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Abstract: We consider a general notion of an almost Ricci soliton and establish some curvature
properties for the case in which the potential vector field of the soliton is a generalized geodesic or a
2-Killing vector field. In this vein, we characterize trivial generalized Ricci solitons.
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1. Introduction

Self-similar solutions of the well-known geometric flows Ricci, Einstein and Yamabe
solitons can be naturally extended on a Riemannian manifold to a more general notion of
soliton, which we further consider. Precisely, if there exist a vector field ξ and two smooth
functions α and β on the Riemannian manifold (M, g) such that the Ricci curvature of
g satisfies

1
2

£ξ g + α Ric = βg,

then (g, ξ, α, β) defines a generalized Ricci soliton. Note that if (g, ξ, λ) is an almost Ricci
soliton [1], then (α, β) = (1, λ), and if (g, ξ, λ) is an almost Riemann soliton [2], with n > 2,
then (α, β) =

( 1
n−2 , (n−1)λ−div(ξ)

n−2
)
.

In particular, if the potential vector field ξ of the soliton is a Killing vector field, i.e.,
£ξ g = 0, then we call the soliton trivial. Killing vector fields on a Riemannian manifold
have been generalized to 2-Killing vector fields defined as those vector fields satisfying the
weaker condition £ξ£ξ g = 0. Such 2-Killing vector fields were firstly considered by Németh
in [3], their importance in Lorentzian geometry being underlined by Cruz Neto, Melo and
Sousa in [4]. Of course, all Killing vector fields are 2-Killing, but there are also examples of
2-Killing vector fields that are not Killing; we refer the reader to [3] for more information
on these. It is therefore natural to seek the restrictions on the potential vector field ξ to be
2-Killing and identify conditions under which a generalized Ricci soliton on a Riemannian
manifold is trivial.

On the other hand, extending the notion of the unit geodesic vector field, the generalized
geodesic vector fields [5] are the those for which the integral curves have accelerated velocity.

Examples of the generalized geodesic vector field are provided by the position vector
field in the Euclidean space, the potential vector field of a gradient Yamabe soliton [5,6],
vector fields appearing in an Eikonal equation [7] etc. The class of generalized geodesic
vector fields contains the concircular vector fields [8] that have applications in general
relativity. Remark that in [6], the authors characterize the n-spheres by means of general-
ized geodesic vector fields. Among special vector fields, unit geodesic vector fields and
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generalized geodesic vector fields are the simplest vector fields, and a Killing vector field
is a generalized geodesic vector field, but the opposite is not true. For examples of gener-
alized geodesic vector fields that are not Killing vector fields, we refer the reader to [5,6].
Therefore, another natural question regards restricting the potential vector field ξ to be a
generalized geodesic vector field and identifying conditions under which a generalized
Ricci soliton on a Riemannian manifold is trivial.

The aim of this paper is to provide some sufficient conditions for a generalized Ricci
soliton on a Riemannian manifold to be trivial. Precisely, if the potential vector field of a
generalized Ricci soliton is a generalized geodesic or a 2-Killing vector field, we provide
conditions for it to be a Killing vector field, i.e., for the soliton to be trivial.

2. Solitons with Generalized Geodesic Vector Field

In this section, we further consider the definition provided below:

Definition 1. We say that (g, ξ, α, β) is a generalized Ricci soliton on an n-dimensional smooth
manifold M (n > 2) if the Riemannian metric g, the vector field ξ and the smooth functions α and
β satisfy

1
2

£ξ g + α Ric = βg,

where £ξ g is the Lie derivative in the direction of ξ, and Ric is the Ricci curvature of g.

Some examples of nontrivial generalized Ricci solitons are as follows:

Example 1. Let ξ be a nontrivial conformal vector field on an n-dimensional Einstein manifold
(M, g). Then, we have

£ξ g = 2ρg, Ric =
r
n

g

and consequently, for a smooth function α on M, we have

1
2

£ξ g + α Ric = βg,

where β = ρ + 1
n αr. Thus, (g, ξ, α, β) is a generalized Ricci soliton on M.

