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Abstract: Using a small number of mathematical transformations, this article examines the nature of
fractional models described by fractional differential equations or pseudo state space descriptions.
Computation of the impulse response of a fractional model using the Cauchy method shows that they
exhibit infinitely small and high time constants. This impulse response can be rewritten as a diffusive
representation whose Fourier transform permits a representation of a fractional model by a diffusion
equation in an infinite space domain. Fractional models can thus be viewed as doubly infinite
dimensional models: infinite as distributed with a distribution in an infinite domain. This infinite
domain or the infinitely large time constants of the impulse response reveal a property intrinsic to
fractional models: their infinite memory. Solutions to generate fractional behaviors without infinite
memory are finally proposed.

Keywords: fractional models; infinite memory; initial conditions

1. Introduction

A confusion or rather an implicit link exists between fractional behaviors (of physical,
biological, thermal, etc., origin) and fractional models (a tool to model fractional behav-
iors) [1]. To deliberately limit this confusion, the name “fractional behavior” is replaced by
“power-law behaviors”, which well expresses the idea that studied behaviors exhibit, in a
limited frequency or time domain, a power-law-type response.

It is now evident that power-law behaviors are ubiquitous in numerous domains
and that appropriate modelling tools are needed. Due to the dynamic behavior similarity
between power-law behaviors and fractional models, the latter have therefore naturally
been used as modelling tools.

The field of fractional calculus research has thus undergone numerous (although
perhaps not fundamental) developments [2] and many applications of fractional order
derivatives now exist [3]. Fractional calculus has become a common modeling tool in many
fields [4–7].

However, this link between power-law behaviors and fractional models often found
in the literature does not result from physical justification, as noted in the present paper.
Many researchers have nevertheless contributed to the study of fractional calculus and
fractional models, sometimes yielding to the ease of generalizing the results dedicated to
classical integer systems (which are sometimes referred to as “fractionalizations”).

However, it is also well known that fractional models have several drawbacks [8–10].
The most important of these, from which some others derive, is they were not deduced
from physical considerations but are only generalizations of existing (integer) tools. Conse-
quently, fractional models are imbued with an intrinsic and unrealistic property: they are
doubly infinite dimensional models:
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- infinite as they are distributed
- and infinite as they are defined (the parameter distribution) in an infinite spatial domain.

It is only by trying to analyze the physical meaning of fractional models that this
property is revealed.

Giving meaning to fractional models (a posteriori) has nevertheless been a concern of
many researchers. Mathematical [11,12], physical [13,14], geometrical [15,16], and statisti-
cal [17] meanings were therefore sought but these approaches do not help to understand
their nature and, in particular, their advantages and disadvantages. It was even attempted
to deduce a model from a physical phenomenon [18,19] but infinite spatial dimensions
were considered in order to do so, which tends on the contrary to demonstrate the physical
inconsistency of a fractional model.

The infinite spatial dimension is the conclusion also reached in this work after some
mathematical transformations that lead to a representation of a fractional model by a
diffusion equation. This representation is obtained through the Fourier transform of the
diffusive representation of a fractional model. It is also shown that the diffusive represen-
tation can be deduced from the impulse response of a fractional model computed using
the Cauchy method. The diffusive representation obtained exhibits infinitely large time
constants that are a consequence of the definition of fractional models in an infinite spatial
domain. This infinite dimension or these infinitely large time constants are responsible
for the infinite memory of fractional models. All these concepts are detailed and demon-
strated in this paper. Finally, a list of alternative solutions to fractional models to produce
power-law behaviors is given.

2. A physical and Systemic Analysis of Fractional Models
2.1. Model Definition

Although the terms used to designate them are very similar, power-law behavior and
fractional models are two different concepts. Power-law (dynamical) behavior qualifies
the nature of some real systems that exhibit a power law behavior in a limited time or
frequency band (the system impulse response behaves as t−ν in a given time band or the
system frequency response behaves as (jω)−1+ν in a given frequency band). Fractional
models are a class of models that was introduced to capture power-law behaviors. Without
considering physical justifications, fractional models were introduced by simply general-
izing existing modelling tools, by simply replacing the classical differentiation operators
by fractional differentiation operators. These fractional derivation operators had long
been mathematically defined and were in fact known to exhibit power-law behaviors (but
not only over a limited time or frequency band). For this reason, fractional differential
equations appeared as possible models to capture some power-law behaviors.

