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Abstract: In our present investigation, we develop two new Bailey lattices. We describe a number of
q-multisums new forms with multiple variables for the basic hypergeometric series which arise as
consequences of these two new Bailey lattices. As applications, two new transformations for basic
hypergeometric by using the unit Bailey pair are derived. Besides it, we use this Bailey lattice to get
some kind of mock theta functions. Our results are shown to be connected with several earlier works
related to the field of our present investigation.
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1. Introduction, Motivation and Preliminaries

Throughout the paper, we use the standard q-notations (see [1]). For |q| < 1, we define
the q-shifted factorials as:

(a; q)0 = 1, (a; q)n =
n−1

∏
k=0

(1− aqk), (a; q)∞ =
∞

∏
k=0

(1− aqk).

It is easy to see that:

(a; q)n =
(a; q)∞

(aqn; q)∞
.

For convenience, we also adopt the following compact notation for the multiple
q-shifted factorial:

(a1, a2, ..., am; q)n = (a1; q)n(a2; q)n...(am; q)n,

where n is an integer or ∞.
The q-binomial coefficients are defined by[

N
j

]
q
=

(q; q)N
(q; q)j(q; q)N−j

.

The basic hypergeometric series rφs is defined as:

rφs(a1, a2, ..., arb1, b2, ..., bs; q, z) =
∞

∑
n=0

(a1, a2, ..., ar; q)n

(q, b1, b2, ..., bs; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn.

The study of basic (or q-) hypergeometric functions and q-polynomials is of great
interest in many areas of mathematics and physics, including the Theory of Partitions,
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and is also helpful in a wide selection of areas including, Particle Physics, Lie Theory,
Theory of Heat Conduction and Statistics, Quantum Mechanics, Mechanical Engineering,
Combinatorial Analysis, Cosmology, Non-Linear Electric Circuit Theory and Finite Vector
Spaces, (see, for example, [2] (pp. 350–351); see also [3–6]).

We would like to remark that Srivastava’s published review article [7] is potentially
useful for researcher, in which it is shown that the so-called (p, q)-calculus is an insignificant,
unimportant and inconsequential variation of the classical q-calculus, the extra parameter
p being unnecessary or superfluous (see, for details, [7] (p. 340)).

Approximately 35 q-series identities and deemed mock theta functions were studied
from different viewpoints and perspectives by the many authors in the 21st century. For
example, some types of q-series were studied by Watson [8], some were found in Ramanu-
jan’s lost notebook and studied by Hickerson, Choi and Andrews [9–13]. Some other
well-known mathematicians like Gordon, Berndt, McIntosh and Chan have studied the
q-series from deferent perspectives (see for example [14–17]).

The following definition of Bailey pair is due to Bailey (see [18]).

Definition 1 (see [18]). A pair of sequences {αL} and {βL} related by the equation

βL =
L

∑
r=0

αr

(q; q)L−r(aq; q)L+r
(1)

is called a Bailey pair relative to a.

In the 1940s and 1950s, Bailey and Slater systematically use the fact that, subject to
convergence conditions, if βL is given by (1), then we have the identity

∑
n≥0

(ρ1; q)n(ρ2; q)n(aq/ρ1ρ2)
nβn

=
(aq/ρ1; q)∞(aq/ρ2; q)∞

(aq; q)∞(aq/ρ1ρ2; q)∞
∑
n≥0

(ρ1; q)n(ρ2; q)n(aq/ρ1ρ2)
n

(aq/ρ1; q)n(aq/ρ2; q)n
αn. (2)

what is known as Bailey Lemma.
The Bailey transformation [18] is given by Bailey, which is a special case of a certain

general type series transformation. The iteration of the Bailey pairs gives us the Bailey
chain [19]:

(α, β)→ (α′, β′)→ (α′′, β′′)→ . . .

and so, by the applications of this Bailey chain, one can immediately get a number of
sequences of Bailey pairs.

In the 1980s, it was seen by Andrews that the work of Bailey actually led to the process
which provided new pairs satisfying (1) from known ones [19,20]. He then gave a certain
new pair of sequences (αL, βL), which satisfy (1) a Bailey pair relative to a and showed
that if (αL, βL) is such a sequence, then so is (α′L, β′L) with

α′L =
(ρ1; q)L(ρ2; q)L(aq/ρ1ρ2)

L

(aq/ρ1; q)L(aq/ρ2; q)L
αL (3)

and

β′L =
L

∑
j=0

(ρ1; q)j(ρ2; q)j(aq/ρ1ρ2; q)L−j(aq/ρ1ρ2)
j

(q; q)L−j(aq/ρ1; q)L(aq/ρ2; q)L
β j. (4)

One of the features of the work of Andrews [19,20] is that it transforms a Bailey pair
relative to a into a new Bailey pair relative to a. Generally, the transformation of a Bailey
pair relative to a into a Bailey pair relative to b is easily possible. For example, in [21]
(Theorem 3.1) for a Bailey pair (αL(b), βL(b)), Warnaar gave their first result relative to b.
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In particular, he fixed a non-negative number N and b = aqN and showed that the pair
(α′L(a), β′L(a)) with

α′L(a) = (1− aq2L)(aq; q)N
(ρ1; q)L(ρ2; q)L(

aq
ρ1ρ2

)L

( aq
ρ1

; q)L(
aq
ρ2

; q)L

×
N

∑
j=0

(−1)jajq2Lj−j(j+1)/2
[

N
j

]
(aq; q)2L−j−1

(aq; q)2L−j+N
αL−j(b) (5)

and

β′L(a) =
L

∑
r=0

(ρ1; q)r(ρ2; q)r

(
aq

ρ1ρ2
; q
)

L−r
(q; q)L−r(aq/ρ1; q)L(aq/ρ2; q)L

(
aq

ρ1ρ2

)r
βr(b). (6)

is a Bailey pair. Warnaar [21] (Theorem 3.2) also proved a very similar result to [21]
(Theorem 3.1) and has called it the second Warnaar–Bailey lemma (see for details [21]
(Theorem 3.2)).

It was also pointed out by Agarwal, Andrews and Bressoud [22] (see also [23]) that
successive Bailey pairs are not always linearly arranged, but that even within the limitations
of fixed ρ and σ, they showed that if (αL, βL) is a Bailey pair relative to a, that is, these
sequences satisfy Equation (1) for all L ≥ 0. Furthermore, if α′ = {α′L} by

α′0 = α0,

α′L = (1− a)
(

a
ρσ

)L (σ; q)L(ρ; q)L
(a/ρ; q)L(a/σ; q)L

[
αL

1− aq2L −
aq2L−2αL−1

1− aq2L−2

]
, (7)

for all L ≥ 1 and β′ = {β′L} by

β′L =
L

∑
k=0

(σ; q)k(ρ; q)k(
a

ρσ ; q)L−k

(q; q)L−k(a/ρ; q)L(a/σ; q)L

(
a

ρσ

)k
βk, (8)

then (α′L, β′L) is a Bailey pair relative to aq−1, that is, these sequences satisfy Equation (1)
with a replaced by aq−1 for all L ≥ 0.