Example 2. Consider the n-sphere Sn(c) of constant curvature c. Then, we have Ric = (n− 1)cg,
and there exists a non-parallel closed vector field ξ on Sn(c) that satisfies

£ξ g = 2ρg,

where ρ is a non-constant function such that∫
Sn(c)

ρ = 0.

Furthermore, for a smooth function α on Sn(c), we have

1
2

£ξ g + α Ric = βg,

where β = ρ + (n− 1)cα. Thus, (g, ξ, α, β) is a generalized Ricci soliton on Sn(c).

Example 3. Let (M, g) be an n-dimensional Riemannian manifold, and let ρ be a smooth function
on M. Then, for a real number τ, 0 < τ ≤ ∞, the triple (M, g, ρ) is called a quasi-Einstein
manifold if

Ric+Hess(ρ)− 1
τ

dρ⊗ dρ = λg, (1)
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where λ is a constant. Thus, for τ = ∞, a quasi-Einstein manifold is a gradient Ricci soliton
(cf. [9]). For a quasi-Einstein manifold (M, g, ρ) and an m-dimensional Riemannian manifold
(N, g1), consider the warped product M = M×u N with the metric g = g + u2g1, where

u = e−
ρ
τ

is a positive function on M. Then, for 0 < τ < ∞, we find

grad u = −u
τ

grad ρ

and therefore
Hess(u) = −u

τ
Hess(ρ) +

u
τ2 dρ⊗ dρ.

Combining the above equation with (1), we obtain

Hess(u) =
u
τ
(Ric−λg),

which takes the form
1
2

£ξ g + α Ric = βg, (2)

where ξ = grad u, α = − u
τ and β = − λu

τ . Note that for τ = m, the warped product manifold(
M, g

)
is an Einstein manifold if and only if (N, g1) is an Einstein manifold and the Ricci curvature

of (M, g) satisfies (1) (cf. [9]). Thus, choosing (N, g1) an Einstein manifold such that the warped
product

(
M, g

)
is an Einstein manifold, we see, by Equation (2), that (g, ξ, α, β) is a generalized

Ricci soliton on the manifold M.

Consider now (g, ξ, α, β), a generalized Ricci soliton on an n-dimensional compact
smooth manifold M, n > 2, with ξ, a generalized geodesic vector field.

Denoting by η the dual 1-form of ξ, we can define the skew-symmetric (1, 1) tensor
field F by

g(FX, Y) =
1
2
(dη)(X, Y).

Then, we deduce
∇Xξ = βX− αQX + FX. (3)

As ξ is a generalized geodesic vector field, we have

∇ξ ξ = f ξ,

and taking the covariant derivative in the above equation, while using (3), we obtain

∇X∇ξξ = X( f )ξ + f (βX− αQX + FX). (4)

Additionally, we have

∇ξ∇Xξ = ∇ξ(βX− αQX + FX)

= ξ(β)X + β∇ξ X− ξ(α)QX

− α
(
∇ξ Q

)
X− αQ

(
∇ξ X

)
+
(
∇ξ F

)
X + F

(
∇ξ X

)
and

∇[X,ξ]ξ = β[X, ξ]− αQ[X, ξ] + F[X, ξ]

= β(βX− αQX + FX)− β∇ξ X− αQ(βX− αQX + FX) + αQ
(
∇ξ X

)
+F(βX− αQX + FX)− F

(
∇ξ X

)
.
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Using (4) and the above two equations, we arrive at

R(X, ξ)ξ = X( f )ξ + f (βX− αQX + FX)− ξ(β)X + ξ(α)QX + α
(
∇ξ Q

)
X

−
(
∇ξ F

)
X− β(βX− αQX + FX) + αQ(βX− αQX + FX)

−F(βX− αQX + FX). (5)

Moreover, using (3), we have

R(X, Y)ξ = X(β)Y−Y(β)X− X(α)QY + Y(α)QX

−α(∇XQ)Y + α(∇YQ)X + (∇X F)Y− (∇Y F)X,

which gives

R(X, ξ)ξ = X(β)ξ − ξ(β)X− X(α)Qξ + ξ(α)QX− α(∇XQ)ξ + α
(
∇ξ Q

)
X

+(∇X F)ξ −
(
∇ξ F

)
X.