With u(t) ∈ R and y(t) ∈ R respectively as input and output, a fractional differential
equation is found in the literature with the form:

Na

∑
k=0

akD
νak
t0

(y(t)) =
Nb

∑
k=0

bkD
νbk
t0

(u(t)) (1)

In Relation (1) ak ∈ R and bk ∈ R. D
νak
t0

and D
νbk
t0

denote, respectively, fractional
differentiation operators of orders νak ∈ R and νbk

∈ R [20]. Various definitions can be used
to describe these operators [21], which raises the question of choice. These definitions are in
certain respects equivalent, but differences exist, notably regarding how initial conditions
are taken into account.

The “fractionalization” of another well-known modelling tool was also proposed in
the literature if the differentiation orders νak and νbk

met the following conditions:

νak =
k
q

, νbk
=

k
q

, q ∈ N∗ (2)
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These conditions, known as commensurability conditions, enable Relation (1) to be
rewritten as (under null initial conditions):{

Dν
t0

X(t) = AX(t) + Bu(t)
y(t) = CX(t) + Du(t)

(3)

This representation is known in the literature as a pseudo state space description.
“Pseudo” because the vector X(t) ∈ Rn cannot be viewed as the model state since this is not
the minimal amount of information required to predict the future of the model. In Relation
(3), ν = 1/q is the fractional order of the model and A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and
D ∈ R are constant matrices.

Application of the Laplace transform to Relations (1) or (3) (with null initial conditions)
permits a transfer function representation of the form:

H(s) =
Y(s)
U(s)

=
L{y(t)}
L{u(t)} (4)

Models (1) and (3) are very widely used in the literature when talking about frac-
tional models.

Example 1. The following fractional model, which will be used repeatedly throughout the article, is
now considered:

D1.8
0 y(t) + y(t) = 8D1.2

0 u(t)− 8D0.6
0 u(t) + 10u(t) (5)

As all the fractional orders are multiples of 0.6, such a model admits the following pseudo state
space description: {

D0.6
0 X(t) = AX(t) + Bu(t)

y(t) = CX(t)
(6)

with

X(t) =

 x(t)
D0.6

0 x(t)
D1.2

0 x(t)

A =

 0 1 0
0 0 1
−1 0 0

B =

 0
0
1

C =
[

10 −8 8
]
. (7)

This model transfer function is thus given by:

H(s) =
8s1.2 − 8s0.6 + 10

s1.8 + 1
. (8)

As previously mentioned, the definition of these models did not result from physical
analyses; they are “fractionalizations” of classical models. The objective of the following
sections is therefore to propose an analysis of the physical meaning of these models.

2.2. Poles and Time Constants Distribution and Infinite Memory

The first physical analysis proposed is based on the impulse response of the Models
(1) and (3). This impulse response is given by the inverse Laplace transformation relation:

h(t) = L−1{H(s)} = 1
2jπ

∫ c+j∞

c−j∞
H(s)estds. (9)

In Relation (9), the value of c is chosen to be greater than the H(s) singular point
abscissa and the integral computation is performed on the Bromwich–Wagner path Γ of
Figure 1 that bypasses the negative axis around the branching point z = 0 for t > 0. It thus
avoids the complex plane domain for which the transfer function sν = 0 is not defined,
i.e., the segment [−∞, 0]. As shown by Figure 1, the path is the union of six sub-paths:
Γ = γ1 ∪ ...∪ γ6.
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Figure 1. The Γ path considered for impulse response computation of h(t).