Moreover, Schilling and Warnaar [24] studied these Bailey lattice in a systematic way.
In fact they applied the well-known Bailey lemma and obtained more general q-series
identities, which generalize previously known results (see [24]). Very recently, Jia and Zeng
(see [25]) have proven a general expansion formula in Askey–Wilson polynomials using
Bailey transform. For some more recent investigations involving the basic q-transformation,
q-hypergeometric series, q-multisums and mock theta functions, we may refer the interested
reader to [18,21–24,26–28] .

Motivated by the above-mentioned works, here in this paper, we consider the more
general transformation, by using and substituting the symmetry character for specializing
some variables, give a more direct proof of the result. Furthermore, by making use of
the new Bailey lattices, we obtain certain new forms of the q-multisums with multiple
variables. As an example, we get two new transformations for basic hypergeometric
q-series. Furthermore, we obtain a new relation between q-multisums and mock theta
functions. Our results, which we have presented in this article, are shown to be connected
with a number of earlier works on this subject.
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2. A Set of Lemmas

To prove our main results, we need the following lemmas.

Lemma 1. Fix N a nonnegative integer and
∣∣∣∣ a3q3+2L+N

ρ2
1σ2

1

∣∣∣∣ < 1, we have

L−j

∑
r=0

(1− aq2r+2j)

(1− aq2j)

(aq2j; q)r

(aq2j+N+1; q)r

(q−N ; q)r

(q; q)r

(ρ2
1q2j, ρ2

2q2j; q2)r

(a2q2+2j/ρ2
1, a2q2+2j/ρ2

2; q2)r

× (q−2L+2j; q2)r

(a2q2+2L+2j; q2)r

(
− a3q3+2L+N

ρ2
1σ2

2

)r

=
(a2q4j+2; q2)L−j(a2q2/ρ2

1ρ2
2; q2)L−j

(a2q2j+2/ρ2
1; q2)L−j(a2q2j+2/ρ2

2; q2)L−j

×
L−j

∑
r=0

(ρ2
1q2j, ρ2

2q2j,−aq2j+1+N ,−aq2j+2+N , q−2L+2j; q2)r

(q2, a2q2+4j+2N ,−aq2j+1,−aq2j+2, ρ2
1ρ2

2
a2 q−2L+2j; q2)r

q2r.

Proof. We start with the terminating transformation [29] (Equation (1.3)):

10φ9

[
a, a

1
2 q,−a

1
2 q, b, x,−x, y,−y, q−n,−q−n

a
1
2 ,−a

1
2 , aq/b, aq/x,−aq/x, aq/y,−aq/y,−aq1+n, aq1+n

; q,− a3q3+2n

bx2y2

]

=
(a2q2; q2)n(a2q2/x2y2; q2)n

(a2q2/x2; q2)n(a2q2/y2; q2)n
× 5φ4

[
x2, y2,−aq/b, ,−aq2/b, q−2n

−aq,−aq2, a2q2/b2, x2y2

a2 q−2n ; q2, q2

]
.

In the above transformation, by taking

a→ aq2j, n→ (L− j), b→ q−N , x → ρ1qj, y→ ρ2qj

and after some elementary and straightforward simplification, we can complete the proof
Lemma 1.

Lemma 2 (see [19,20]). Let (αL, βL) form a Bailey pair relative to a, that is, these sequences
satisfy Equation (1) for all L ≥ 0. Then, so does (α′L, β′L) with

α′L =
(ρ1; q)L(ρ2; q)L(aq/ρ1ρ2)

L

(aq/ρ1; q)L(aq/ρ2; q)L
αL

and

β′L =
L

∑
j=0

(ρ1; q)j(ρ2; q)j(aq/ρ1ρ2; q)L−j(aq/ρ1ρ2)
j

(q; q)L−j(aq/ρ1; q)L(aq/ρ2; q)L
β j.

Lemma 3 ([1,29]). We have the following transformation:

6φ5

[
a, a1/2q,−a1/2q, b, q−r,−q−r

a1/2,−a1/2, aq/b,−aq1+r, aq1+r ; q,−aq1+2r/b
]
=

(a2q2; q2)r(−aq/b; q)2r

(−aq; q)2r(a2q2/b2; q2)r
.

Lemma 4 ([1] (II.12)). We have the following transformation:

3φ2

[
a, b, q−r

c, abq1−r/c
; q, q

]
=

(c/a, c/b; q)r

(c, c/ab; q)r
.

Our further investigation is organized as follows. In Section 3, we give some impor-
tant results, related to Bailey pairs. In Section 4, we derive the new Rogers–Ramanujan
identities using new Bailey lattices. This is made explicit in two new Bailey transformations,
Theorems 3 and 5. Furthermore, using these Bailey transformations, we get two new basic
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hypergeometric q-series. In Section 5, we get the analogous results to those that were
proved by Lovejoy [30,31].

3. Main Results and Their Demonstration

Theorem 1. Fix N a nonnegative integer and set b = aqN . Let (αL(b2, q2), βL(b2, q2)) be a

Bailey pair with
∣∣∣∣ a3q3+2L+N

ρ2
1ρ2

2

∣∣∣∣ < 1. Then, so is (α′L(a2, q2), β′L(a2, q2)) with:

α′L(a2, q2) = (1− aq2L)(aq; q)N

(ρ2
1; q2)L(ρ

2
2; q2)L(

a2q2

ρ1
2ρ2

2 )
L

( a2q2

ρ2
1

; q2)L(
a2q2

ρ2
2

; q2)L

×
N

∑
j=0

(−1)jajq2Lj−j(j+1)/2
[

N
j

]
q

(aq; q)2L−j−1

(aq; q)2L−j+N
αL−j(b2, q2)

and

β′L(a2, q2) =
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2
; q2
)

L−r
(−bq; q)2r

(q2; q2)L−r(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(−aq; q)2r

(
a2q2

ρ2
1ρ2

2

)r

βr(b2, q2).

Proof. In order show the pair (α′L(a2, q2) ,β′L(a2, q2) ) satisfy (1), we first need to recall the
following formula:

I =
L

∑
r=0

α′r(a2, q2)

(q2; q2)L−r(a2q2; q2)L+r
(9)

Now, substituting the expression in (9) for α′L(a2, q2), we have

I =
L

∑
r=0

(1− aq2r)

(q2; q2)L−r(a2q2; q2)L+r

(ρ2
1, ρ2

2; q2)r

(a2q2/ρ2
1; q2)r(a2q2/ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2

)r

(aq; q)N

×
N

∑
j=0

(−1)jajq2rj−j(j+1)/2
[

N
j

]
q

(
(aq; q)2r−j−1

(aq; q)2r−j+N

)
αr(b2, q2).

Transforming j → (r − j) and interchanging the order of summation in the above
identity, gives

I =
L

∑
j=0

L−j

∑
r=0

(1− aq2r+2j)(aq; q)N

(q2; q2)L−r−j(a2q2; q2)L+r+j

(ρ2
1, ρ2

2; q2)r+j

(a2q2/ρ2
1; q2)r+j(a2q2/ρ2

2; q2)r+j

(
a2q2

ρ2
1ρ2

2

)r+j

× (−1)rarq2(r+j)r−r(r+1)/2
[

N
r

]
q

(aq; q)r+2j−1

(aq; q)r+2j+N
αj(b2, q2).

