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Abstract: Shroud devices which are typical cyclic symmetric structures are widely used to reduce
the vibration of turbine blades in aero engines. Asymmetric rub-impact of adjacent shrouds or
aerodynamic excitation forces can excite the bending-torsion coupling vibration of shrouded blades,
which will lead to complex contact motions. The aim of this paper is to study the rub-impact dynamic
characteristics of bending-torsion coupling vibration of shrouded blades using a numerical method.
The contact-separation transition mechanism under complex motions is studied, the corresponding
boundary conditions are set up, and the influence of moments of contact forces and aerodynamic
excitation forces on the motion of the blade is considered. A three-degree-of-freedom mass-spring
model including two mass blocks with the same size and shape is established to simulate the bending-
torsion coupling vibration, and the dynamic equations of shrouded blades under different contact
conditions are derived. An algorithm based on the fourth-order Runge–Kutta method is presented
for simulations. Variation laws of the forced response characteristics of shrouded blades under
different parameters are studied, on the basis of which the method to evaluate the vibration reduction
characteristics of the shrouded blade system when the motion of the blade is chaotic is discussed.
Then, the vibration reduction law of shrouded blades under bending-torsion coupling vibration is
obtained.

Keywords: bending-torsion coupling vibration; shrouded blades; rub and impact; the contact-separation
transition under complex motions; characteristics of the forced response; vibration reduction

1. Introduction

High-cycle fatigue caused by high vibratory stress is one of the major causes of service
failures of aero engine turbine blades. The friction constrained structure, which is simple
and insensitive to temperature, is effective to reduce the vibration of turbine blades. The
shroud device is a typical dry friction structure and has been widely used to reduce the
vibration of turbine blades [1–3]. The main dynamic research progress on the system is
shown as follows, including the dynamic model, the friction contact model, the response
characteristics, and the vibration reduction characteristics.

1.1. About the Dynamic Model and Friction Contact Model

Based on one-dimensional motion, Iwan [4] proposed the bilinear hysteresis model,
a classical dry friction force model in which contact elastic deformation was considered.
Considering the normal motion and tangential complex curve motion of contact bodies,
Yang et al. [5] improved the bilinear hysteresis model and examined the jump phenomenon.
With the improved fiction model in [5], a 3D friction contact model was employed and
the resonant response of the shrouded blade with a three-dimensional shroud constraint
was studied in [6]. Petrov [7,8] developed the finite element (FE) model for blades with
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nonlinear dry friction contact, which is closer to engineering practice, and in [8] a new
friction model in which time-varying friction contact parameters could be taken into
account was provided. Cigeroglu [9] presented a two-dimensional micro slip friction
model between two elastic structures with normal load variation, characterized the stick-
slip-separation of the contact interface, and determined the resulting friction force. In [10],
a friction contact stiffness model was proposed in which the contact stiffness was calculated
using the Hertz contact theory and fractal geometry. Afzal [11] developed an analytical
expression to compute the Jacobian matrix for the 3D friction contact modeling of a turbine
blade with a shroud contact interface having an arbitrary 3D relative displacement, which
drastically reduced the computation time of the Jacobian matrix with respect to the classical
finite difference method. Considering the effects of the centrifugal stiffening, spin softening,
and Coriolis force, Ma et al. [12] proposed a dynamic model of rotating shrouded blades
with impacts and analyzed the response characteristics of shrouded blades. In [13], taking
the twisted shrouded blade as a cantilever beam with a tip mass, the analytical model of
the twisted shrouded blade with shroud contact was established by using Timoshenko
beam theory and Coulomb’s friction law, with which the effects of the stagger angles and
the twist angles on the vibration response of the damped blade system were discussed
and validated by the finite element method. In [14], a dynamic model for the turbine
blade with dry friction damper was set up, in which the convective inertial force along
the tangential direction and Coriolis inertial force along the normal direction caused by
the disc rotation were considered. Combining an experimental study with a numerical
study, Umer [15] highlighted the relevance of an accurate representation of the constraints
induced by friction contacts and discussed the adequacy of state-of the-art contact models.
In [16], to study the nonlinear vibration caused by impact and friction between adjacent
shrouds, a new dynamic model of shrouded blades with elastic support, which can consider
the inertia effects of passive blades, the change of shroud position, and the variation of
blade root support stiffness, was established and verified by the finite element model.