Comparing the above equation with (4), we conclude

X(β)ξ − X(α)Qξ − α(∇XQ)ξ + (∇X F)ξ = X( f )ξ + f (βX− αQX + FX)

−(αQ− βI)2(X)− 2βFX + αQFX + αFQX− F2X.

Taking X = Ei in the above equation, for {Ei}1≤i≤n, an orthonormal frame field on
(M, g), and then taking the inner product with Ei and summing the resulting equation,
we obtain

ξ(β)− Ric(ξ, gradα)− α

2
ξ(r)−

n

∑
i=1

g
(
ξ,
(
∇Ei F

)
Ei
)

= ξ( f ) + nβ f − α f r− ‖αQ− βI‖2 + ‖F‖2. (6)

Note that finding div(Fξ), yields the following

∫
M

(
‖F‖2 +

n

∑
i=1

g
(
ξ,
(
∇Ei F

)
Ei
))

= 0. (7)

Now, integrating Equation (6) and using (7), we conclude∫
M

‖αQ− βI‖2 =
∫
M

(
ξ( f ) + nβ f − α f r− ξ(β) + Ric(ξ, grad α) +

α

2
ξ(r)

)
.

Using div( f ξ) = ξ( f ) + f (nβ− αr) and div(βξ) = ξ(β) + β(nβ− αr) in the above
equation, we obtain∫

M

‖αQ− βI‖2 =
∫
M

(
β(nβ− αr) + Ric(ξ, grad α) +

α

2
ξ(r)

)
. (8)

By means of (5), we have

Ric(Y, ξ) = −(n− 1)Y(β)− Ric(Y, grad α) + rY(α) +
α

2
Y(r)−

n

∑
i=1

g
(
Y,
(
∇Ei F

)
Ei
)
. (9)

Additionally, we have

div(F(grad α)) = −
n

∑
i=1

g
(
grad α,

(
∇Ei F

)
Ei
)
,
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where we used the symmetry of the Hessian operator Hα(X) = ∇X grad α and the skew
symmetry of the operator F. Thus, Equation (9) implies

Ric(grad α, ξ) = −(n− 1)g(grad α, grad β)− Ric(grad α, grad α) + r‖grad α‖2

+ α
2 g(grad α, grad r) + div(F(grad α)).

(10)

Note that

α
2 ξ(r) = 1

2 div(r(αξ))− 1
2 r div(αξ)

= 1
2 div(r(αξ))− 1

2 r(g(ξ, grad α) + α(nβ− αr)).
(11)

Inserting Equations (10) and (11) into (8), we conclude

∫
M

‖αQ− βI‖2 =
∫
M

1
2
(nβ− αr)(2β− αr)

+
∫
M

(
r‖grad α‖2 + g

(
α

2
grad r− (n− 1) grad β− 1

2
rξ, grad α

)
− Ric(grad α, grad α)

)
.

If the scalar curvature r and the Ricci curvature Ric satisfy

2β < αr ≤ nβ

and

Ric(grad α, grad α) ≥ r‖grad α‖2 + g
(

α

2
grad r− (n− 1) grad β− 1

2
rξ, grad α

)
,

then the above integral implies αQ = βI, and this proves that

£ξ g = 0,

that is, the soliton is trivial. Thus, we proved Theorem 1 as presented below.

Theorem 1. If the potential field ξ of a generalized Ricci soliton (g, ξ, α, β) on an n-dimensional
compact smooth manifold M (n > 2) is a generalized geodesic vector field and the scalar and Ricci
curvatures satisfy

2β < αr ≤ nβ,

Ric(grad α, grad α) ≥ r‖grad α‖2 + g
(

α

2
grad r− (n− 1) grad β− 1

2
rξ, grad α

)
,

then the soliton is trivial.