=
L

∑
j=0

(ρ2
1, ρ2

2; q2)j(aq; q)N(aq; q)2j−1αj(b2, q2)

(q2; q2)L−j(a2q2; q2)L+j(a2q2/ρ2
1; q2)j(a2q2/ρ2

2; q2)j(aq; q)2j+N

(
a2q2

ρ2
1ρ2

2

)j

×
L−j

∑
r=0

(1− aq2r+2j)(ρ2
1q2j, ρ2

2q2j; q2)r

(q2+2L+2j; q2)−r(a2q2+2L−2j; q2)r(a2q2+2j/ρ2
1, a2q2+2j/ρ2

2; q2)r

× (−1)rarq2(r+j)r−r(r+1)/2(q; q)N(aq2j; q)r

(q; q)r(q; q)N−r(aq2j+N+1; q)r

(
a2q2

ρ2
1ρ2

2

)r

.
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After some simplification, the inner summation can be written as:

L−j

∑
r=0

(1− aq2r+2j)
(aq2j; q)r

(aq2j+N+1; q)r

(q−N ; q)r

(q; q)r

(ρ2
1q2j, ρ2

2q2j; q2)r

(a2q2+2j/ρ2
1, a2q2+2j/ρ2

2; q2)r

× (q−2L+2j; q2)r

(a2q2+2L+2j; q2)r

(
− a3q3+2L+N

ρ2
1σ2

1

)r

.

Comparing with Lemma 1, we have

I =
L

∑
j=0

(ρ2
1, ρ2

2; q2)j(aq; q)N(aq; q)2j−1(1− aq2j)αj(b2, q2)

(q2; q2)L−j(a2q2; q2)L+j(a2q2/ρ2
1; q2)j(a2q2/ρ2

2; q2)j(aq; q)2j+N

(
a2q2

ρ2
1ρ2

2

)j

×
(a2q4j+2; q2)L−j(a2q2/ρ2

1ρ2
2; q2)L−j

(a2q2j+2/ρ2
1; q2)L−j(a2q2j+2/ρ2

2; q2)L−j

L−j

∑
r=0

(ρ2
1q2j, ρ2

2q2j; q2)r

(q2, a2q2+4j+2N ; q2)r

× (−aq2j+1+N ,−aq2j+2+N , q−2L+2j; q2)r

(−aq2j+1,−aq2j+2, ρ2
1ρ2

2
a2 q−2L+2j; q2)r

q2r

=
L

∑
j=0

L−j

∑
r=0

(ρ2
1; q2)r+j(ρ

2
2; q2)r+j

(
a2q2

ρ2
1ρ2

2

)
L−r−j

(−aqN+1; q)2r+2j

(q2; q2)L−r−j(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(−aq; q)2r+2j(a2q2N+2; q2)2j+r

×
αj(b2, q2)

(q2; q2)r

(
a2q2

ρ2
1ρ2

2

)r+j

.

Shifting r → (r − j), interchanging sums and recalling (αL(b2, q2), βL(b2, q2)) is a
Bailey pair, we have

I =
L

∑
r=0

L−r

∑
j=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2
; q2
)

L−r
(−aqN+1; q2)2r

(q2; q2)L−r(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(−aq; q2)2r

(
a2q2

ρ2
1ρ2

2

)r

×
αj(b2, q2)

(a2q2N+2; q2)j+r(q2; q2)r−j

=
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2
; q2
)

L−r
(−bq; q2)2r

(
a2q2

ρ2
1ρ2

2

)r

(q2; q2)L−r(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(−aq; q2)2r

L−r

∑
j=0

αj(b2, q2)

(b2q2; q2)r+j(q2; q2)r−j

=
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2
; q2
)

L−r
(−bq; q2)2r

(q2; q2)L−r(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(−aq; q)2r

(
a2q2

ρ2
1ρ2

2

)r

βL(b2, q2)

= β′L(a2, q2).

So, the pair (α′L(a2, q2), β′L(a2, q2)) is also a Bailey pair. The proof of the Theorem 1 is
now completed.

If we take N = 1 in Theorem 1, we have the following corollary.



Symmetry 2021, 13, 958 7 of 18

Corollary 1. Set b = aq. Let (αL(b2, q2), βL(b2, q2)) be a Bailey pair. Then, so is (α′L(a2, q2),
β′L(a2, q2)) with

α′L(a2, q2) = (1− aq2L)(1− aq)
(ρ2

1; q2)L(ρ
2
2; q2)L(

a2q2

ρ1
2ρ2

2 )
L

( a2q2

ρ2
1

; q2)L(
a2q2

ρ2
2

; q2)L

×
[
(aq; q)2L−1

(aq; q)2L+1
αL(b2, q2)− aq2L−1 (aq; q)2L−2

(aq; q)2L
αL−1(b2, q2)

]
(10)

and

β′L(a2, q2) =
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
a2q2

ρ2
1ρ2

2
; q2
)

L−r
(1 + aq2r+1)

(q2; q2)L−r(a2q2/ρ2
1; q2)L(a2q2/ρ2

2; q2)L(1 + aq)

×
(

a2q2

ρ2
1ρ2

2

)r

βr(b2, q2). (11)

To prove the next Theorem (Theorem 2 below), we make use of Lemmas 3 and 4, and
followed the same steps as we have done in the proof of Theorem 1, we can easily get the
proof of Theorem 2, so we choose to omit the details involved.

Theorem 2. Fix N a nonnegative integer and set b = aqN . Let (αL(b2, q2), βL(b2, q2)) be a
Bailey pair. Then, so is (α′L(a2, q2), β′L(a2, q2)) with:

α′L(a2, q2) = (1− aq2L)(aq; q)N

N

∑
j=0

(ρ2
1; q2)L−j(ρ

2
2; q2)L−j(

b2q2

ρ1
2ρ2

2 )
L−j

( b2q2

ρ2
1

; q2)L−j(
b2q2

ρ2
2

; q2)L−j

× (−1)jajq2Lj−j(j+1)/2
[

N
j

]
q

(aq; q)2L−j−1

(aq; q)2L−j+N
αL−j(b2, q2)

and

β′L(a2, q2) =
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
b2q2

ρ2
1ρ2

2
; q2
)

L−r
(−bq; q)2L

(q2; q2)L−r(b2q2/ρ2
1; q2)L(b2q2/ρ2

2; q2)L(−aq; q)2L

(
b2q2

ρ2
1ρ2

2

)r

βr(b2, q2).

Remark 1. If we set N = 0, in Theorem 2, we will then arrived at Lemma 2.