1.2. About the Response and Vibration Reduction Characteristics

In [17], the routes of periodic impacts to chaos in two kinds of strong resonance
cases of a two-degree-of-freedom system were obtained by numerical simulations. In [18],
the dynamic characteristics of a shrouded single blade of the shrouded cascade impact
experiment rig were studied by finite element simulation and validated by experimen-
tal results. In [19], using an enhanced multiterm harmonic balance method, the forced
vibration response of a single degree of freedom torsion system with Coulomb friction
was studied when the normal load varied periodically. In [20], an approximate approach
was proposed to compute the dynamic response of a structure constrained by friction
interfaces due to tip-rub, and the nonlinear vibration characteristics of the blade were
investigated using this approach in terms of the Poincare graph, the frequency spectrum
of the responses, and the amplitude-frequency curves. Sayed et al. [21] explained the
decrease of vibration amplitude by changes in boundary conditions caused by stick/slip
behavior, while demonstrating the contribution of various energy dissipation and contact
state changes to the peak level. In [22], an FEA method was introduced by which an actual
modal analysis of the shrouded blade was made, and the dynamic characteristics of the
system were discussed. In [23], the vibro-impact mechanism of a rotating shrouded blade
with asymmetric gaps was investigated, on the basis of which the influence of the blade
shroud gaps on the vibration amplitude of the system was studied. In [24], two types of
the impact vibration between adjacent shrouded blades were analyzed, based on which the
influence of the parameters on the dynamic behavior of the shrouded blade was studied.
Santhosh [25] studied the multivalued frequency response and jump phenomenon of the
shrouded blade with rub and impact. In [26], the mechanism of stick-slip transition of
multicontacts was studied with Coulomb friction, and the effects of relevant parameters on
the response characteristics of shrouded blades were obtained. In [27], a method based on
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the finite element method was proposed to analyze the damping characteristics of blades
with shroud considering the change of equivalent contact stiffness of the shroud.

From the above literature reviews, the influence of contact forces and aerodynamic
excitation forces on the translation of shrouded blades are considered, while the influence of
moments of these forces on the motion of shrouded blades are not considered. The contact-
separation transition boundary conditions under bending-torsion coupling vibration and
the corresponding reduction characteristics of shrouded blades should be investigated
further. In addition, it is clear that the stick-slip-separation transition may lead to chaos;
thus, how to evaluate the vibration reduction characteristics of the shrouded blade system
when the steady response of the blade is chaotic needs to be considered.

In this paper, the bending-torsion coupling vibration of shrouded blades caused by
the asymmetric rub-impact and aerodynamic excitation forces is considered. The contact-
separation transition boundary conditions under bending-torsion coupling vibration are
set up, and moments of contact forces and aerodynamic excitation forces on the motion of
the system are considered. On this foundation, a 3-DOF mass-spring model including two
mass blocks with the same shape and size is established, and the dynamic equations of the
system in different contact conditions are derived. A fourth-order Runge–Kutta method
algorithm is presented for simulations. Characteristics of the forced response of the system
in different conditions are investigated in detail, and the method to evaluate the vibration
reduction characteristics of the shrouded blade system when the steady response of the
blade is chaotic is studied. On the basis of the above, the vibration reduction characteristics
of the bending-torsion coupling system are studied.

2. Dynamic Modeling of the Bending-Torsion Coupling Vibration System
2.1. Structure Model and the Dynamic Model of the System

In engineering, shrouded blades are set up in a circle around the disc, and the whole
structure can be considered to have a cyclic symmetry. In this paper, the structure model
including two shrouded blades is discussed, as shown in Figure 1, where the orthogonal
coordinate system attached to the disc is defined by three orthogonal directions, namely
the tangential direction (x), axial direction (y), and radial direction (z).

Figure 1. The structure model of shrouded blades.

In Figure 1, asymmetric collisions and the moments of aerodynamic excitation forces
can excite the torsional vibration around z axis. The first-order bending vibration of the
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blades along the x direction and y direction and the first-order torsion vibration of the
blades around the z axis will be coupled by the contact forces and aerodynamic excitation
forces when adjacent shrouds are in contact. As the displacement along the z direction
is very small compared with that along the x direction and y direction, it is ignored in
this paper.

In order to analyze the complex collision motion between adjacent shrouds, adjacent
shrouded blades are simplified as two homogeneous mass blocks which are two parallelo-
grams with the same size and shape, and the dynamic model of the shrouded blade system,
which is a three-degree-of-freedom mass-spring model, is established based on [26] and
shown in Figure 2.

