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Abstract: We present some new results that deal with the fractional decomposition method (FDM).
This method is suitable to handle fractional calculus applications. We also explore exact and approxi-
mate solutions to fractional differential equations. The Caputo derivative is used because it allows
traditional initial and boundary conditions to be included in the formulation of the problem. This is
of great significance for large-scale problems. The study outlines the significant features of the FDM.
The relation between the natural transform and Laplace transform is a symmetrical one. Our work
can be considered as an alternative to existing techniques, and will have wide applications in science
and engineering fields.

Keywords: fractional differential equations; caputo derivative; natural transform; system of differen-
tial equations

1. Introduction

For many years the subject of fractional calculus has been studied by many research
scholars. This is an ongoing process and one can recognizes that within the field for
this study of fractional calculus new techniques and mechanisms show up, which in
turn make it possible, to find important challenging insights and unknown correlations
between many areas of physics. Recently, an increase in the interest of scientist in non-
local field theories. In order for us to deal with problems in high-energy and particle
physics which only up to this point can be done with local field theories, there is a valid
reason for these late developments. Fractional derivatives have proven their capability to
describe several phenomena associated with memory and after effects due to their non-
locality property [1,2]. Such phenomena are commonplace in physical processes, biological
structures, and cosmological problems. For example, the fractional rheological models
have been employed to test the low applied force frequencies [3–6]. For this reason, it
became necessary to illuminate the solutions of the models that describe these phenomena.
Several analytical techniques are presented to achieve their objectives. Actually, all these
approaches are accommodation for the existing methods to handle the integer case models,
which is natural since the fractional derivative generalizes the classical derivative to an
arbitrary order.

Recently, fractional calculus and their applications have been treated by many re-
searchers, see [5–13] and the references therein. Even though fractional derivatives have
existed as long as their integer order counterparts, only in recent decades have fractional
derivative models become exciting new tools in the study of practical problems in disci-
plines as diverse as physics [14–16], finance [14,17], biology [6,7] and hydrology [4,10,18,19].
As fractional derivative models are becoming increasingly popular among the wider scien-
tific community, it becomes the main motivation to study numerical schemes for fractional
differential equations. Lately, many techniques have discussed the means of exploring
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approximate solutions of fractional differential equations, such as finite difference and
finite element method (FDFEM) [20], spectral method [21] the fractional sub-equation
method [10], the fast and parallel computational methods (FPCM) [15,16], the fractional
variation method (FVM) [5], the fractional complex transform (FCT) [22], fractional Laplace
method [23] and the fractional Adomian decomposition method (FADM) [19,24]. We
will use fractional natural decomposition method (FNDM) to solve FODEs and fractional
system of ODEs. The method was proven to converge rapidly, and the existence and
uniqueness of the method was proven in [25].

Because of the nonstop needs for another new schemes that exist in the literature, e.g.
the Mellin transform, and its relation to transforms namely the Sumudu transform and
the Al Zaki transform, we developed a valid mechanism which we called the fractional
decomposition method (FDM) to find solutions to fractional nonlinear ODEs and PDEs
including systems of FDEs. Our scheme avoids the computational difficulties we usually
face in other methods exist in the literature, which usually use linearization, discretization
and perturbation schemes. Moreover, we have given detailed proofs to some theorems
using the proposed method FDM. Also, we presented some important examples of sys-
tems fractional differential equations and showed that the FDM provide solutions, which
coincide with the ones done by other researchers. To name one, is the solution of diffusion
equation with fractional derivatives. These are appeared in Section 4.

Our work will be presented in the following manner: First, in Section 2, we give
the history of the natural transform method, and definitions of fractional derivatives.
In Section 3, we present proofs to results related to the natural fractional derivatives.
Section 4 is devoted to the applications model of FDEs using the proposed method. In
Section 5, we solve fractional systems of ODEs. Finally, our concluding remarks are pre-
sented, in Acknowledgment, where we outline what we have accomplished in this research.

2. Related Materials

We explore some definitions and terminologies of the natural transform that will be
needed later on in the proofs of our results, (see, for example, [14,17,26]).

Definition 1. Suppose h(x) is a real function, where x > 0. Then h(x) is said to be in the space Cµ,
where µ is areal number, if ∃q ∈ R with q > µ, such that h(x) = xqg(x), where g(x) ∈ C[0, ∞),
and it is said to be in the space Cm

µ if h(m) ∈ Cµ, m ∈ N.

Definition 2. Let k− 1 < υ ≤ k, k ∈ N, y > 0, ϕ ∈ Ck
−1. The fractional derivative of f in the

Caputo sense can be defined as

cDυ ϕ(y) = Jk−υDk ϕ(y) =
1

Γ(υ− k)

∫ y

0
(y− t)k−υ−1 ϕ(k)(t)dt. (1)

Definition 3. Refs. [27,28] The two–parameter Mittag–Leffler function is given by

Eυ,η(z) =
∞

∑
k=0

zk

Γ(υk + η)
, υ > 0, η > 0, z ∈ C.