Corollary 2. Set b = aq and let (αL(b2, q2), βL(b2, q2)) be a Bailey pair. Then, so is (α′L(a2, q2),
β′L(a2, q2)) with

α′L(a2, q2) = (1− aq2L)(1− aq)
(ρ2

1; q2)L(ρ
2
2; q2)L(

b2q2

ρ1
2ρ2

2 )
L

( b2q2

ρ2
1

; q2)L(
b2q2

ρ2
2

; q2)L

× (aq; q)2L−1

(aq; q)2L+1
αL(b2, q2)− (1− aq2L)(1− aq)aq2L−1

(ρ2
1; q2)L−1(ρ

2
2; q2)L−1(

b2q2

ρ1
2ρ2

2 )
L−1

( b2q2

ρ2
1

; q2)L−1(
b2q2

ρ2
2

; q2)L−1

(aq; q)2L−2

(aq; q)2L
αL−1(b2, q2) (12)
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and

β′L(a2, q2) =
L

∑
r=0

(ρ2
1; q2)r(ρ2

2; q2)r

(
b2q2

ρ2
1ρ2

2
; q2
)

L−r
(1 + aq2L+1)

(q2; q2)L−r(b2q2/ρ2
1; q2)L(b2q2/ρ2

2; q2)L(1 + aq)

(
b2q2

ρ2
1ρ2

2

)r

βr(b2, q2). (13)

4. Two New Bailey Transformations

The Bailey chain is a well-known and frequently used technique in the theory of
partitions as described in the introduction section. It arose from Bailey’s [18] realization
that the Rogers–Ramanujan identities could be derived from the simple Bailey chains.

Similarly, we can have the new Rogers–Ramanujan identities using this new Bailey
lattices. This is made explicit in the following two new Bailey transformation Theorem 3
and Theorem 5. Using these Bailey transformations, we get two new basic hypergeometric
q-series.

Theorem 3. Let α, β be sequences satisfying Equation (1) with b = aqN where N is non negative,
then we have

β
(0)
m (a2q−2N , q2) = ∑

m≥m1≥···≥mi≥···≥mt≥0

(ρ1; q2)m1 . . . (ρt; q2)mt[(
a2q2−2N

ρ1
; q2
)

m

]
. . .
[(

a2q2−2N

ρi
; q2
)

mi−1

]

× (σ1; q2)m1 . . . (σt; q2)mt[(
a2q2

ρi+1
; q2
)

mi

]
. . .
[(

a2q2

ρt
; q2
)

mt−1

]
(

a2q2−2N

σ1ρ1
; q2
)

m−m1
. . .
(

a2q2−2N

σiρi
; q2
)

mi−1−mi[(
a2q2−2N

σ1
; q2
)

m

]
. . .
[(

a2q2−2N

σi
; q2
)

mi−1

]

×

(
a2q2

σi+1ρi+1
; q2
)

mi−mi−1
. . .
(

a2q2

σtρt
; q2
)

mt−1−mt[(
a2q2

σi+1
; q2
)

mi

]
. . .
[(

a2q2

σt
; q2
)

mt−1

] (a2q2−2N)(m1+···+mi)(a2q2)(mi+1+···+mt)

[(q2; q2)m−m1 ] . . .
[
(q2; q2)mt−1−mt

]
×

(−aq; q)2mi B
(t)
m (a2, q2)

(−aq1−N ; q)2mi (ρ1σ1)m1 . . . (ρiσi)mi (ρi+1σi+1)
mi+1 . . . (ρtσt)mt

=
m

∑
k=0

N

∑
j=0

1
(q2; q2)m−k(a2q2−2N ; q2)m+k

(ρ1; q2)k . . . (ρi; q2)k(ρi+1; q2)k−j . . . (ρt; q2)k−j[
( a2q2−2N

ρ1
; q2)k

]
. . .
[
( a2q2−2N

ρi
; q2)k

]
×

(σ1; q2)k . . . (σi; q2)k(σi+1; q2)k−j . . . (σt; q2)k−j[(
a2q2

ρi+1
; q2
)

k−j

]
. . .
[(

a2q2

ρt
; q2
)

k−j

] (a2q2−2N)(ki)(a2q2)(k−j)(t−i)(
a2q2−2N

σ1
; q2
)

k
. . .
(

a2q2−2N

σi
; q2
)

k

× (1− aq2k−N)(aq1−N)N(−1)j(aq−N)jq2kj−j(j+1)/2[(
a2q2

σi+1
; q2
)

k−j

]
. . .
[(

a2q2

σt
; q2
)

k−j

]
(ρ1σ1)k . . . (ρiσi)k(ρi+1σi+1)k−j . . . (ρtσt)k−j

×
[

N
j

]
q

(aq1−N ; q)2k−j−1

(aq1−N ; q)2k−j+N
α
(t)
k−j(a2, q2). (14)

Proof. Step 1: Begin with Lemma 2 and replace ρ1 → ρi−1, ρ2 → σi−1, a by a2q−2N and
q→ q2, we have

β
(i−2)
L (a2q−2N , q2) =

L

∑
j=0

(ρi−1, σi−1; q2)j(
a2q2−2N

ρi−1σi−1
; q2)L−j(

a2q2−2N

ρi−1σi−1
)j

(q2; q2)L−j(
a2q2−2N

ρi−1
, a2q2−2N

σi−1
; q2)L

β
(i−1)
j (a2q−2N , q2)
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and

α
(i−2)
L (a2q−2N ; q2) =

(ρi−1, σi−1; q2)L(
a2q2−2N

ρi−1σi−1
)L

( a2q2−2N

ρi−1
, a2q2−2N

σi−1
; q2)L

α
(i−1)
L (a2q−2N ; q2).

Let the Bailey chain be denoted by (αi−1, βi−1)→ (αi−2, βi−2)→ . . .→ (α0, β0), where
α(j) = {α(j)

m }, β(j) = {β(j)
m }, we have

β
(0)
m (a2q−2N , q2) = ∑

m≥m1≥···≥mi−1≥0

(σ1; q2)m1 . . . (σi−1; q2)mi−1[(
a2q2−2N

ρ1
; q2
)

m

]
. . .
[(

a2q2−2N

ρi−1
; q2
)

mi−2

]

×
(ρ1; q2)m1 . . . (ρi−1; q2)mi−1

(
a2q2−2N

σ1ρ1
; q2
)

m−m1
. . .
(

a2q2−2N

σi−1ρi−1
; q2
)

mi−2−mi−1

[(q2; q2)m−m1 ] . . .
[
(q2; q2)mi−2−mi−1

]
× (a2q2−2N)(m1+···+mi−1)β

(i−1)
m (a2q−2N , q2)(

a2q2−2N

σ1
; q2
)

m
. . .
(

a2q2−2N

σi−1
; q2
)

mi−2
(ρ1σ1)m1 . . . (ρi−1σi−1)

mi−1

and

α
(0)
k (a2q−2N ; q2) =

(ρ1; q2)k . . . (ρi−1; q2)k(σ1; q2)k . . . (σi−1; q2)k[
( a2q2−2N

ρ1
; q2)k

]
. . .
[
(a2q2−2N

ρi−1
; q2)k

]
×

(a2q2−2N)k(i−1)α
(i−1)
k (a2q−2N ; q2)

(ρ1σ1)k . . . (ρi−1σi−1)k
[(

a2q2−2N

σ1
; q2
)

k

]
. . .
[(

a2q2−2N

σi−1
; q2
)

k

] .