Figure 2. Dynamic model of the shrouded blade system.

In Figure 2, when the two mass blocks are in contact, the normal load N caused by
impact is simulated by a linear spring, while the friction force f is modelled by the bilinear
hysteresis model with normal load varying. It should be pointed out that N and f are forces
exerted by the right mass on the left mass, and their action points which are determined by
the kinematics analysis in the following section keep changing. The moments of N and f
about points o1 and o2 can be calculated when the magnitude, direction, and acting point
of the contact forces are determined. Meanwhile, the geometric dimensions of the mass
blocks are identified in Figure 2: one of the vertex angles of the parallelogram shroud is
α; the lengths of the two line segments ap and ob are denoted as lap and lob, led and lcg are
denoted similarly.

The dynamic parameters of the system are denoted as follows. The equivalent masses
of the two adjacent blades are denoted as m1 and m2, while the moments of inertia about the
corresponding z axis are denoted as I1 and I2. The first-order bending stiffnesses along the
x and y directions are denoted as k1x, k1y and k2x, k2y respectively, and the corresponding
linear damping coefficients are denoted as c1x, c1y and c2x, c2y, respectively. The torsional
stiffnesses about the corresponding z axis are denoted as kT1 and kT2, and the corresponding
torsional damping coefficients are denoted as cT1 and cT2. The centers of the two mass
blocks are o1 and o2, Q1 and Q2 are principle vectors of aerodynamic excitation forces acting
on the two mass blocks which pass through the center of the corresponding mass blocks,
and the angles between Q1, Q2 and the x axis are β1 and β2, respectively. M1 and M2 are
the moments of the aerodynamic excitation forces about points o1 and o2, and the impact
stiffness is denoted as k, while the initial gap between two adjacent shrouds is ∆.
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According to Figure 2 and the theory of vibration, the dynamic equation of the
shrouded blade system can be written as

m1
..
x1 + c1x

.
x1 + k1xx1 = Q1x − Nx − fx

m1
..
y1 + c1y

.
y1 + k1yy1 = Q1y + Ny − fy

m2
..
x2 + c2x

.
x2 + k2xx2 = Q2x + Nx + fx

m2
..
y2 + c2y

.
y2 + k2yy2 = Q2y − Ny + fy

I1
..
θ1 + cT1

.
θ1 + kT1θ1 = M1 + MN1 + M f 1

I2
..
θ2 + cT2

.
θ2 + kT2θ2 = M2 + MN2 + M f 2

(1)

In Equation (1), the projections of displacements of point o1 along the x and y di-
rections are x1 and y1, and x2, y2 are denoted similarly. The torsional angles around the
corresponding z axis of the two mass blocks are θ1 and θ2. The projections of N and f along
the x and y axes are Nx and Ny and fx and fy, respectively. The moments of N and f about
point o1 are MN1 and M f 1, while the moments of the reaction of N and f about point o2
are MN2 and M f 2. The determination of Nx, Ny, fx, fy, MN1, M f 1, MN2, and M f 2 will be
analyzed in Section 2.3.

2.2. The Dry Friction Force Model and Stick-Slip Transition Analysis

As shown in Figure 3, in this paper, the relative contact motion between two blades is
point to surface contact. Normal collision motion leads to the variation of the normal load,
while tangential contact movement leads to stick-slip transition, and the torsion motion
makes the direction of the contact force vary. The bilinear hysteresis model including
the varying normal load [5,8], which is suitable for simulating this kind of dry friction
contact, is adopted. Note that the typical hysteretic behavior characterizing dry-friction
phenomena can be simulated by adopting more accurate hysteretic models available in the
literature [28,29].

Figure 3. The bilinear hysteresis model including varying normal load.

In Figure 3, the friction force is modelled by a spring along the tangential direction
with its stiffness kd, and the spring has no initial length and can yield, while the normal
load is modelled by a spring along the normal direction with its stiffness k. The dynamic
friction coefficient is denoted as µ. The stick-slip transition mechanism at the contact face
is illustrated as follows. When the two mass blocks are in contact, point 1 represents the
tip of one of the mass blocks, while point 2 is always attached to the other mass block in
contact with point 1. Point s is the sliding contact point which can slide relative to point 2
with a limiting friction force µN. When contact happens, points 1, 2, and s coincide initially,
contact surface is in a viscous state, and point s is attached to point 2. The displacement of
point 1 relative to the contact surface along normal directions is denoted as v1, while the
displacements of points 1 and s relative to point 2 are denoted as u1 and µs, respectively.
In contact motion, point s remains static with point 2 when the distance between points
1 and s is less than µN/kd; otherwise, point s slides relative to point 2 and keeps the
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distance between point 1 and s as a constant µN/kd. The friction force can be determined
by Equation (2), whether it is viscous or sliding, and it is important to trace the position of
point s.