Next, we define the natural transform (N-transform) along with the definition of
exponential order function following [23].

Definition 4. Let h(t) be a function piecewise continuous, with bounded variation, locally inte-
grable (i.e., the function is absolutely integrable in any real interval [a, b] so that

∫ b
a |h(t)|dt < ∞),

and of exponential order, then there exists the N-transform of h(t). That is, a function of exponential
order is the one that does not “grow faster” than given exponentials, as t −→ ±∞. Alternatively,
there are real constants K, a > 0 such that |h(t)| < K · eat, when t is large and negative (say, for
t < t1 ∈ R). In addition, there are real constants M, b > 0 such that |h(t)| < M · ebt, when t is
large (say, for t > t1 ∈ R). It also has to be true that b < a.
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Then, we define the natural transform

N (h(t)) = R(s, u) =
∫ ∞

−∞
e−st h(ut)dy, s, u ∈ (−∞, ∞), (2)

where N is the N-transform of h(t) and s and u are the N-transform variables. Note that one can
writes Equation (2) as

N (h(t)) = R−(s, u) + R+(s, u).

Hence,

N+(h(t)) = R+(s, u) =
1
u

∫ ∞

0
e−

st
u h(t) dt, s, u ∈ (0, ∞). (3)

Remark 1. Under these conditions, when R(s, u) is analytic, the integral in Equation (2) converges
uniformly and absolutely in the complex plane defined by the strip b < Re(s) < a.

Note that one can obtain the Laplace transform and the Sumudu transform if we plug in u = 1,
and s = 1 in the above equations, respectively. Hence, the relation between the natural transform
and Laplace transform is a symmetry one.

We shall use the well-known gamma function throughout this paper

Γ(z) =
∫ ∞

0
e−t tz−1 dt, z > 0, (4)

where Γ(z + 1) = zΓ(z).

Important Properties

Here are some of the main properties for the N-transforms which can be found in [26].

Property 1. N+(1) = 1
s , Re(s) > 0.

Property 2. N+(yυ) = Γ(υ+1) uυ

sυ+1 , υ > −1, Re(s) > 0.

Property 3. N+(cDυ
t ϕ(t))(s, u) = sυ

uυN+(ϕ(t))(s, u)− sυ−1

uυ ϕ(0), Re(s) > 0.

3. Natural Caputo Fractional Derivatives

Here, we give detailed proofs to some theorems of N-transform of Caputo fractional
derivative. The proof of theorem 1 was given in another published paper by the first author.

Caputo Fractional Derivative

For the sake of readers, we give just some of the natural transform properties. For more
properties, we direct the reader to see, for example, [15,16,26].

Theorem 1. If k ∈ Z+, where k− 1 ≤ υ < k. Then, the N-transform of Caputo derivative of
ϕ(t) is

N+(cDυ
t ϕ(t)) =

sυ

uυ
R(s, u)−

k−1

∑
m=0

sυ−(m+1)

uυ−m (Dm ϕ(t))t=0. (5)

Theorem 2. The natural transform of the Caputo derivative for ϕ(t) = 1 is given by

N+(cDυ
t (1)) = 0.
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Proof. From Equation (5), we have

N+(cDυ
t (1)) =

sυ

uυ
N+(1)−

k−1

∑
m=0

sυ−(m+1)

uυ−m (Dm ϕ(t))t=0

=
sυ

uυ

1
s
− sυ−1

uυ
[1]− 0

=
sυ−1

uυ
− sυ−1

uυ

= 0.

Theorem 3. (a) The natural transform of the Caputo derivative for ϕ(t) = t with 0 < υ ≤ 1 is
given by

N+(cDυ
t (t)) =

sυ−2

uυ−1 .

(b) The natural transform of the Caputo derivative for ϕ(t) = t with k − 1 < υ ≤ k, and
k = 2, 3, 4, . . . is

N+(cDυ
t (t)) = 0.

Proof. First note that f ′(t) = 1, f ′′(t) = 0 , . . . , f (k−1)(t) = 0.

Case 1. 0 < υ ≤ 1. From Equation (5), we have

N+(cDυ
t (t)) =

sυ

uυ
N+(t)−

k−1

∑
m=0

sυ−(m+1)

uυ−m (Dm ϕ(t))t=0

=
sυ

uυ

u
s2 −

sυ−1

uυ
[0]

=
sυ−2

uυ−1 .

Case 2. k− 1 < υ ≤ k, and k = 2, 3, 4, . . . .
We get from Equation (5),

N+(cDυ
t (t)) =

sυ

uυ
N+(t)−

k−1

∑
m=0

sυ−(m+1)

uυ−m (Dm ϕ(t))t=0

=
sυ

uυ

u
s2 −

sυ−1

uυ
[0]− sυ−2

uυ−1 [1]− · · · −
sυ−n

uυ−n+1 [0]

=
sυ−2

uυ−1 −
sυ−2

uυ−1

= 0.

