1, x′2, . . . , x′N} with the same anomaly labels where x′i= −xi. Different degrees of
Gaussian white noise are added to the original sequence to generate more samples with
the same anomaly labels. Two examples of data expansion are shown in Figure 3. The
horizontal axis represents the number of sampling points, and the vertical axis represents
the acceleration amplitude in m/s2.

The sample dimension of a single hour is 1 × 72,000, which is relatively large as the
input of the neural network. Therefore, down-sampling is used to reduce the dimensional-
ity of the sample while retaining the characteristics of the sample as much as possible to
increase the efficiency of the neural network. The upper and lower contours of a sample are
both useful features. Therefore, a down-sampling method that uses a sliding window to
symmetrically extract the maxi-mum and minimum values is used. All 1 × 72,000 samples
are down-sampled over the entire sample length. A step size is selected, which is 20 in this
article, and the maximum and minimum values in the sequence are taken out for every
sampling point of the step size. Therefore, after processing each of the 72,000 samples, a
2 × 3600 sample size will be obtained. The comparison chart of some examples before and
after down-sampling is shown in Figure 4a,b. The horizontal axis represents the number of
sampling points, and the vertical axis represents the acceleration amplitude in m/s2.

2.3.1. 1D-CNN

A convolutional neural network (CNN) usually consists of an input layer, convolu-
tional layer (Conv), pooling layer (Pooling), dense layer (Dense), and output layer. In the
CNN architecture, the first few layers usually alternate between convolutional layers and
pooling layers, and the last few layers close to the output layer are composed of dense lay-
ers. CNN is an end-to-end learning method model, which can use the existing supervised
gradient descent algorithm to train the model. For time-series-processing problems, the
effect of a one-dimensional convolutional neural network (1D-CNN) can be comparable to
a recurrent neural network (RNN), and the computational cost is much smaller. For simple
tasks such as time series classification, a small one-dimensional convolutional network can
completely replace the RNN, and it runs faster [21].

Regardless of whether one-dimensional or two-dimensional convolution is used, con-
volutional neural networks have a similar structure. The structure starts with a stack of
convolutional and pooling layers, and then connected to a flatten layer to convert two-
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dimensional features into one-dimensional output, and then multiple dense layers can be
added for classification or regression. However, there is a little difference between them:
one-dimensional convolutional neural networks can use larger convolution kernels [21].
For example, for a two-dimensional convolution layer, a 3 × 3 convolution kernel contains
3 × 3 = 9 convolution vectors; however, for a one-dimensional convolution layer, a convo-
lution kernel of size 3 only contains 3 convolution vectors. Therefore, a one-dimensional
convolution kernel greater than or equal to 9 can be easily used.
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The Python Science Suite, Tensorflow, and Keras are used to build a neural network
architecture with GPU acceleration. The processor and graphics card types of the hardware
platform are Inter Core i5-9400F and Nvidia GeForce RTX 2070. The object function in
CNN is set to categorical cross-entropy to estimate the difference between the actual data
category and the predicted data category. The metric is set to the accuracy to evaluate
the performance of the model. In order to minimize the output of the object function, an
adaptation of the mini-batch stochastic gradient descent algorithm called Adam is used as
an optimizer.

In the classification, the imbalanced training set needs to be considered; that is, the
number of normal samples is much larger than the abnormal samples. If an imbalanced
training set is used to train the network, all abnormal samples will be predicted as normal
samples during the test, and there will still be a high accuracy, but this is meaningless.
Therefore, we choose to use the class weight technique [22], which can make important
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categories of samples contribute more to the object function during training. Batch Normal-
ization (BN) [23,24] is a method that has been widely used in deep network training. The
method of adding BN after the convolutional layer and then adding the activation function
can save the operator from adjusting the parameters deliberately and slowly. Figure 5
shows the workflow of the proposed method.
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3. Bridge Monitoring Data Verification

According to the proposed method process, anomaly detection is performed on
the bridge monitoring data set. First, data preprocessing is performed on all original
samples, missing values are deleted, and samples are standardized. In order to test the
generalization ability of the model, the data set is divided into training and test sets, and
80% of the samples are randomly selected as the training set. The training set size is 22,616.
Twenty percent of the samples are randomly selected as the test set, and the test set size is
5656. In order to simulate real anomalies, the distribution of test samples is unbalanced.
Table 2 shows the distribution of selected test samples.

Table 2. Data distribution of the test set.