Step 2: By using Theorem 1 and taking ρ2
1 → ρi, ρ2

2 → σi, a→ aq−N , we have that

β
(i−1)
m (a2q−2N ; q2) =

mi−1

∑
mi≥0

(ρi; q2)mi (σi; q2)mi

(
a2q2−2N

ρiσi
; q2
)

mi−1−mi
(−aq; q)2mi

(a2q2−2N/ρi; q2)mi−1(a2q2−2N/σi; q2)mi−1(−aq1−N ; q)2mi

× β
(i)
m (a2, q2)

(q2; q2)mi−1−mi

(
a2q2−2N

ρiσi

)mi

and

α
(i−1)
k (a2q−2N ; q2) = (1− aq2k−N)(aq1−N ; q)N

(ρi; q2)k(σi; q2)k(
a2q2−2N

ρiσi
)k

( a2q2−2N

ρi
; q2)k(

a2q2−2N

σi
; q2)k

×
N

∑
j=0

(−1)j(aq−N)jq2kj−j(j+1)/2 (aq1−N ; q)2k−j−1

(aq1−N)2k−j+N

[
N
j

]
q
α
(i)
k−j(a2, q2).

Step 3: Alternately apply Lemma 2 (t− i) times with a→ a2 and q→ q2, we have that

β
(i)
m (a2, q2) = ∑

mi≥mi+1≥···≥mt≥0

(σi+1; q2)mi+1 . . . (σt; q2)mt[(
a2q2

ρi+1
; q2
)

mi

]
. . .
[(

a2q2

ρt
; q2
)

mt−1

]
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×
(ρi+1; q2)mi+1 . . . (ρt; q2)mt

(
a2q2

σi+1ρi+1

)
mi−mi−1

. . .
(

a2q2

σtρt

)
mt−1−mt[

(q2; q2)mi−mi−1

]
. . .
[
(q2; q2)mt−1−mt

]
× (a2q2)(mi+1+···+mt)β

(t)
m (a2, q2)(

a2q2

σi
; q2
)

mi
. . .
(

a2q2

σt
; q2
)

mt−1
(ρi+1σi+1)

mi+1 . . . (ρtσt)mt

and

α
(i)
k−j(a2, q2) =

(ρi+1; q2)k−j . . . (ρt; q2)k−j

[
(σi+1; q2)k−j

]
. . .
[
(σt; q2)k−j

]
[(

a2q2

ρi+1
; q2
)

k−j

]
. . .
[(

a2q2

ρt
; q2
)

k−j

]

×
(a2q2)(k−j)(t−i)α

(t)
k−j(a2, q2)[(

a2q2

σi+1
; q2
)

k−j

]
. . .
[(

a2q2

σt
; q2
)

k−j

]
(ρi+1σi+1)k−j . . . (ρtσi+1σt)k−j

.

By making substitution (α(t),β(t)) by (α(i),β(i)) and also then substituting the result for
(α(0),β(0)), in conjunction with (1). Finally, replace a and q by a2q−2N and q2, respectively,
we can easily get the desired result.

Inserting Bailey pairs in Theorem 3, we can derive some new identities. In this regard,
we only choose the most elementary Bailey pair relative to a, which satisfies (1) and is
given by(see [32] (p. 586, Equations (12.2.5) and (12.2.6))):

βn = χ (n = 0),

αn =
(a; q)n

(q; q)n

(1− aq2n)

(1− a)
(−1)nq(

n
2). (15)

Taking N = 1 in Theorem 3, we get the following corollary.

Corollary 3. Let α, β be sequences satisfying Equation (1), then we have

β
(0)
m (a2q−2, q2) = ∑

m≥m1≥···≥mi≥···≥mt≥0

(ρ1; q2)m1 . . . (ρt; q2)mt[(
a2

ρ1
; q2
)

m

]
. . .
[(

a2

ρi
; q2
)

mi−1

]

× (σ1; q2)m1 . . . (σt; q2)mt[(
a2q2

ρi+1
; q2
)

mi

]
. . .
[(

a2q2

ρt
; q2
)

mt−1

]
(

a2

σ1ρ1

)
m−m1

. . .
(

a2

σiρi

)
mi−1−mi[(

a2

σ1
; q2
)

m

]
. . .
[(

a2

σi
; q2
)

mi−1

]

×

(
a2q2

σi+1ρi+1
; q2
)

mi−mi−1
. . .
(

a2q2

σtρt
; q2
)

mt−1−mt[(
a2q2

σi+1
; q2
)

mi

]
. . .
[(

a2q2

σt
; q2
)

mt−1

] (a2)(m1+···+mi)(a2q2)(mi+1+···+mt)

[(q2; q2)m−m1 ] . . .
[
(q2; q2)mt−1−mt

]
×

(−aq; q)2mi β
(t)
m (a2, q2)

(−a; q)2mi (ρ1σ1)m1 . . . (ρiσi)mi (ρi+1σi+1)
mi+1 . . . (ρtσt)mt

=
m

∑
k=0

1
(q2; q2)m−k(a2; q2)m+k

(ρ1; q2)k . . . (ρi; q2)k(σ1; q2)k . . . (σi; q2)k

( a2

ρ1
; q2)k . . . ( a2

ρi
; q2)k(

a2

σ1
; q2)k . . .

(
a2

σi
; q2
)

k
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× (1− a)a2ki

(ρ1σ1)k . . . (ρiσi)k

 (ρi+1; q2)k . . . (ρt; q2)k(σi+1; q2)k . . . (σt; q2)k[(
a2q2

ρi+1
; q2
)

k

]
. . .
[(

a2q2

ρt
; q2
)

k

](
a2q2

σi+1
; q2
)

k
. . .
(

a2q2

σt
; q2
)

k

×
(a2q2)(k)(t−i)α

(t)
k (a2, q2)

(ρi+1σi+1)k . . . (ρtσt)k(1− aq2k)

− aq2k−2 (ρi+1; q2)k−1 . . . (ρt; q2)k−1(σi+1; q2)k−1 . . . (σt; q2)k−1[(
a2q2

ρi+1
; q2
)

k−1

]
. . .
[(

a2q2

ρt
; q2
)

k−1

](
a2q2

σi+1
; q2
)

k−1
. . .
(

a2q2

σt
; q2
)

k−1

×
(a2q2)(k−1)(t−i)A(t)

k−1(a2, q2)

(ρi+1σi+1)k−1 . . . (ρtσt)k−1(1− aq2k−2)

. (16)

From Theorem 3 and Corollary 3, we derive a number of q-multisums new forms with
multiple variables. The special example is Theorem 4. Next, we use Corollary 3 to prove
Theorem 4.