Theorem 4. The natural transform of the Caputo derivative for ϕ(t) = tk−1

k! is

N+

(
cDυ

t

(
tk−1

k!

))
=

sυ−k

kuυ−k+1 ,

with k = 3, 4, . . . .
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Proof. First note that

f ′(t) =
(k− 1)tk−2

k!
, f ′′(t) =

(k− 1)(k− 2)tk−3

k!
, ..., f (n−1)(t) =

(k− 1)(k− 2)...(k− n + 1)t
k!

k−n
.

One can conclude from Equation (5),

N+
(

cDυ
t

(
tk−1

k!

))
= sυ

uυN+
[

tk−1

k!

]
−

n−1

∑
j=0

sυ−(j+1)

uυ−j

[
Dj ϕ(t)

]
t=0

= sυ

uυ
uk−1

k sk − (0 + 0 + ... + 0)

= sυ−k

k uυ−k+1 .

Theorem 5. The natural transform of the Caputo derivative for ϕ(t) = eat is

N+
(cDυ

t
(
ea t)) = anunsυ−n

uυ(s− au)
.

Proof. First note that ϕ′(t) = aeat, ϕ′′(t) = a2eat, ..., ϕ(n−1)(t) = an−1eat. Then, we get

N+
(cDυ

t
(
eat)) = sυ

uυN+
(
eat)− n−1

∑
k=0

sυ−(k+1)

uυ−k Dk(ϕ(t))t=0

= sυ

uυ
1

s−au −
[

sυ−1

uυ + sυ−2

uυ−1 a + ... + sυ−n

uυ−n+1 an−1
]

= sυ

uυ
1

s−au −
[

sυ−1

uυ + s(υ−1)−1

uυ−1 a + ... + s(υ−1)−(n−1)

uυ−(n−1) an−1
]

= sυ

uυ
1

s−au −∑n−1
k=0

s(υ−1)−k

uυ−k ak

= anunsυ−n

uυ(s−au) .

Theorem 6. The Caputo Fractional Natural Transform of f (t) = ebt−eat

b−a , a 6= b is

N+

[
cDα

(
ebt − eat

b− a

)]
=

sα+1−nun−α(bn − an) + un+1−αsα−n(anb− bna)
(b− a)(s− ub)(s− ua)

Proof. First note that

f ′(t) =
bebt − aeat

b− a
, f ′′(t) =

b2ebt − a2eat

b− a
, . . . , f (n−1)(t) =

bn−1ebt − an−1eat

b− a
.
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N+

[
cDα

(
ebt − eat

b− a

)]
=

sα

uα
+

[
ebt − eat

b− a

]
−

n−1

∑
k=0

sα−(k+1)

uα−k [Dk f (t)]t=0

=
sα

uα

u
(s− au)(s− bu)

−
[

sα−2

uα−1
b− a
b− a

+ · · ·+ sα−n

uα−n+1
bn−1 − an−1

b− a

]

=
u1−αsα

(s− au)(s− bu)
− 1

b− a

[
∓sα−1

uα
+ · · ·+ sα−n

uα−(n−1)
(bn−1 − an−1)

]

=
u1−αsα

(s− au)(s− bu)
− 1

b− a

n−1

∑
k=0

sα−(k+1)

uα−k (bk − ak)

=
sα

uα

u
(s− au)(s− bu)

− sα−1

uα(b− a)

n−1

∑
k=0

(
ub
s

)k
+

sα−1

uα(b− a)

n−1

∑
k=0

(ua
s

)k

=
sα

uα

u
(s− au)(s− bu)

− sα−1

uα(b− a)

1−
(

ub
s

)n

1− ub
s

+
sα−1

uα(b− a)
1−

( ua
s
)n

1− ua
s

=
sα+1−nun−α(bn − an) + un+1−αsα−n(anb− bna)

(b− a)(s− ub)(s− ua)
.

(6)

Applications of FDM for Fractional ODEs and PDEs

Here we employ the new scheme to solve two non-linear fractional ODEs and we
present solution to the diffusion fractional differential equations. Finally, we develop
numerical tables for these examples for multiple values of υ and t.

Methodology of FDM

Consider the general nonlinear (FODE)

cDυ
t y(t) + L(y(t)) + F(y(t)) = g(t), (7)

where t > 0 and 0 < υ ≤ 1, and along with initial condition

y(0) = y0, (8)

where cDυ
t y(t) is the Caputo derivative for y(t), L is the linear differential operator and F

represents the nonlinear part. Also g(t) is the non-homogeneous part, and y0 is defined
and continuous.