f = kd(u1 − us) (2)

2.3. The Separation-Contact Motion Analysis and Determination of Contact Forces and
Their Moments

When the aero engine is working, the relative motions of two adjacent shrouds are
very complex, as the bending-torsion coupling vibration of the blades is considered. The
bending-torsion coupling vibration of the blades can be simplified as the planar motion
of two mass blocks, which consists of the translation with the corresponding center of the
mass block and the rotation around the corresponding central z axis. Displacements caused
by torsional motion of the mass blocks are shown in Figure 4.

Figure 4. Displacements caused by torsion.

The torsional angle is assumed to be positive along the clockwise direction. As shown
in Figure 4, the two mass blocks rotate at an angle of θ1 and θ2 separately around the z-axis,
which passes through points o1 and o2, respectively, while points a, b, c, and d move to
a new position, a′, b′, c′, and d′. Thus, the displacement vectors of the four points are
obtained. The projections of the torsional displacements of points a, b, c, and d along the x
and y axes can be described as Equations (3) and (4):

xa = lap sin θ1
2 sin 2ϕ1−θ1

2
ya = −lap sin θ1

2 cos 2ϕ1−θ1
2

xb = −lob sin θ1
2 sin 2ϕ2+θ1

2
yb = −lob sin θ1

2 cos 2ϕ2+θ1
2

(3)

In Equation (3), xa and xb are the projections of the torsion displacements of points a
and b along the x direction, while ya and yb are the projections of points a and b along the y
direction. 

xc = lcg sin θ2
2 sin 2ϕ2+θ2

2
yc = lcg sin θ2

2 cos 2ϕ2+θ2
2

xd = −led sin θ2
2 sin 2ϕ1−θ2

2
yd = led sin θ2

2 cos 2ϕ1−θ2
2

(4)

In Equation (4), xc and xd are the projections of the torsion displacements of points c
and d along the x direction, while yc and yd are the projections of points c and d along the y
direction.

Based on the analysis above, the total displacement vectors of points a, b, c, and d,
denoted as

→
r a,
→
r b,
→
r c, and

→
r d, are composed of the translational displacements and the

torsional displacements. The computing formulas can be expressed as
rax = x1 + xa
ray = y1 + ya
rbx = x1 + xb
rby = y1 + yb

(5)
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rcx = x2 + xc
rcy = y2 + yc
rdx = x2 + xd
rdy = y2 + yd

(6)

In Equations (5) and (6), rax, rbx, rcx, and rdx are the projections of the total displace-
ments of points a, b, c, and d along the x direction, while ray, rby, rcy, and rdy are the
projections of points a, b, c, and d along the y direction.

Kinematics analysis shows that there are four kinds of contact-separation transition
boundary conditions under bending-torsion coupling vibration. In each case, the friction
force f is calculated with reference to Equation (2).

The First Case: θ1 > θ2, ray − rcy < 0

As shown in Figure 5, when point a happens to be in contact with the right mass block,
the difference between projections of displacements of points a and c along the direction
perpendicular to cd is equal to the projection of the initial gap ∆ along this direction. The
first contact-separation transition boundary condition can be described as Equation (7):

(rax − rcx) sin(α− θ2) + (ray − rcy) cos(α− θ2) = ∆ sin(α− θ2) (7)

Figure 5. The first critical state of contact-separation transition.

Obviously, there are two states of separation and contact.

Separation: when (rax − rcx − ∆) sin(α− θ2) + (ray − rcy) cos(α− θ2) < 0, the two masses
are separated, and the contact forces and corresponding moments about points o1 and o2
are all equal to zero.

Contact: when (rax − rcx − ∆) sin(α− θ2) + (ray − rcy) cos(α− θ2) ≥ 0, the two masses are
in contact.