As a consequence of Theorem 1, for α = 1, we have the following:

Corollary 1. For an almost Ricci soliton (g, ξ, β) on an n-dimensional compact smooth manifold
M (n > 2) with a potential field, a generalized geodesic vector field is a trivial Ricci soliton if and
only if the scalar curvature satisfies 2β < αr ≤ nβ.

3. Solitons with 2-Killing Vector Field

Next, we put the restriction on the potential field ξ of a generalized Ricci soliton
(g, ξ, α, β) to be a 2-Killing vector field [10]. Recall that for a 2-Killing vector field, we have

2R(X, ξ; ξ, Y) = g
(
∇X∇ξξ, Y

)
+ g
(
∇Y∇ξ ξ, X

)
+ 2g(∇Xξ,∇Yξ), X, Y ∈ X(M).
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The above equation implies

Ric(ξ, ξ) = div
(
∇ξ ξ

)
+ ‖∇ξ‖2,

which integrates into ∫
M

(
Ric(ξ, ξ)− ‖∇ξ‖2

)
= 0. (12)

Now, using (3), we obtain

‖∇ξ‖2 = nβ2 + α2‖Q‖2 + ‖F‖2 − 2αβr

= α2
(
‖Q‖2 − 1

n
r2
)
+

1
n
(nβ− αr)2 + ‖F‖2.

Inserting the above equation into (12), we have∫
M

α2
(
‖Q‖2 − 1

n
r2
)
=
∫
M

(
Ric(ξ, ξ)− 1

n
(nβ− αr)2 − ‖F‖2

)
. (13)

Using Equation (9), we obtain

Ric(ξ, ξ) = −(n− 1)ξ(β)− Ric(ξ, grad α) + rξ(α) +
α

2
ξ(r)−

n

∑
i=1

g
(
ξ,
(
∇Ei F

)
Ei
)

and using αξ(r) = ξ(αr)− rξ(α), we conclude

Ric(ξ, ξ) = −ξ(nβ− αr)− Ric(ξ, grad α)− α

2
ξ(r) + ξ(β)−

n

∑
i=1

g
(
ξ,
(
∇Ei F

)
Ei
)
.

Note that we have ξ(nβ− αr) = div((nβ− αr)ξ)− (nβ− αr)2, and inserting it in the
above equation and integrating it, we arrive at

∫
M

Ric(ξ, ξ) =
∫
M

(
(nβ− αr)2 − Ric(ξ, grad α)− α

2
ξ(r) + ξ(β)−

n

∑
i=1

g
(
ξ,
(
∇Ei F

)
Ei
))

.

Now, using (7) with the above equation, we have∫
M

(
Ric(ξ, ξ)− ‖F‖2

)
=
∫
M

(
(nβ− αr)2 − Ric(ξ, grad α)− α

2
ξ(r) + ξ(β)

)
. (14)

Moreover, we have ξ(β) = div(βξ) − β(nβ− αr) and αξ(r) = ξ(αr) − rξ(α) =
div(αr)− αr(nβ− αr)− rξ(α), and combining these equations, we have

−α

2
ξ(r) + ξ(β) = div

(
β− 1

2
αr
)
+

1
2

αr(nβ− αr)− β(nβ− αr) +
1
2

rξ(α)

= div
(

β− 1
2

αr
)
+ (nβ− αr)

(
1
2

αr− β

)
+

1
2

rξ(α).

Inserting the above equation into (14), we arrive at

∫
M

(
Ric(ξ, ξ)− ‖F‖2

)
=
∫
M

(
(nβ− αr)2 − Ric(ξ, grad α) + (nβ− αr)

(
1
2

αr− β

)
+

1
2

rξ(α)

)
.
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Combining the above equation with (13), we obtain

∫
M

α2
(
‖Q‖2 − 1

n
r2
)

=
∫
M

(
n− 1

n
(nβ− αr)2 − Ric(ξ, grad α) + (nβ− αr)

(
1
2

αr− β

)
+

1
2

rξ(α)

)
.