We can conclude by applying Theorem 1 to Equation (6)

N+(y(t)) =
uυ

sυ

n−1

∑
k=0

sυ−(k+1)

uυ−k Dk(y(t))t=0 +
uυ

sυ
N+(g(t))− uυ

sυ
N+(L (y(t)) + (Fy(t))). (9)

Substituting Equation (7) into Equation (8) and then taking N−1, one can conclude

y(t) = N−1( y0
s
)
+N−1

(
uυ

sυN+(g(t))
)
−N−1

(
uυ

sυN+(L (y(t)) + F (y(t)))
)

= H(t)−N−1
(

uυ

sυN+(L (y(t)) + F (y(t)))
)

,
(10)

where H(t) is arising from the non-homogeneous part together with the initial condition.
Assuming a solution exist of y(t) as follows

y(t) =
∞

∑
n=0

yn(t). (11)
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But the nonlinear part in our problem is

F(y(t)) =
∞

∑
n=0

An(t), (12)

where the Adomian polynomials of y0, y1, . . . yn are computed using

An =
1
n!

dn

dλn

[
F
(

n

∑
j=0

λiyi

)]
λ=0

, n = 0, 1, 2, . . . (13)

Thus, Equation (12) can be reduced to

A0 = F(y0)

A1 = y1F′(y0)

A2 = y2F′(y0) +
1
2! y

2
1 F′ ′(y0).

(14)

The rest of Adomian polynomials can be obtained likewise. Substituting Equation (11) into
Equation (9), one arrives at

∞

∑
n=0

yn(t) = H(t)−N−1

(
uυ

sυ
N+

(
L

(
∞

∑
n=0

yn(t)

)
+

∞

∑
n=0

An(t)

))
. (15)

One can arrive, with the help of Equation (14), at

y0(t) = G(t)

y1(t) = −N−1
(

uυ

sυN+(L (y0(t)) + A0(t))
)

y2(t) = −N−1
(

uυ

sυN+(L (y1(t)) + A1(t))
)

y3(t) = −N−1
(

uυ

sυN+(L (y2(t)) + A2(t))
)

Eventually, we have the general recursion formula as

yn+1(t) = −N−1
(

uυ

sυ
N+(L (yn(t)) + An(t))

)
, n ≥ 1. (16)

Hence, our approximate solution is of the form

y(t) =
∞

∑
n=0

yn(t). (17)

Test Problems

Example 1. Consider the nonlinear FDE in the form

cDυ
t ϕ(t) + ϕ2(t) = 2ϕ(t) + 1, 0 < υ ≤ 1, (18)

together with condition
y(0) = 0. (19)
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Applying Theorem 1 to Equation (17), one arrives at

N+(ϕ(t)) = uυ

sυN+(1) + 2 uυ

sυN+(ϕ(t))− uυ

sυN+
(

ϕ2(t)
)

= uυ

sυ+1 + 2 uυ

sυN+(ϕ(t))− uυ

sυN+
(

ϕ2(t)
) (20)

Taking the N-transform inverse of Equation (19) one concludes

ϕ(t) = N−1
(

uυ

sυ+1

)
+ 2N−1

(
uυ

sυ
N+(ϕ(t))

)
−N−1

(
uυ

sυ
N+

(
ϕ2(t)

))
. (21)

Suppose a solution exist for ϕ(t) and the nonlinear term ϕ2(t) is given as

ϕ(t) =
∞

∑
n=0

ϕn(t), ϕ2(t) =
∞

∑
n=0

An(t). (22)

Note here,
A0 = (ϕ0)

2

A1 = 2ϕ0 ϕ1

A2 = 2ϕ0 ϕ2 + (ϕ1)
2

A3 = 2ϕ0 ϕ3 + 2ϕ1 ϕ2.

Using Equation (21), one notices Equation (20) becomes

ϕ(t) =
∞

∑
n=0

ϕn(t) = N−1
(

uυ

sυ+1

)
+ 2N−1

(
uυ

sυ
N+(ϕ(t))

)
−N−1

(
uυ

sυ
N+

(
ϕ2(t)

))
. (23)

Looking at both sides of Equation (22), one can conclude

ϕ0(t) =
tυ

Γ(υ + 1)
.

ϕ1(t) = 2N−1
(

uυ

sυN+(ϕ0(t))
)
−N−1

(
uυ

sυ N+(A0)
)

= 2N−1
[

uυ

sυN+
(

tυ

Γ(υ+1)

)]
− Γ(2υ+1)

(Γ(υ+1))2N−1
(

uυ

sυN+
(
t2υ
))

= 2N−1
(

u2υ

s2υ+1

)
− Γ(2υ+1)

(Γ(υ+1))2N−1
(

u3υ

s3υ+1

)
= 2

Γ(2υ+1) t2υ − Γ(2υ+1)
Γ(3υ+1)(Γ(υ+1))2 t3υ.