Theorem 4. Let a, ρ1, ρ2, σ1, σ2 be indeterminate and
∣∣∣ a4q2+2n

ρ1ρ2σ1σ2

∣∣∣ < 1. We have the
following transformation:

7φ6

[
a2,−aq2, ρ1, σ1, ρ2, σ2, q−2n

−a, a2/ρ1, a2/σ1, a2q2/ρ2, a2q2/σ2, a2q2n ; q2,
a4q2+2n

ρ1ρ2σ1σ2

]
− (1− ρ1)(1− σ1)(1− q−2n)

(1− a2/ρ1)(1− a2/σ1)(1− a2q2n)

[
a3q2n

ρ1σ1

]
×7 φ6

[
a2,−aq2, q2ρ1, q2σ1, ρ2, σ2, q−2n+2

−a, a2q2/ρ1, a2q2/σ1, a2q2/ρ2, a2q2/σ2, a2q2n+2 ; q,
a4q2+2n

ρ1ρ2σ1σ2

]

=
(a2; q2)n(

a2

ρ1σ1
; q2)n

( a2

ρ1
; q2)n(

a2

σ1
; q2)n

5φ4

[
ρ1, σ1, a2q2/ρ2σ2,−aq2, q−2n

a2q2/ρ2, a2q2/σ2,−a, ρ1σ1q2−2n/a2 ; q2, q2
]

. (17)

Proof. Taking t = 2, i = 1 and applying (15) in Corollary 3, we can find that

(a2; q2)m(
a2

ρ1σ1
; q2)m

( a2

ρ1
; q2)m(

a2

σ1
; q2)m

∑
m≥m1≥0

(ρ1, σ1, a2q2

ρ2σ2
,−aq2, q−2m; q2)m1(

a2q2

ρ2
, a2q2

σ2
, q2,−a, q2−2mρ1σ1

a2 ; q2
)

m1

q2m

=
m

∑
k=0

(ρ1, ρ2; q2)k(σ1, σ2; q2)k(q−2m; q2)k

( a2

ρ1
; q2)k(

a2q2

ρ2
; q2)k(

a2

σ1
; q2)k

(
a2q2

σ2
; q2
)

k

(a2; q2)k
(a2q2m; q2)k(q2; q2) k

× (1 + aq2k)

(1 + a)

(
a4q2+2m

ρ1ρ2σ1σ2

)k

− (1− ρ1)(1− σ1)(1− q−2m)

(1− a2

ρ1
)(1− a2

σ1
)(1− a2q2m)

a3q2m

ρ1σ1

×
m−1

∑
k=1

(ρ1q2, ρ2; q2)k−1(σ1q2, σ2; q2)k−1(q−2m+2; q2)k−1

( a2q2

ρ1
; q2)k−1(

a2q2

ρ2
; q2)k−1(

a2q2

σ1
; q2)k−1

(
a2q2

σ2
; q2
)

k−1

× (a2; q2)k−1

(a2q2m+2; q2)k−1(q2; q2) k−1

(1 + aq2k−2)

(1 + a)

(
a4q2+2m

ρ1ρ2σ1σ2

)k−1

.

Likewise, we also have the corresponding conclusions to Theorem 2.
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Theorem 5. Let α, β be sequences satisfying Equation (1) with b = aqN where N is non negative,
then we have

∑
m≥m1≥···≥mi≥···≥mt≥0

(ρ1; q2)m1 . . . (ρt; q2)mt[(
a2q2−2N

ρ1
; q2
)

m

]
. . .
[(

a2q2−2N

ρi−1
; q2
)

mi−2

]

× (σ1; q2)m1 . . . (σt; q2)mt[(
a2q2

ρi
; q2
)

mi−1

]
. . .
[(

a2q2

ρt
; q2
)

mt−1

]
(

a2q2−2N

σ1ρ1

)
m−m1

. . .
(

a2q2−2N

σi−1ρi−1

)
mi−2−mi−1[(

a2q2−2N

σ1
; q2
)

m

]
. . .
[(

a2q2−2N

σi−1
; q2
)

mi−2

]

×

(
a2q2

σiρi

)
mi−1−mi

. . .
(

a2q2

σtρt

)
mt−1−mt[(

a2q2

σi
; q2
)

mi−1

]
. . .
[(

a2q2

σt
; q2
)

mt−1

] (a2q2−2N)(m1+···+mi−1)(a2q2)(mi+···+mt)

[(q2; q2)m−m1 ] . . .
[
(q2; q2)mt−1−mt

]

×
(−aq; q)2mi−1 β

(t)
m (a2, q2)

(−aq1−N ; q)2mi−1(ρ1σ1)m1 . . . (ρi−1σi−1)
mi−1(ρiσi)mi . . . (ρtσt)mt

=
m

∑
k=0

N

∑
j=0

1
(q2; q2)m−k(a2q2−2N ; q2)m+k

(ρ1; q2)k . . . (ρi−1; q2)k(ρi; q2)k−j . . . (ρt; q2)k−j[
( a2q2−2N

ρ1
; q2)k

]
. . .
[
(a2q2−2N

ρi−1
; q2)k

]
×

(σ1; q2)k . . . (σi−1; q2)k(σi; q2)k−j . . . (σt; q2)k−j[(
a2q2

ρi
; q2
)

k−j

]
. . .
[(

a2q2

ρt
; q2
)

k−j

] (a2q2−2N)k(i−1)(a2q2)(k−j)(t−i+1)(
a2q2−2N

σ1
; q2
)

k
. . .
(

a2q2−2N

σi−1
; q2
)

k

× (1− aq2k−N)(aq1−N ; q)N(−1)j(aq−N)jq2kj−j(j+1)/2[(
a2q2

σi
; q2
)

k−j

]
. . .
[(

a2q2

σt
; q2
)

k−j

]
(ρ1σ1)k . . . (ρi−1σi−1)k(ρiσi)k−j . . . (ρtσt)k−j

×
[

N
j

]
q

(aq1−N ; q)2k−j−1

(aq1−N ; q)2k−j+N
α
(t)
k−j(a2, q2). (18)

Proof. The proof is quite similar to Theorem 3, so left for the reader.

In similar, we set N = 1 in the above theorem. we have the following result.

Corollary 4. Let α, β be sequences satisfying Equation (1), then we have

∑
m≥m1≥···≥mi≥···≥mt≥0

(ρ1; q2)m1 . . . (ρt; q2)mt[(
a2

ρ1
; q2
)

m

]
. . .
[(

a2

ρi−1
; q2
)

mi−2

]

× (σ1; q2)m1 . . . (σt; q2)mt[(
a2q2

ρi
; q2
)

mi−1

]
. . .
[(

a2q2

ρt
; q2
)

mt−1

]
(

a2

σ1ρ1
; q2
)

m−m1
. . .
(

a2

σi−1ρi−1
; q2
)

mi−2−mi−1[(
a2

σ1
; q2
)

m

]
. . .
[(

a2

σi−1
; q2
)

mi−2

]

×

(
a2q2

σiρi
; q2
)

mi−1−mi
. . .
(

a2q2

σtρt
; q2
)

mt−1−mt[(
a2q2

σi
; q2
)

mi−1

]
. . .
[(

a2q2

σt
; q2
)

mt−1

] (a2)(m1+···+mi−1)(a2q2)(mi+···+mt)

[(q2; q2)m−m1 ] . . .
[
(q2; q2)mt−1−mt

]

×
(−aq; q)2mi−1 B(t)

m (a2, q2)

(−a; q)2mi−1(ρ1σ1)m1 . . . (ρi−1σi−1)
mi−1(ρiσi)mi . . . (ρtσt)mt
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=
m

∑
k=0

1
(q2; q2)m−k(a2; q2)m+k

(ρ1; q2)k . . . (ρi−1; q2)k(σ1; q2)k . . . (σi−1; q2)k

( a2

ρ1
; q2)k . . . ( a2

ρi−1
; q2)k(

a2

σ1
; q2)k . . .