Using the residue theorem, Relation (9) can be rewritten as:

h(t) = − 1
2π j

∫
Γ−γ1

H(s)etsds + ∑
poles
in Γ

Res
[
H(s)ets] (10)

with, in the case of a simple pole p for H(s)ets:

Resp
[
H(s)ets] = lim

z→p
(z− p)H(z)etz. (11)

Relation (10) thus imposes the computation of the poles of H(s) and shows that the
impulse responses of Models (1) and (3) can be split into two parts:

h(t) = hp(t) + hd(t). (12)

The function hp(t) is computed from the poles of Models (1) and (3) (residues of the
Cauchy method). The function hd(t) is linked to the diffusive part of the model. The name
“diffusive” is explained in the sequel (see Section 2.3). The function hd(t) is defined by [22]:

hd(t) =
∫ ∞

0
µ(z)e−tzdz (13)

in which the function µ(x) is given [23] by:

µ(z) =
1

2iπ

[
H
(
(−z)−

)
− H

(
(−z)+

)]
with µ(z) ∈ R. (14)

The Laplace transform of function hd(t) is given by:

hd(s) =
∫ ∞

0

µ(z)
s + z

dz. (15)
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Example 2. The model defined by Relation (5) is again considered. The corresponding transfer
function (Relation (8)) can be rewritten as:

H(s) =
2

s1.8 + 1
+

8
s0.6 + 1

. (16)

The poles of the model, denoted sk = ρkejθk , are the values of s such that θk ∈ [−π, π] and:

sk
1.8 + 1 = 0 or sk

0.6 + 1 = 0 (17)

or:
sk

1.8 = ej(π+2kπ) or sk
0.6 = ej(π+2kπ) (18)

and thus:
sk = ej (π+2kπ)

1.8 or sk = ej (π+2kπ)
0.6 (19)

if there exist values of k such that:

(π + 2kπ)

1.8
∈ [−π, π] or

(π + 2kπ)

0.6
∈ [−π, π]. (20)

Two poles are produced by Relation (20):

s0 = ej π
1.8 or s1 = e−j π

1.8 (21)

that generate the function:

hp(t) = 2
(

eej π
1.8 t

+ ee−j π
1.8 t
)
= 4ecos( π

1.8 )tcos
(

sin
( π

1.8

)
t
)

. (22)

According to Relations (13) and (14), the function hd(t) is given by:

hd(t) =
∫ ∞

0

(
2sin(1.8π)

π

z1.8

1− 2z1.8cos(1.8π) + z3.6 +
8sin(0.6π)

π

z0.6

1− 2z0.6cos(0.6π) + z1.2

)
e−tzdz (23)

which corresponds to Relation (13) with:

µ(z) =
2sin(1.8π)

π

z1.8

1− 2z1.8cos(1.8π) + z3.6 +
8sin(0.6π)

π

z0.6

1− 2z0.6cos(0.6π) + z1.2 (24)

which is represented by Figure 2.
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If an input u(t) is applied to the diffusive part with an impulse response hd(t), the
output yd(t) is the convolution product:

yd(t) =
∫ t

0

∫ ∞

0
µ(z)e−(t−τ)zu(τ)dzdτ =

∫ ∞

0
µ(z)

∫ t

0
e−(t−τ)zu(τ)dτdz. (25)

Introducing the function w(t, z) such that:

w(t, z) =
∫ t

0
e−(t−τ)zu(τ)dτ. (26)

Relation (25) can be rewritten as:{
∂w(t,z)

∂t = −zw(t, z) + u(t)
yd(t) =

∫ ∞
0 µ(z)w(t, z)dz

z ∈ R+. (27)

This representation is known in the literature as the diffusive representation [22,23].
Representations (15) and (27) of fractional models are particularly interesting because

they make it possible to reveal properties that are poorly known and yet fundamental,
because they provide information on the internal nature of fractional models and about
how to initialize them. Relation (15) highlights that Models (1) and (3) have poles (values
of z) distributed from 0 to −∞. Models (1) and (3) are thus fitted with infinitely fast and
infinitely slow time constants (they are attenuated by the function µ( ), but they exist).
Relation (27) reveals the impact of these poles (or time constants) on the initialization
of fractional models. All the poles must be initialized as the function w(0, z) must be
initialized with z ∈ R+. This provides fractional models with an infinite memory.

Note that a link between fractional operators and poles distribution from 0 to −∞ was
also highlighted in [24].