Likewise,

ϕ2(t) = 4t3α

Γ(3α+1) −
[

2Γ(2α+1)
(Γ(α+1))2 +

4Γ(3α+1)
Γ(α+1)Γ(2α+1)

]
t4α

Γ(4α+1) −
2Γ(2α+1)Γ(4α+1)t5α

(Γ(α+1))3Γ(3α+1)Γ(5α+1)
.
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ϕ3(t) = 8t4υ

Γ(4υ+1) −
(

4Γ(2υ+1)
(Γ(υ+1))2 +

8Γ(3υ+1)
Γ(υ+1)Γ(2υ+1)

)
t5υ

Γ(5υ+1)

− 4Γ(2υ+1)Γ(4υ+1)
(Γ(υ+1))3Γ(3υ+1)

t6υ

Γ(6υ+1) −
(

8
Γ(υ+1)Γ(3υ+1) +

4
(Γ(2υ+1))2

)
Γ(4υ+1)t5υ

Γ(5υ+1)

+

(
4Γ(2υ+1)

(Γ(υ+1))3Γ(4υ+1)
+ 8Γ(3υ+1)

(Γ(υ+1))2Γ(2υ+1)Γ(4υ+1)
− 4

(Γ(υ+1))2Γ(3υ+1)

)
Γ(5υ+1)t6υ

Γ(6υ+1)

−
(

(Γ(2υ+1))2

(Γ(υ+1))4(Γ(3υ+1))2 −
Γ(2υ+1)Γ(4υ+1)

(Γ(υ+1))4Γ(3υ+1)Γ(5υ+1)

)
Γ(6υ+1)t7υ

Γ(7υ+1) .

Thus, the approximate solution for ϕ(t) becomes

ϕ(t) =
∞

∑
n=0

ϕn(t)

= ϕ0(t) + ϕ1(t) + ϕ2(t) + ϕ3(t) + . . . .

(24)

If we choose υ = 1, then Equation (23) becomes

φ(t) = 1 +
√

2 tanh

(
√

2 t +
1
2

log

(√
2− 1√
2 + 1

))
.

This exact solution agrees with the one appearing in the literature (see Figure 1 and Table 1).

0.05 0.10 0.15 0.20
t

0.2

0.4

0.6

0.8

ϕ

ν = 0.45

ν = 0.6

ν = 0.75

ν = 1

Figure 1. These are solutions for example 1 for distinct values of υ.

Table 1. Numerical Values for example 1 for different values of υ, CT = 10 min.

t υ = 0.45 υ = 0.6 υ = 0.75 υ = 1

Numerical Exact

0.2 0.931788 0.702985 0.471891 0.241863 0.2419768

0.4 0.706152 1.02876 0.897507 0.564371 0.564371

0.6 −0.432075 0.794303 1.11755 0.926696 0.9535662

0.8 −2.4294 −0.222495 0.873956 1.2210187 1.3463637

1 −5.21527 −2.18641 −0.117103 1.2555556 1.6894984

Example 2. Let us consider one model of the time fractional diffusion as

cDυ
t φ(x, t) = φxx(x, t) + φ(x, t) , x, t > 0 , 0 < υ ≤ 1, (25)

together with initial condition
φ(x, 0) = cos(πx). (26)
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Employ first Theorem 1 to Equation (24) to see that

N+(φ(x, t)) = uυ

sυ

n−1

∑
k=0

sυ−(k+1)

uυ−k Dk
t φ(x, 0) +

uυ

sυ
N+(φxx) +

uυ

sυ
N+(φ)

= 1
s φ(x, 0) + uυ

sυN+(φxx) +
uυ

sυN+(φ).

(27)

Taking the N-transform inverse of Equation (26), we arrive at

φ(x, t) = cos(πx) +N−1
(

uυ

sυ
N+(φxx)

)
+N−1

(
uυ

sυ
N+(φ)

)
. (28)

Suppose that our solution for φ(x, t) is

φ(x, t) =
∞

∑
n=0

φn(x, t). (29)

One sees from Equations (27) and (28), that Equation (26) becomes

∞

∑
n=0

φn(x, t) = cos(πx) +N−1

(
uυ

sυ
N+

(
∞

∑
n=0

φnxx(x , t)

))
+N−1

(
uυ

sυ
N+

(
∞

∑
n=0

φn(x , t)

))
. (30)

Looking at Equation (29), one can get

φ0(x , t) = cos(πx)

φ1(x , t) = N−1
(

uυ

sυN+(φ0xx)
)
+N−1

(
uυ

sυN+(φ0)
)

φ2(x , t) = N−1
(

uυ

sυN+(φ1xx)
)
+N−1

(
uυ

sυN+(φ1)
)

φ3(x, t) = N−1
(

uυ

sυN+(φ2xx)
)
+N−1

(
uυ

sυN+(φ2)
)

.