In the process of the contact motion under bending-torsion coupling vibration, the
magnitude, direction, and acting point of contact forces change constantly, which can
be determined by kinematics and dynamics analysis, and the corresponding calculation
formulas are derived in Equations (8)–(10):{

v1 = (rax − rcx − ∆) sin(α− θ2) + (ray − rcy) cos(α− θ2)
N = kv1

(8)


fx = f sin(α− θ2)
fy = f cos(α− θ2)

Nx = N sin(α− θ2)
Ny = N cos(α− θ2)

(9)
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MN1 = −N × lap

2 cos(α− ϕ1 + θ1 − θ2)

M f 1 = f × lap
2 sin(α− ϕ1 + θ1 − θ2)

MN2 = N × ( lcd
2 cos(α + ϕ2) +

rcy−ray
sin(α−θ2)

)

M f 2 = f × led sin(α−ϕ1)
2

(10)

The Second Case: θ1 > θ2, ray − rcy ≥ 0

As shown in Figure 6, when point c happens to be in contact with the left mass block,
the difference between projections of displacements of points a and c along the direction
perpendicular to ab is equal to the projection of the initial gap ∆ along this direction. The
second contact-separation transition boundary condition is described as Equation (11):

(rax − rcx) sin(α− θ1) + (ray − rcy) cos(α− θ1) = ∆ sin(α− θ1) (11)

Figure 6. The second critical state of contact-separation transition.

Obviously, there are two states of separation and contact.

Separation: when (rax − rcx − ∆) sin(α− θ1) + (ray − rcy) cos(α− θ1) < 0, the two masses
are separated, and the contact forces and corresponding moments about points o1 and o2
are all equal to zero.

Contact: when (rax − rcx − ∆) sin(α− θ1) + (ray − rcy) cos(α− θ1) ≥ 0, the two masses are
in contact.

The magnitude, direction, and acting point of contact forces vary during the contact
motion and can be determined by kinematics and dynamics analysis; the corresponding
calculation formulas are derived in Equations (12)–(14):{

v1 = (rax − rcx − ∆) sin(α− θ1) + (ray − rcy) cos(α− θ1)
N = kv1

(12)


fx = − f sin(α− θ1)
fy = − f cos(α− θ1)
Nx = N sin(α− θ1)
Ny = N cos(α− θ1)

(13)


MN1 = −N ×

(
lap
2 cos(α− ϕ1)−

ray−rcy
sin(α−ϕ1)

)
M f 1 = − f × lap sin(α−ϕ1)

2

MN2 = −N × lcg
2 cos(α + ϕ2 − θ1 + θ2)

M f 2 = − f × lcg
2 sin(α + ϕ2 − θ1 + θ2)

(14)
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The Third Case: θ1 ≤ θ2, rby − rdy > 0

As shown in Figure 7, when point b happens to be in contact with the right mass block,
the difference between projections of displacements of points b and d along the direction
perpendicular to cd is equal to the projection of the initial gap ∆ along this direction. The
third contact-separation transition boundary condition is described as Equation (15):

(rbx − rdx) sin(α− θ2) + (rby − rdy) cos(α− θ2) = ∆ sin(α− θ2) (15)

Figure 7. The third critical state of contact-separation transition.

Obviously, there are two states of separation and contact.

Separation: when (rbx − rdx − ∆) sin(α− θ2) + (rby − rdy) cos(α− θ2) < 0, the two masses
are separated, and the contact forces and corresponding moments about points o1 and o2
are all equal to zero.

Contact: when (rbx − rdx − ∆) sin(α− θ2) + (rby − rdy) cos(α− θ2) ≥ 0, the two masses are
in contact.

During the contact motion, the magnitude, direction, and acting point of contact forces
change and can be determined by kinematics and dynamics analysis; the corresponding
calculation formulas are derived in Equations (16) and (17) (Nx, Ny and fx, fy are still
obtained by Equation (9)):{

v1 = (rbx − rdx − ∆) sin(α− θ2) + (rby − rdy) cos(α− θ2)
N = kv1

(16)


MN1 = −N × lob

2 cos(α + ϕ2 − θ2 + θ1)

M f 1 = f × lob
2 sin(α + ϕ2 − θ2 + θ1)

MN2 = −N × (
lap
2 cos(α− ϕ1)−

rby−rdy
sin(α−θ2)

)

M f 2 = f × led sin(α−ϕ1)
2

(17)

The Fourth Case: θ1 ≤ θ2, rby − rdy ≤ 0

As shown in Figure 8, when point d happens to be in contact with the left mass block,
the difference between projections of displacements of points b and d along the direction
perpendicular to ab is equal to the projection of the initial gap ∆ along this direction. The
fourth contact-separation transition boundary condition can be described as Equation (18):

(rbx − rdx) sin(α− θ1) + (rby − rdy) cos(α− θ1) = ∆ sin(α− θ1) (18)
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Figure 8. The fourth critical state of contact-separation transition.