2.3. Spatial Definition and Infinite Memory

In this section, we try to obtain a spatial representation of fractional models. To this
end, Model (27) is rewritten as:{

∂w(t,z)
∂t = −zw(t, z) + u(t)

yd(t) = 1
2

∫ ∞
0 µ(z)w(t, z)dz + 1

2

∫ ∞
0 µ(z)w(t, z)dz

z ∈ R+. (28)

The changes of variable ρ = −
√

z and ρ =
√

z are respectively used in the first and
second integral of Relation (28). The resulting model is thus:{

∂ψ(t,ρ)
∂t = −ρ2ψ(t, ρ) + u(t)

yd(t) = 1
2

∫ −∞
0 2ρµ

(
ρ2)ψ(t, ρ)dρ + 1

2

∫ ∞
0 2ρµ

(
ρ2)ψ(t, ρ)dρ

ρ ∈ R (29)

with ψ(t, ρ) = w
(
t, ρ2). After simplifications, Relation (29) becomes:{

∂ψ(t,ρ)
∂t = −ρ2ψ(t, ρ) + u(t)

yd(t) =
∫ ∞
−∞|ρ|µ

(
ρ2)ψ(t, ρ)dρ

ρ ∈ R. (30)

If the inverse Fourier transform is applied to the first equation of Relation (30) (on
variable ρ), it can be rewritten as:

∂φ(t, ζ)

∂t
=

∂2φ(t, ζ)

∂ζ2 + u(t)δ(ζ) ζ ∈ R (31)

where:

ψ(t, ρ) = F{φ(t, ζ)} =
∫ ∞

−∞
φ (t, ζ)e−jρζdζ , and φ(t, ζ) = F−1{ψ(t, ρ)} = 1

2π

∫ ∞

−∞
ψ(t, ρ)ejρζ dρ. (32)
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As ψ(t, ρ) is a real and even function, according to the Fourier transform properties,
the function φ(t, ζ) is also a real and even function. Model (30) can be rewritten as:{

∂φ(t,ζ)
∂t = ∂2φ(t,ζ)

∂ζ2 + u(t)δ(ζ)
yd(t) =

∫ ∞
−∞|ρ|µ

(
ρ2)F{φ(t, ζ)}dρ

. (33)

As:
yd(t) =

∫ ∞
−∞|ρ|µ

(
ρ2)(∫ ∞

−∞ φ(t, ζ)e−jρζ dζ
)

dρ

=
∫ ∞
−∞ φ(t, ζ)

∫ ∞
−∞|ρ|µ

(
ρ2)e−jρζ dρdζ.

(34)

Relation (33) becomes: {
∂φ(t,ζ)

∂t = ∂2φ(t,ζ)
∂ζ2 + u(t)δ(ζ)

yd(t) =
∫ ∞
−∞ m(ζ)φ(t, ζ)dζ

ζ ∈ R (35)

with m(ζ) = F
{
|ρ|µ

(
ρ2)}.

As µ
(
ρ2) is a real and even function, the function m(ζ) is also a real and even function.

The integral defining yd(t) in Relation (35) can thus be rewritten as follows:

yd(t) = 2
∫ ∞

0
m(ζ)φ(t, ζ)dζ =

∫ ∞

0
m(ζ)2φ(t, ζ)dζ (36)

and Model (35) can be rewritten as:{
∂φ(t,ζ)

∂t = ∂2φ(t,ζ)
∂ζ2 + 2u(t)δ(ζ)

yd(t) =
∫ ∞

0 m(ζ)φ(t, ζ)dζ
ζ ∈ R+. (37)

Relation (37) provides information on the nature of fractional models. As illustrated by
Figure 3, they can be described by a diffusion equation in an infinite dimensional domain
(ζ ∈ R+). They can thus be seen as doubly infinite models (infinite because distributed and
infinite as defined on an infinite spatial domain). This infinite spatial domain imposes an
initialization with an infinite amount of information: φ(0, ζ), ζ ∈ R+.
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Example 3. The model defined by Relation (5) is once again considered. The response of the
diffusive part of the impulse response hd(t) given by Relation (23) to an input u(t) is provided
by the diffusion Equation (37) defined on an infinite spatial domain, where the function m(ζ) is
defined by:

m(ζ) =
∫ ∞
−∞|ρ|(

2sin(1.8π)
π

(ρ2)
1.8

1−2(ρ2)
1.8cos(1.8π)+(ρ2)

3.6

+ 8sin(0.6π)
π

(ρ2)
0.6

1−2(ρ2)
0.6cos(0.6π)+(ρ2)

1.2

)
e−jρζ dρ

(38)

which is also equal to:
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m(ζ) = 2
∫ ∞

0

(
2sin(1.8π)

π

ρ4.6

1− 2ρ3.6cos(1.2π) + ρ7.2 +
8sin(0.6π)

π

ρ2.2

1− 2ρ1.2cos(0.4π) + ρ2.4

)
cos(ρζ)dρ. (39)

As an intermediate conclusion, it can be claimed that any power-law behavior mod-
elling using Models (1) or (2) [25,26] embeds a physical system into a model with infinite
spatial dimensions.