We follow this direction to obtain

φn+1(x, t) = N−1
(

uυ

sυ
N+(φnxx)

)
+N−1

(
uυ

sυ
N+(φn)

)
.

Finally, with the help of Equation (29), one can easily explore the rest of the iterations

φ1(x, t) = N−1
(

uυ

sυN+(φ0xx)
)
+N−1

(
uυ

sυN+(φ0)
)

= N−1
(

uυ

sυN+
(
−π2cos(πx)

))
+N−1

(
uυ

sυN+(cos(πx))
)

= N−1
(

uυ

sυ
−π2cos(πx)

s

)
+N−1

(
uυπcos(πx)

sυ+1

)
=

(
1− π2)cos(πx) tυ

Γ(υ+1) .

Likewise,
φ2(x, t) =

(
1− π2)2cos(πx) t2υ

Γ(2υ+1)

φ3(x, t) =
(
1− π2)3cos(πx) t3υ

Γ(3υ+1) .

Our approximate solution for φ(x, t) is now of the form
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φ(x, t) =
∞

∑
n=0

φn(x, t)

= φ0(x, t) + φ1(x , t) + φ2(x , t) + φ3(x , t) + ...

= cos(πx)
(

1 +
(

1− π2
) tυ

Γ(υ + 1)
+
(

1− π2
)2 t2υ

Γ(2υ + 1)
+
(

1− π2
)3 t3υ

Γ(3υ + 1)
+ ...

)
Therefore, our exact solution is

φ(x, t) = cos(πx) Eυ

((
1− π2

)
tυ
)

. (31)

Substitute υ = 1 in Equation (30) to conclude

φ(x , t) = cos(πx)e(1−π2)t.

This is indeed the intended solution for Equation (24) which exists through out the literature
(see Table 2).

Table 2. Numerical results for Example 2 for distinct values for υ, CT = 10 min.

x t υ = 0.25 υ = 0.5 υ = 0.75 υ = 1

Numerical Exact

0 0.02 0.20104552 0.36691625 0.61998793 0.83745132
0.83745132

0.04 0.17414299 0.28187077 0.46534302 0.70132479
0.70132479

0.06 0.15978832 0.23813296 0.37076063 0.58732540
0.58732540

0.08 0.1502041 0.21016121 0.30658126 0.49185646
0.49185646

0.1 0.14310464 0.19025412 0.26034611 0.41190586
0.41190586

1/4 0.02 0.14216065 0.25944897 0.43839767 0.59216754
0.59216754

0.04 0.12313769 0.19931273 0.32904721 0.49591151
0.49591151

0.06 0.11298741 0.16838543 0.26216736 0.41530177
0.41530177

0.08 0.10621033 0.14860641 0.21678569 0.34779504
0.34779504

0.1 0.10119026 0.13452998 0.1840925 0.29126143
0.29126143

1/3 0.02 0.10052276 0.18345812 0.30999396 0.41872568
0.41872568

0.04 0.087071497 0.14093539 0.23267151 0.35066239
0.35066239

0.06 0.079894162 0.11906648 0.18538032 0.29366270
0.29366270

0.08 0.075102048 0.1050806 0.15329063 0.24592823
0.24592823

0.1 0.071552321 0.09512706 0.13017306 0.20595293
0.20595293

Remark 2. Figures 2–5 show that the solution peak is high, and one can see that the peak of the
solutions of the diffusion equation becomes more and more smooth as the fractional factor υ increases.
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Figure 2. Exact solutions for example 2 with υ = 0.25.

Figure 3. Exact solutions for example 2 with υ = 0.5.

Figure 4. Exact solutions for example 2 with υ = 0.75.



Symmetry 2021, 13, 984 13 of 19

Figure 5. Exact solutions for example 2 with υ = 1.

4. Fractional Systems of Ordinary Differential Equations

Next, let us examine two models of systems of FDEs. Then, we present numerical
values in tables for some values of t. We only used 5th order approximate solutions for the
two functions.

Example 3. Given the system of LFDE in the form (see Figures 6 and 7 and Table 3)

cDυ
t x(t) = 2x(t) + y(t), 0 < υ ≤ 1

cDη
t y(t) = x(t) + 2y(t), 0 < η ≤ 1

(32)

together with value conditions
x(0) = 2, y(0) = 1. (33)

Applying the natural transform of Equations (32) and (33), one concludes

N+(x(t)) = 2
s + 2 uυ

sυN+(x(t)) + uυ

sυN+(y(t))

N+(y(t)) = 1
s +

uη

sη N+(x(t)) + 2 uη

sη N+(y(t)).
(34)

Using the N−1 on Equation (34) we arrive at

x(t) = 2 + 2N−1
(

uυ

sυN+(x(t))
)
+N−1

(
uυ

sυN+(y(t))
)

y(t) = 1 +N−1
(

uη

sη N+(x(t))
)
+ 2N−1

(
uη

sη N+(y(t))
)

.
(35)

Suppose our solutions are of the forms

x(t) =
∞

∑
n=0

xn(t) , y(t) =
∞

∑
n=0

yn(t). (36)
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Then we get,

∞

∑
n=0

xn(t) = 2 + 2N−1
(

uυ

sυ
N+(x(t))

)
+N−1

(
uυ

sυ
N+(y(t))

)
∞

∑
n=0

yn(t) = 1 +N−1
(

uη

sη N
+(x(t))

)
+ 2N−1

(
uη

sη N
+(y(t))

)
.