1 2 3 4 5 6 7

Anomaly patterns Normal Missing Minor Outlier Square Trend Drift

Quantity 2688 603 360 106 616 1147 136

Percentage 47.5% 10.7% 6.4% 1.9% 10.9% 20.3% 2.4%

Constructing a balanced training set of various categories is beneficial to the training
process. Data expansion is carried out on the small number of anomalies in the training set,
namely outlier and drift. The normal samples in all training sets are expanded to outlier
samples by magnifying individual points. The Gaussian distributed noise with 2%, 3%, 4%,
5%, 6%, 7%, and 8% standard deviation to the signals are added to each drift sample once, and
symmetrical flip it once to obtain 8 times the number of drift samples. Therefore, an additional
10,860 (13,575 × 80%) outlier samples and 4345 (679 × 80% × 8) drift samples were obtained.
After adding to the training set, the new training set size is 37,821 (22,616 + 10,860 + 4345).

Down-sampling is implemented on the test set and new training set samples, and the
dimensionality of the samples is reduced from 1 × 72,000 to 2 × 3600 while retaining most
of their features.

In order to build the 1D-CNN architecture, two one-dimensional convolutional layers
are stacked to obtain the deep features of the sample more efficiently, and a flatten layer and
two dense layers are connected to convert two-dimensional features into one-dimensional
output. The last layer of the network uses the softmax multi-classifier. In short, softmax is
the value that maps the output of the previous layer to (0,1) through the softmax function.
The sum of these values is 1, which can be understood as a probability. The node with
the largest probability is selected as the predicted abnormal data type. The network
structure is shown in Figure 6. The detailed structure of 1D-CNN is shown in Table 3. The
hyperparameter configuration is shown in Table 4.

Symmetry 2021, 13, 1186 9 of 13 
 

 

Constructing a balanced training set of various categories is beneficial to the training 
process. Data expansion is carried out on the small number of anomalies in the training 
set, namely outlier and drift. The normal samples in all training sets are expanded to out-
lier samples by magnifying individual points. The Gaussian distributed noise with 2%, 
3%, 4%, 5%, 6%, 7%, and 8% standard deviation to the signals are added to each drift 
sample once, and symmetrical flip it once to obtain 8 times the number of drift samples. 
Therefore, an additional 10,860 (13,575 × 80%) outlier samples and 4345 (679 × 80% × 8) 
drift samples were obtained. After adding to the training set, the new training set size is 
37,821 (22,616 + 10,860 + 4345). 

Down-sampling is implemented on the test set and new training set samples, and the 
dimensionality of the samples is reduced from 1 × 72,000 to 2 × 3600 while retaining most 
of their features. 

In order to build the 1D-CNN architecture, two one-dimensional convolutional lay-
ers are stacked to obtain the deep features of the sample more efficiently, and a flatten 
layer and two dense layers are connected to convert two-dimensional features into one-
dimensional output. The last layer of the network uses the softmax multi-classifier. In 
short, softmax is the value that maps the output of the previous layer to (0,1) through the 
softmax function. The sum of these values is 1, which can be understood as a probability. 
The node with the largest probability is selected as the predicted abnormal data type. The 
network structure is shown in Figure 6. The detailed structure of 1D-CNN is shown in 
Table 3. The hyperparameter configuration is shown in Table 4. 

 
Figure 6. Schematic of the proposed CNN architecture. 

Table 3. The detailed architecture of CNN. 

Layer Type Input Shape Output Shape Kernel 
Num 

Kernel 
Size Stride Padding with BN Activation 

1 Conv (3600, 2) (3600, 32) 32 16 1 Same True Leaky ReLU 
2 Conv (3600, 32) (3600, 32) 32 16 1 Same True Leaky ReLU 
3 Pooling (3600, 32) (900, 32) None 4 4 Valid False None 
4 Flatten (900, 32) (28800) None None None None None None 
5 Dense (28800) (7) None None None None False Leaky ReLU 
6 Dense (7) (7) None None None None False Softmax 

  

Figure 6. Schematic of the proposed CNN architecture.



Symmetry 2021, 13, 1186 9 of 12

Table 3. The detailed architecture of CNN.

Layer Type Input
Shape

Output
Shape

Kernel
Num

Kernel
Size Stride Padding with BN Activation

1 Conv (3600, 2) (3600, 32) 32 16 1 Same True Leaky ReLU
2 Conv (3600, 32) (3600, 32) 32 16 1 Same True Leaky ReLU
3 Pooling (3600, 32) (900, 32) None 4 4 Valid False None
4 Flatten (900, 32) (28800) None None None None None None
5 Dense (28800) (7) None None None None False Leaky ReLU
6 Dense (7) (7) None None None None False Softmax

Table 4. The configurations of training process.