(
a2

σi−1
; q2
)

k

× (1− a)a2k(i−1)

(ρ1σ1)k . . . (ρi−1σi−1)k

 (ρi; q2)k . . . (ρt; q2)k(σi; q2)k . . . (σt; q2)k[(
a2q2

ρi
; q2
)

k

]
. . .
[(

a2q2

ρt
; q2
)

k

](
a2q2

σi
; q2
)

k
. . .
(

a2q2

σt
; q2
)

k

×
(a2q2)k(t−i+1)α

(t)
k (a2, q2)

(ρiσi)k . . . (ρtσt)k(1− aq2k)
− aq2k−2

× (ρi; q2)k−1 . . . (ρt; q2)k−1(σi; q2)k−1 . . . (σt; q2)k−1[(
a2q2

ρi
; q2
)

k−1

]
. . .
[(

a2q2

ρt
; q2
)

k−1

](
a2q2

σi
; q2
)

k−1
. . .
(

a2q2

σt
; q2
)

k−1

×
(a2q2)(k−1)(t−i+1)α

(t)
k−1(a2, q2)

(ρiσi)k−1 . . . (ρtσt)k−1(1− aq2k−2)

. (19)

Inserting (15) into the above corollary, we can get the following:

Corollary 5. Let a, ρ1, ρ2, σ1, σ2, ρ3, σ3, be indeterminate and
∣∣∣ a6q4+2n

ρ1ρ2σ1σ2

∣∣∣ < 1. We have the follow-
ing transformation:

9φ8

[
a2,−aq2, ρ1, σ1, ρ2, σ2, ρ3, σ3, q−2n

−a, a2/ρ1, a2/σ1, a2q2/ρ2, a2q2/σ2, a2q2/ρ3, a2q2/σ3, a2q2n ; q2,
a6q4+2n

ρ1ρ2σ1σ2ρ3σ3

]
− (1− ρ1)(1− σ1)(1− q−2n)

(1− a2/ρ1)(1− a2/σ1)(1− a2q2n)

[
a3q2n

ρ1σ1

]
×9 φ8

[
a2,−aq2, q2ρ1, q2σ1, ρ2, σ2, ρ3, σ3, q−2n+2

−a, a2q2/ρ1, a2q2/σ1, a2q2/ρ2, a2q2/σ2, a2q2n+2 ; q,
a6q4+2n

ρ1ρ2σ1σ2ρ3σ3

]
=

(a2; q2)m(a2/ρ1σ1; q2)m

(a2/ρ1; q2)m(a2/σ1; q2)m
∑

m≥m1≥0

(ρ1, σ1, q−2m, a2q2/ρ2σ2,−aq2; q2)m1

(q2, ρ1σ1q−2m/a2, a2q2/ρ2.a2q2/σ2,−a; q2)m1

q2m1

4φ3

[
ρ2, σ2, a2q2/ρ3σ3, q−2m1

a2q2/ρ3, a2q2/σ3, ρ2σ2q−2m1 /a2 ; q2, q2
]

.

Taking a2q2 = ρ3σ3 in the above transformation, we can get (17).
In fact, we have many new identities like [26] (Theorems 5.1 and 5.2) rely on special

cases of Theorem 3. For example, ρi, σi are taking different values and inserting other Bailey
pair as a starting point.

5. Mock Theta Function

Many authors pointed out the number of Bailey pairs of great significance in the study
of mock theta functions [9,20,30,31,33]. Iterating the Bailey pairs provides a virtual source
of mixed mock modular forms. Lovejoy has described the relations of the indefinite theta
series and mock theta functions. From the Appell–Lerch series, he proved there is a relation
in the multisums and mock theta functions, and for more detailed study, we may refer
to [30,31]. Similarly, we can also get the analogous results to those that were proved by
Lovejoy [30,31]. In this paper, we just take an example in the following section.

To obtain the new Bailey chain, we need a new Bailey pair at hand.

Lemma 5. The sequences αLk and βLk form a Bailey pair relative to q, where

αLk =
q((m+l)/2)L2

k+((m+l−2)/2)Lk (1− q2Lk+1)

(1− q) ∑
|j|≤Lk

(−1)jq−
(m+l)j2

2
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and

βLk = ∑
L≥Lk ···≥L1≥0

(−q; q)2Lk (−q2;−q2)2Lk−1 . . . (−q(m+l)/4; q(m+l)/4)L1

(q2; q2)L−Lk (q
4; q4)Lk−Lk−1 . . . (q(m+l)/2; q(m+l)/2)L2−L1

qLk+2Lk−1+···+(m+l)L1/4(−1)L1

(qm+l ; qm+l)L1

.

Proof. We consider the Bailey pair relative to q (see [9]) as:

βLk =
(−1)Lk

(q2; q2)Lk

, (20)

and

αLk =
qL2

k (1− q2Lk+1)

(1− q) ∑
|j|≤Lk

(−1)jq−j2 . (21)

Iterating the above Bailey pair and using the following Bailey pair:

α′Lk
=

(1 + q)
(1 + q2Lk+1)

qLk α(q2)

and

β′Lk
= ∑

Lk≥k

(−q; q)2kqk

(q2; q2)Lk−k
βk(q2).

After some simplification, we can give two sequences.

α
(k)
Lk

=
q2k L2

k+(2k−1)Lk (1− q2Lk+1)

(1− q) ∑
|j|≤Lk

(−1)jq−2k j2

and

β
(k)
Lk

= ∑
L≥Lk ···≥L1≥0

(−q; q)2Lk (−q2;−q2)2Lk−1 . . . (−q2k−1
; q2k−1

)L1

(q2; q2)L−Lk (q
4; q4)Lk−Lk−1 . . . (q2k ; q2k )L2−L1

qLk+2Lk−1+···+2k−1L1(−1)L1

(q2k+1 ; q2k+1)L1

.

By taking 2k+1 = m + l in the above sequence, we get the required result. This
procedure is the same as given in [30] (Proposition 4.1). Therefore, we just take 2k+1 = m+ l
and reduce one time iteration in [30] (Proposition 4.1).

Now, we begin to state and prove Theorem 6.

Theorem 6. For k ≥ 1 and m, l ≥ 0, we have

(q2; q2)∞ ∑
L≥0

∑
L≥Lk ···≥L1≥0

(−q2; q2)2Lk (−q4;−q4)2Lk−1 . . . (−q(m+l)/2; q(m+l)/2)L1

(q4; q4)L−Lk (q
8; q8)Lk−Lk−1 . . . (qm+l ; qm+l)L2−L1

× q2Lk+4Lk−1+···+(m+l)L1/2+2L2
(−1)L1(1 + q2L+1)

(q2m+2l ; q2m+2l)L1

= f1,m+l+1,1(qm+l , qm+l , q4) + q2m+2l f1,m+l+1,1(q3m+3l+4, q3m+3l+4, q4)

+ q f1,m+l+1,1(qm+l+2, qm+l+2, q4) + q2m+2l+3 f1,m+l+1,1(q3m+3l+6, q3m+3l+6, q4).
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Proof. Step 1: Note that if a = 1 and ρ1 = ρ2 = q1/2 in Corollary 1. We have α′0 = α0 and
for L ≥ 1,

β′L =
(1 + q2L+1)

(1 + q)
βL

and

α′L =
(1− q)

(1− q2L+1)
αL − q2L−1 (1− q)

(1− q2L−1)
αL−1.