(37)

Using Equation (37) we obtain

x0(0) = 2, y0(0) = 1

x1(t) = 2N−1
(

uυ

sυN+(x0(t))
)
+N−1

(
uυ

sυN+(y0(t))
)
= 5tυ

Γ(υ+1)

y1(t) = −N−1
(

u
η

sη N+(x0(t))
)
+N−1

(
uη

sη N+(y0(t))
)
= 4tη

Γ(η+1) .

Likewise,
x2(t) = 10t2υ

Γ(2υ+1) +
4tυ+η

Γ(υ+η+1)

y2(t) = 8t2η

Γ(2η+1) +
5tυ+η

Γ(υ+η+1) .

We proceed in a similar way to get

x3(t) = 20
Γ(3υ+1) t3υ + 13

Γ(2υ+η+1) t2υ+η + 8
Γ(α+2η+1) tυ+2η

y3(t) = 16
Γ(3η+1) t3η + 28

Γ(υ+2η+1) tυ+2η + 10
Γ(2υ+η+1) t2υ+η .

x4(t) = 40
Γ(4υ+1) t4υ + 36

Γ(3υ+η+1) t3υ+η + 30
Γ(3υ+2η+1) t2υ+2η + 16

Γ(υ+3η+1) tυ+3η

y4(t) = 32
Γ(4η+1) t4η + 36

Γ(υ+3η+1) tυ+3η + 33
Γ(2υ+2η+1) t2υ+2η + 20

Γ(3υ+η+1) t3υ+η

Finally, the approximate solutions for these functions are

x(t) =
∞

∑
n=0

xn(t)

y(t) =
∞

∑
n=0

yn(t) .

Thus,

x(t) = 2 + 5tυ

Γ(υ+1) +
10t2υ

Γ(2υ+1) +
4tυ+η

Γ(υ+η+1) +
20t3υ

Γ(3υ+1) +
8tυ+2η

Γ(υ+2η+1) +
13t2υ+η

Γ(2υ+η+1) + ...

y(t) = 1 + 4tη

Γ(η+1) +
8t2η

Γ(2η+1) +
5tυ+η

Γ(υ+η+1) +
16t3η

Γ(3η+1) +
14tυ+2η

Γ(υ+2η+1) +
10t2υ+η

Γ(2υ+η+1) + ...

Note that when υ = η = 1, then the exact solutions are

x(t) = et + e3t; y(t) = −et + e3t.
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Figure 6. Approximate solutions x(t) for example 3 with some values of υ, η.
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Figure 7. Approximate solutions y(t) for example 3 with some values of υ, η.

Table 3. The numerical values for x(t) with some values for υ and η, CT = 10 min.

t υ = η = 0.5 υ = η = 0.6 υ = η = 0.75 υ = 1

Numerical Exact

0.2 14.4864 8.66865 5.21454 3.04352 3.04352

0.4 39.8447 22.5925 11.4568 4.81194 4.81194

0.6 81.6907 47.9029 23.3317 7.87177 7.87177

0.8 142.225 88.083192 43.831967 13.2487 13.2487

1 223.31317 146.51415 76.394554 22.8038 22.8038

Example 4. Suppose we are given a system of LFDE (see Figures 8 and 9 and Table 4)

cDυ
t x(t) = y(t)− 2x(t), 0 < υ ≤ 1

cDη
t y(t) = x(t)− 2y(t), 0 < η ≤ 1

(38)

together with two value conditions

x(0) = 2 , y(0) = 1. (39)
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Apply natural transform to Equations (38) and (39), to get

N+(x(t)) = 2
s +

uυ

sυN+(y(t))− 2 uυ

sυN+(x(t))

N+(y(t)) = 1
s +

uη

sη N+(y(t))− 2 uη

sη N+(x(t)).
(40)

Moreover, applying N−1 on Equation (40)

x(t) = 2 +N−1
[

uυ

sυN+(y(t))
]
− 2N−1

[
uυ

sυN+(x(t))
]

y(t) = 1 +N−1
[

uη

sη N+(x(t))
]
− 2N−1

[
uη

sη N+(y(t))
]
.