3. Other Modelling Solutions

There is a need for modelling tools that can capture power-law behaviors. Fractional
models are only one class of model possible, but they have several disadvantages, mainly
resulting from their intrinsic property revealed in the previous sections: their infinite
memory. As briefly described in the next sections and also discussed in [9], other solutions
are possible that address the drawbacks associated with fractional models.

3.1. Kernels with Limited Memory

The Riemann–Liouville or Caputo definitions are most widely used in the literature
for fractional differentiation operators in Relations (1) and (3). These operators are based on
the fractional integrator operator in their definitions. The fractional integral of a function
f (t) is given by [20]:

Iν
t0
[ f (t)] =

1
Γ(ν)

∫ t

t0

f (τ)

(t− τ)1−ν
dτ (40)

This operator is in fact the convolution product of the function to integrate with the
singular kernel:

η(t) =
1

Γ(ν)t1−ν
. (41)

The infinite memory problem can be solved by modifying this kernel. This solution is
often used in the literature to introduce the concept of tempered fractional integration [27]:

η(t) =
tν−1

Γ(ν)
e−ωmint. (42)

The Laplace transform of this kernel is given by:

χ(s) =
ωmin

ν

(s + ωmin)
ν . (43)

In the frequency domain, this kernel no longer exhibits a power-law behavior at low
frequency. Computation of its impulse response using the method described in Section 2.1
leads to:

η(t) =
sin(νπ)

π

∫ ∞

ωmin

1(
x

ωmin
− 1
)ν e−txdx . (44)

This relation shows that the kernel no longer exhibits infinitely large time con-
stants, but still has infinitely small time constants, which is questionable from a physical
perspective.

We must therefore go further, and introduce kernels without any power-law behavior
at low and high frequencies. The following kernel [28], whose impulse response is:

η(t) = C0
(ωmax)

ν

(ωmin)
ν φ2(ν− 1, 1− ν, 1; ωmint, ωmaxt) with C0 =

(
1

ωmin
+ 1
) 1−ν

2

(
1

ωmax
+ 1
) 1−ν

2
(45)
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where φ2(β, β′, γ; x, y) is a two-variable hypergeometric function defined by [29]:

φ2(β, β′, γ; x, y) = ∑
m,n

(β)m(β′)n
(γ)m+nm!n!

xmyn (46)

is a possible candidate. The Laplace transform of this kernel is defined by [29] (p. 238):

η(s) = C4

(
s

ωmin
+ 1
)1−ν

s
(

s
ωmax

+ 1
)1−ν

. (47)

Computation of its impulse response using the method described in Section 2.1
leads to:

η(t) = C4

He(t) +
(

ωmax

ωmin

)1−ν sin((1− ν)π)

π

ωmax∫
ωmin

(x−ωmin)
1−ν

x(ωmax − x)1−ν
e−xtdx

 (48)

where He(t) is the Heaviside function. Relation (48) shows that this kernel has time
constants distributed in a limited domain.

3.2. Volterra Integro-Differential Equations

It can be easily demonstrated [30] that Representation (3) is a special case of a Volterra
equation of the form:∫ t

0
η(t− τ)x(τ)dτ = v(t) v(t) =

∫ t

0
Bu(τ)dτ y(t) = Cx(t) (49)

with:

η(t) =
(

t−ν

Γ(1− ν)
In − A

)
. (50)

If Constraint (50) is not imposed, it is possible to generate more varied behaviors
with the Relation (49) while leaving free the choice of the kernel η(t), in particular those
mentioned in the previous section. Thus, many kinds of power-law behaviors can be
generated by Relation (50) and integro-differential equations in general, while overcoming
the drawbacks associated with the Models (1) and (3) with an adequate choice of the kernels.