Step 2: Apply this to the Bailey pair relative to q2 in Lemma 5, we have

βL(q2) = βLm+1 = ∑
L≥Lk ···≥L1≥0

(−q2; q2)2Lk (−q4;−q4)2Lk−1 . . . (−q(m+l)/2; q(m+l)/2)L1

(q4; q4)L−Lk (q
8; q8)Lk−Lk−1 . . . (qm+l ; qm+l)L2−L1

× q2Lk+4Lk−1+···+(m+l)L1/2(−1)L1(1 + q2L+1)

(q2m+2l ; q2m+2l)L1(1 + q)

and

αL(q2) =
q(m+l)L2+(m+l−2)L(1 + q2L+1)

(1 + q)

L

∑
j=−L

(−1)jq−(m+l)j2

−χ(L 6= 0)
(1 + q2L−1)

(1 + q)
q(m+l)L2−(m+l)L+1

L

∑
j=−L

(−1)jq−(m+l)j2 .

Step 3: The Bailey pair relative to q2 substitute into Bailey transformation (1) with
ρ1, ρ2 → ∞, we have

(q2; q2)∞ ∑
L≥0

∑
L≥Lk ···≥L1≥0

(−q2; q2)2Lk (−q4;−q4)2Lk−1 . . . (−q(m+l)/2; q(m+l)/2)L1

(q4; q4)L−Lk (q
8; q8)Lk−Lk−1 . . . (qm+l ; qm+l)L2−L1

× q2Lk+4Lk−1+···+(m+l)L1/2+2L2
(−1)L1(1 + q2L+1)

(q2m+2l ; q2m+2l)L1(1 + q)
,

= ∑
L≥0

q2L2+(m+l)L2+(m+l−2)L(1 + q2L+1)

(1 + q)

L

∑
j=−L

(−1)jq−(m+l)j2

− χ(L 6= 0)
(1 + q2L−1)

(1 + q)
q(m+l)L2−(m+l)L+1+2L2

L

∑
j=−L

(−1)jq−(m+l)j2 .

Multiply by (1 + q) on both sides of the above identities, the right side of the above
formula can be written as:

∑
L≥0

L

∑
j=−L

q(m+l+2)L2+(m+l−2)L(−1)jq−(m+l)j2 − ∑
L≥1

L−1

∑
j=−L

q(m+l+2)L2−(m+l−2)L(−1)jq−(m+l)j2

+ ∑
L≥0

L

∑
j=−L

q(m+l+2)L2+(m+l−2)L+2L+1(−1)jq−(m+l)j2 − ∑
L≥1

L−1

∑
j=−L

q(m+l+2)L2−(m+l)L+1(−1)jq−(m+l)j2 .

Step 4: We set n = (r + s)/2 and j = (r − s)/2 in the first sum and the third sum,
n = −(r + s)/2 and j = (r − s)/2 in the second sum and the fourth sum, respectively,
we have
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(q2; q2)∞ ∑
L≥0

∑
L≥Lk ···≥L1≥0

(−q2; q2)2Lk (−q4;−q4)2Lk−1 . . . (−q(m+l)/2; q(m+l)/2)L1

(q4; q4)L−Lk (q
8; q8)Lk−Lk−1 . . . (qm+l ; qm+l)L2−L1

× q2Lk+4Lk−1+···+(m+l)L1/2+2L2
(−1)L1(1 + q2L+1)

(q2m+2l ; q2m+2l)L1

=

 ∑
r, s ≥ 0

r ≡ s(mod2)

− ∑
r, s < 0

r ≡ s(mod2)

(−1)(r−s)/2qr2/2+s2/2+(m+l+1)rs+r(m/2+l/2−1)+s(m/2+l/2−1)

+ q

 ∑
r, s ≥ 0

r ≡ s(mod2)

− ∑
r, s < 0

r ≡ s(mod2)

(−1)(r−s)/2qr2/2+s2/2+(m+l+1)rs+r(m/2+l/2)+s(m/2+l/2).

Step 5: Replacing (r, s) by (2r, 2s) and (2r + 1, 2s + 1) in the above equation, we have

(q2; q2)∞ ∑
L≥0

∑
L≥Lk ···≥L1≥0

(−q2; q2)2Lk (−q4;−q4)2Lk−1 . . . (−q(m+l)/2; q(m+l)/2)L1

(q4; q4)L−Lk (q
8; q8)Lk−Lk−1 . . . (qm+l ; qm+l)L2−L1

q2Lk+4Lk−1+···+(m+l)L1/2+2L2
(−1)L1(1 + q2L+1)

(q2m+2l ; q2m+2l)L1

,

=

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2r2+2s2+4(m+l+1)rs+r(m+l−2)+s(m+l−2)

+ q2m+2l

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2r2+2s2+4(m+l+1)rs+r(3m+3l+2)+s(3m+3l+2)

+ q

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2r2+2s2+4(m+l+1)rs+r(m+l)+s(m+l)

+ q2m+2l+3

(
∑

r,s≥0
− ∑

r,s<0

)
(−1)r+sq2r2+2s2+4(m+l+1)rs+r(3m+3l+4)+s(3m+3l+4).

Which complete the proof of Theorem 6.

According to Lovejoy [31] (Theorem 5.2), we see that the series in Theorem 6 are mock
theta functions. As he said, there are many forms between the multisums and classical
mock theta functions. Therefore, we can use the different Bailey lattices and different ways
to get the kind of mock theta functions.

6. Concluding Remarks and Observations

Here in our present investigation, we have developed two new Bailey lattices. We
have also described a number of q-multisums new forms with multiple variables for the
basic hypergeometric series, which arise as consequences of these two new Bailey lattices.
As applications, two new transformations for basic hypergeometric by using the unit Bailey
pair have been derived systematically. Besides it, we have used this Bailey lattice and
got some kind of mock theta functions. We have also highlighted some known and new
consequences of our main results.

Finally, we would like to highlight that in [34] (Section 8), it is pointed out that some
preliminary work has been done toward understanding the combinatorial significance of
certain modular q-hypergeomatric multisums constructed using change of base lemmas
for Bailey pairs. It is also believed that the q-series, Bailey lattices, q-multisums identities
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for the basic hypergeometric series and mock theta functions, which we have studied in
this paper, as well as the various related recent works cited here, will provide motivation
and inspiration for further studies on the topics that are dealt with and investigated in this
paper. Moreover, the Bailey results which we have derived in this paper will indeed apply
also to the work of Jia and Zeng [25] to produce certain new Bailey lemmas and Mock
theta functions.
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