(41)

Suppose our approximate solutions are given as

x(t) =
∞

∑
n=0

xn(t); y(t) =
∞

∑
n=0

yn(t). (42)

Using Equation (42), then Equation (41) becomes

∞

∑
n=0

xn(t) = 2 +N−1
(

uυ

sυ
N+(yn(t))

)
− 2N−1

(
uυ

sυ
N+(xn(t))

)
∞

∑
n=0

yn(t) = 1 +N−1
(

uη

sη N
+(xn(t))

)
− 2N−1

(
uη

sη N
+(yn(t))

)
.

(43)

One concludes from Equation (43)

x0(0) = 2, y0(0) = 1

x1(t) = N−1
(

uυ

sυN+(y0(t))
)
− 2N−1

(
uυ

sυN+(x0(t))
)
= −3tυ

Γ(υ+1)

y1(t) = N−1
(

uη

sη N+(x0(t))
)
− 2N−1

(
uη

sη N+(y0(t))
)
= 0.

Likewise,
x2(t) = 6t2υ

Γ(2υ+1)

y2(t) = −3tυ+η

Γ(υ+η+1) .

We proceed as before to obtain

x3(t) = −3t2υ+η

Γ(2υ+η+1) −
12t3υ

Γ(3υ+1)

y3(t) = 12tυ+2η

Γ(υ+2η+1) +
6t2υ+η

Γ(2υ+η+1)

x4(t) = 24t4υ

Γ(4υ+1) +
12t3υ+η

Γ(3υ+η+1) +
6t2υ+2η

Γ(2υ+2β+1)

y4(t) = −12tυ+3η

Γ(υ+3η+1) −
15t2υ+2η

Γ(2υ+2η+1) −
12t3υ+η

Γ(3υ+η+1) .

Finally, the approximate solutions for these functions are as follows

x(t) =
∞

∑
n=0

xn(t); y(t) =
∞

∑
n=0

yn(t). (44)
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It follows that,

x(t) = 2− 3tυ

Γ(υ+1) +
6t2υ

Γ(2υ+1) −
3t2υ+η

Γ(2υ+η+1) −
3t3υ

Γ(3υ+1) + 6t2υ+2η

Γ(2υ+2η+1) +
12t3υ+η

Γ(3υ+η+1) +
24t4υ

Γ(4υ+1) ...

y(t) = 1− 3tυ+η

Γ(υ+η+1) +
6tυ+2η

Γ(υ+2η+1) +
6t2υ+η

Γ(2υ+η+1) − 15t2υ+2η

Γ(2υ+2η+1) −
12t3υ+η

Γ(3υ+η+1) −
12tυ+2η

Γ(υ+2η+1) , ... .

Note that when υ = η = 1, then the exact solutions are

x(t) = e−3t + e−t; y(t) = e−3t − e−t.

Figure 8. Approximate solutions x(t) for Example 4 with some values of υ, η.

Figure 9. Approximate solutions y(t) for Example 4 with some values of υ, η.

Table 4. The results obtained for x(t) with different values of υ and η, CT = 10 min.

t υ = η = 0.5 υ = η = 0.6 υ = η = 0.75 υ = η =1

Numerical Exact

0.2 14.4864 8.66865 5.21454 1.36754 1.36754

0.4 39.8447 22.5925 11.4568 0.971514 0.971514

0.6 81.6907 47.9029 23.3317 0.714111 0.714111

0.8 142.225 88.083192 43.831967 0.540047 0.540047

1 223.31317 146.51415 76.394554 0.417667 0.417667

5. Discussion and Conclusions

Many techniques were used, prior to this work, to handle FDEs. In this work, we
have implemented an efficient integral transform method called the Fractional Decom-
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position Method (FDM) and given detailed proofs to some theorems using the proposed
method. We have successfully employed the FDM to obtain exact solutions for the diffu-
sion fractional differential equation and analytical solutions for nonlinear fractional ODE
including approximate solutions to two systems of fractional ODE. The FDM reduces
the computational difficulties currently exist in the literature. The FDM has self-efficient
properties, which help in solving some application with fractional derivatives problems.
Our numerical results show that the FDM is a valid and easy scheme for obtaining exact
and approximate solutions to fractional differential equation problems. It is proven that the
FDM can be implemented without discretization, linearization and perturbation methods
used in solving fractional differential equation applications. Thus, it is considered as an-
other option to existing schemes and can be used for wide applications. The FDM has been
implemented to many linear and nonlinear FDEs and we have not faced any difficulties
when using the new mechanism. Our aim, in the future, is to explore more properties to
help solve applications of the FDM, test reasonable series, which converge very fast, and
employ it to other fractional integral equation applications.

Finally, the numerical results showed that the new scheme is accurate and efficient.
We were able to explore solutions to physical models when υ = η = 1. The next step
for our research is to further apply the new scheme to other FDEs that arise in other
areas of scientific fields. Earlier works [4,6,14,21] have developed efficient techniques but
specialized only for usage on solving specific type of problems, but our FNDM expands
their applicability since it is so general.
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