3.3. Time Delay Models

It is shown in [31,32] that power-law behaviors can be generated using distributed
time delay models of the form:

d
dt

x(t) = A0x(t) + A1

∫ Tf

0
η(τ)x(t− τ)dτ + Bu(t). (51)

The conditions on parameters A0, A1, B, and on the kernel η(τ) to reach a power-law
behavior are also defined in [30,31]. The latter paper shows that the dynamic behavior of a
lithium-ion battery can be modelled with this class of equation.

3.4. Nonlinear Models

Random Sequential Adsorption (RSA) was studied in [33,34]. RSA exhibits a power-
law behavior that a fractional model cannot correctly capture. In the above cited paper, this
behavior is captured using a drift free control affine nonlinear model of the form:

dx(t)
dt

= f (x(t))u(t) (52)
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where the function f (x(t)) is a polynomial to be identified in order to fit the analyzed
behavior. Relation (52) is thus a potential model class for power-law behavior modelling,
and was used in [34] to model hydrogen adsorption.

3.5. Time-Varying Models

Without referring to fractional models, the Avrami model is often used to model the
kinetics of crystallization, in addition to other phase changes or chemical reactions [35,36].
This model is described by the relation:

x(t) = K
(

1− e−(at)ν
)

. (53)

The Laplace transform of Relation (52) is given by:

x(s) = K

(
1
s
− 1

a

∞

∑
r=0

(−τ)r

r!
Γ(1 + νr)( s

a
)1+νr

)
. (54)

Figure 4 shows the frequency response of x(s) and demonstrates a power-law behavior
because the phase is constant and equal to −ν90◦ for frequencies greater than a.
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Function x(t) in Relation (53) is also a solution of the differential equation:

dx(t)
dt

= −νaνtν−1x(t) + Kνaνtν−1. (55)

This equation involves singular coefficients. Such a matter can be solved by a differen-
tial equation of the form:

dx(t)
dt

= −νaν(t + c)ν−1x(t) + Kνaν(t + c)ν−1 c > 0 (56)

where c is a constant that also exhibits a power-law behavior and thus shows that time-
varying models can capture power-law behaviors.

3.6. Diffusion Equation with Spatially Variable Coefficients

With a judicious choice of the spatial functions γ(z) and β(z), it is shown in [37] that
the following heat equation:

∂T(z, t)
∂t

= γ(z)
∂

∂z

(
β(z)

∂T(z, t)
∂z

)
y(t) =

∂T(z, t)
∂z

∣∣∣∣
z=0

u(t) = T(0, t) (57)
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generates power-law behaviors. An infinite number of combinations are possible for the
functions γ(z) and β(z). This leaves considerable room for theoretical investigations in the
search for these functions, prior to the analysis of the properties of Equation (57), and also
for the development of methods to identify the functions γ(z) and β(z) based on real data.

4. Concluding Remarks

Fractional operators and the resulting fractional models are known for their memory
property. This is an interesting property that makes it possible to capture power-law behav-
iors that are often encountered in modelling problems. For this class of behaviors, the need
exists for models with a memory, but not with an infinite memory; this is unfortunately
the case with fractional models. Their infinite memory is demonstrated in this paper by
applying mathematical transformations that are described by Figure 5. These transforma-
tions highlight that fractional models (described by a fractional differential equation or
a pseudo state space description) are fitted with infinitely small and infinitely large time
constants. They also describe a fractional model with a diffusion equation defined in an
infinite spatial domain. These infinitely large time constants or the infinite spatial domain
are precisely the reasons why the models have an infinite memory.
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Regrettably, many studies dedicated to fractional models appear to ignore this means
of considering fractional models, which leads to errors in how these models are initialized.
Due to its infinite memory, it is necessary to consider all of a model’s past, rather than only
an initial condition as with the Caputo definition. This is also described in Figure 5.

Fractional models are, however, just one class of models among many that are able to
capture power-law behaviors without the drawbacks of fractional models. Other solutions
are presented in the paper: operators with limited memory kernels, Volterra equations,
distributed time delay models, time-varying models, nonlinear models, and diffusion
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equations with spatially variable coefficients. Consideration of power-law behaviors
without being limited to fractional models provides countless opportunities for research in
the field of model analysis and identification.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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