Name Value Description

Batch size 128 The size of data batch used in every training iteration
Initial learning rate 10−3 The initial learning rate of Adam algorithm

Patience 40 A parameter of early stopping

α 0.01 A parameter in Leaky RELU function
0.01 in every activation function

Mean Squared Error (MSE) as a loss function for training and validation can be
expressed as:

MSE =
1
N

N

∑
i=1

(Yi −Y0,i)
2 (3)

where Y represents the predicted value, and Y0 represents the true label value. N represents
the total number of samples.

In the training process, the training set is divided into 12.5% as the verification set.
During the training process, the training loss and the validation loss (MSE) are monitored,
and the training accuracy and verification accuracy (Accuracy) are also monitored. The
change of the loss function and the change of the accuracy are shown in Figures 7 and 8.
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It can be seen that the overall loss value shows a downward trend, and the overall
accuracy shows an upward trend. The amplitude is large at the beginning of training,
indicating that the learning rate is appropriate. There are glitches and oscillations locally,
possibly because a large batch size is selected for a large number of samples, and there are a
small number of samples with incorrect labels in the real-world data set. After the loss value
and accuracy stabilized, the final training and validation accuracy reached more than 95%.
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Table 5 shows the classification results in a statistical way. In the statistical analysis
of binary or multiple classifications, precision, recall, and F1 score are measures of the
accuracy of the classification results, and the last one is the harmonic average of the
first two. Recall is relative to the sample, that is, how many positive samples in the
sample are predicted correctly. Take the missing-type samples in Table 5 as an example.
There are a total of 603 missing-type samples. If 602 are predicted correctly, the recall is
602/603 = 99.83%. Precision is relative to the prediction result. It indicates how many of
the samples whose predictions are positive are correct. Taking the normal-type samples as
an example, a total of 2590 samples are predicted to be normal types. If 2542 predictions are
correct, the precision is 2542/2590 = 98.15%. Recall and precision indicators are sometimes
contradictory. If a comprehensive indicator is used to express the results of recall and
precision, the most common method should be the F1 score as follows:

F1 = 2
precision · recall

precision + recall
× 100% (4)

Where F1 represents F1 score, recall represents recall, and precision represents precision.

Table 5. The prediction result of the test set.

Predicted Data Pattern

1 2 3 4 5 6 7 Total Recall (%)

Real data
pattern

1-normal 2542 0 60 72 14 0 0 2688 94.57

2-missing 0 602 1 0 0 0 0 603 99.83

3-minor 26 0 326 8 0 0 0 360 90.56

4-outlier 21 0 1 84 0 0 0 106 79.24

5-square 1 0 1 2 612 0 0 616 99.35

6-trend 0 0 2 0 0 1110 35 1147 96.77

7-drift 0 0 0 0 0 13 123 136 90.44

Total 2590 602 391 166 626 1123 158 5656 95.45

Precision (%) 98.15 100.0 83.38 50.60 97.76 98.84 77.85

F1 score 0.96 1.00 0.87 0.62 0.99 0.98 0.84

It can be seen that the proposed method can effectively identify various data patterns.
The recall of normal, missing, minor, square, trend, and drift categories can reach above
90%. Except for the low F1 score of outlier and drift, the other types are all high. A small
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number of minor samples are classified into the normal category. Some outlier samples are
classified into the normal category, and a few are classified into the minor category. The
outlier sample may have only a few peaks, and most of the features of the outlier sample
are very similar to the normal sample, and the feature that is too small will be lost in the
convolution process. Trend and drift are partly confused, probably because they both have
slanted features.

4. Conclusions

This paper modeled the anomaly detection problem into a time series classification
problem. The original time series undergoes data preprocessing and data augmentation
to get a sample set with more uniform distribution, more obvious features, and smaller
dimensions. Data augmentation includes data expansion and down-sampling. For small
samples, the methods of symmetrical flipping, adding noise, and randomly generating
outliers are used for data expansion, and samples with the same label are added without
increasing the original samples. The down-sampling method of symmetrically extracting
the maximum and minimum values can effectively reduce the dimensionality of the input
sample and retain its features. Build a one-dimensional convolutional neural network
model that is faster for time series classification problems. Adding the hyperparameter
tuning of class weights makes the network more effective in dealing with an unbalanced
training set. The method is verified with the acceleration data of a long-span cable-stayed
bridge for one month. For the anomaly detection problem modeled as a time series
classification problem, the results show that the proposed method can automatically detect
a variety of data anomaly categories with high precision.

The proposed method can accurately identify most types of abnormal data, but for
abnormal types with very inconspicuous features, such as outlier data, there is still much
room for improvement in recognition accuracy. In future work, time series augmentation
will not only be carried out in the time domain, but will be expanded to the frequency
domain, or more advanced methods (such as GAN) will be used to expand samples.
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