Inserting Equation (10) into the above equation, we conclude∫
M

α2
(
‖Q‖2 − 1

n
r2
)

=
∫
M

Ric(grad α, grad α) +
n− 2

2n

∫
M

(nβ− αr)(2nβ− αr)

(15)

−
∫
M

(
r‖grad α‖2 − g

( r
2

ξ − α

2
grad r + (n− 1) grad β, grad α

))
.

If the scalar curvature r and the Ricci curvature Ric satisfy

nβ ≤ αr ≤ 2nβ,

Ric(grad α, grad α) ≤ r‖grad α‖2 − g
( r

2
ξ − α

2
grad r + (n− 1) grad β, grad α

)
,

then the above integral implies

α2
(
‖Q‖2 − 1

n
r2
)
= 0.

If α = 0, then Equation (15) implies

n(n− 2)
∫
M

β2 = 0,

which, in view of n > 2, gives β = 0, and, consequently, in this case, we obtain £ξ g = 0;
that is, the soliton is trivial. Note that by Schwart’s inequality, we have ‖Q‖2 ≥ 1

n r2, and
equality holds if and only if Q = r

n I. Thus, if ‖Q‖2 − 1
n r2 = 0, then we conclude Q = r

n I
and using the definition of soliton, we have

£ξ g =
2
n
(nβ− αr)g. (16)

Using the fact that ξ is 2-Killing, in the above equation, we obtain

0 = £ξ£ξ g =
2
n
(ξ(nβ− αr))g +

2
n
(nβ− αr)£ξ g

=

(
ξ(nβ− αr) +

2
n
(nβ− αr)2

)
g,

that is, ξ(nβ− αr) + 2
n (nβ− αr)2 = 0. Integrating this equation while using ξ(nβ− αr) =

div((nβ− αr)ξ)− (nβ− αr)2, we conclude

n− 2
n

∫
M

(nβ− αr)2 = 0.

This proves that nβ− αr = 0, and, consequently, Equation (16) yields

£ξ g = 0,
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that is, the soliton is trivial. Hence, we have the theorem provided below.

Theorem 2. If the potential field ξ of a generalized Ricci soliton (g, ξ, α, β) on an n-dimen-
sional compact smooth manifold M (n > 2) is a 2-Killing vector field and the scalar and Ricci
curvatures satisfy

nβ < αr ≤ 2nβ,

Ric(grad α, grad α) ≤ r‖grad α‖2 − g
( r

2
ξ − α

2
grad r + (n− 1) grad β, grad α

)
,

then the soliton is trivial.

As a consequence of Theorem 2, for α = 1, we have the following corollary (with the
converse implication also being true).

Corollary 2. The potential field ξ of an almost Ricci soliton (g, ξ, β) on an n-dimensional compact
smooth manifold M (n > 2) is a 2-Killing vector field and the scalar curvature r satisfies nβ < r ≤
2nβ if and only if (g, ξ, β) is a trivial Ricci soliton.

4. Conclusions

In this paper, we studied generalized Ricci solitons (g, ξ, α, β) on an n-dimensional
compact smooth manifold M for n > 2 by restricting the as-generalized geodesic vector
field. It was shown that with suitable bounds on the scalar curvature, the Ricci curvature in
the direction of grad(α) was rendered trivial (cf. Theorem 1), and this result, as a particular
case, also provides a characterization of trivial Ricci soliton in terms of an almost Ricci
soliton. Furthermore, by restricting ξ to a 2-Killing vector field, it was shown that suitable
bounds on the scalar curvature make the Ricci curvature in the direction of grad(α) a trivial
soliton (cf. Theorem 2), and as a particular case, we obtained characterization of the trivial
Ricci soliton via an almost Ricci soliton using 2-Killing vector fields.

This study marks the beginning of the generalized solitons (g, ξ, α, β) on an n-dimen-
sional compact smooth manifold M, and the results to date use only the restrictions on the
potential field ξ. It will be interesting to determine what restrictions should be used on the
functions α and β to obtain conclusions similar to those of Theorems 1 and 2.
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