Obviously, there are two states of separation and contact.

Separation: when (rbx − rdx − ∆) sin(α− θ1) + (rby − rdy) cos(α− θ1) < 0, the two masses
are separated, and the contact forces and corresponding moments about points o1 and o2
are all equal to zero.

Contact: when (rbx − rdx − ∆) sin(α− θ1) + (rby − rdy) cos(α− θ1) ≥ 0, the two masses are
in contact.

Contact forces change during the contact motion, and their magnitude, direction, and
acting point can be determined by kinematics and dynamics analysis; the corresponding
calculation formulas are derived in Equations (19) and (20) (Nx, ϕ1 and fx, fy are still
obtained by Equation (13)):{

v1 = (rbx − rdx − ∆) sin(α− θ1) + (rby − rdy) cos(α− θ1)
N = kv1

(19)


MN1 = N × (

lcg
2 cos(α + ϕ2) +

rdy−rby
sin(α−θ2)

)

M f 1 = − f × lap sin(α−ϕ1)
2

MN2 = −N × led
2 cos(α− ϕ1 + θ2 − θ1)

M f 2 = − f × led
2 sin(α− ϕ1 + θ2 − θ1)

(20)

3. Numerical Simulation of the Dynamics of the System

In this section, the rub-impact dynamics of shrouded blades is studied in detail. Firstly,
the characteristics of the forced response of the system is analyzed, which is the base of the
vibration reduction characteristics of the shrouded blade system. Secondly, the method
to evaluate the vibration reduction characteristics of the shrouded blade system when the
motion of the blade is chaotic or has fractional harmonics is studied. Finally, the vibration
reduction characteristics of the shrouded blade system is discussed, which is important for
the design of the dry friction damper.

3.1. The Characteristics of the Forced Response

Select m1 = m2 = m, I1 = I2 = I, c1x = c2x = cx, c1y = c2y = cy, k1x = k2x = kx,
k1y = k2y = ky, cT1 = cT2 = cT , kT1 = kT2 = kT , Qi = F0 sin(ωt + φi), i = 1, 2,

Mi = M0 sin(ωt + φi), i = 1, 2. Denote ω2
x = kx

m , ω2
y =

ky
m , ε1 = cx

2mωx
, ε2 =

cy
2mωy

,

ω2
T = kT

I , εT = cT
2IωT

, Xi = xi
∆ , i = 1, 2, Yi = yi

∆ , i = 1, 2, Θi = θi
α , i = 1, 2, τ = ωt,

(•)′ = d•
dτ , (•)′′ = d2•

dτ2 , fx = fx
m∆ω2

x
, fy =

fy

m∆ω2
y
, Qix = Qi cos β

m∆ω2
x

, i = 1, 2, Qiy = Qi sin β

m∆ω2
y

, i = 1, 2,

MiT = Mi
Iαω2

T
, i = 1, 2, Nx = Nx

m∆ω2
x
, Ny =

Ny

m∆ω2
y
, MNi =

MNi
Iαω2

T
, i = 1, 2, M f i =

M f i

Iαω2
T

, i = 1, 2.
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F0 is the amplitude of Q1 or Q2, M0 is the amplitude of M1 or M2, while φ1 and φ2 are the
corresponding phase angles. Defining these will simplify Equation (1) as Equation (21):

X′′1 + 2ε1X′1 + X1 = Q1x − Nx − fx
Y′′1 + 2ε2Y′1 + Y1 = Q1y + Ny − fy
X′′2 + 2ε1X′2 + X2 = Q2x + Nx + fx
Y′′2 + 2ε2Y′2 + Y2 = Q2y − Ny + fy
Θ′′1 + 2εTΘ′1 + Θ1 = M1T −MN1 + M f 1
Θ′′2 + 2εTΘ′2 + Θ2 = M2T + MN2 + M f 2

(21)

Based on the dynamic equation of the system and the transition analysis of the
separation-contact motion and stick-slip motion, a numerical integration scheme imple-
menting a fourth-order Runge–Kutta algorithm [30] is set up to analyze the characteristics
of the forced response. In order to improve the simulation accuracy, the bisection method
is used to capture the transition points of stick-slip motion and contact-separation mo-
tion. The influences of stiffness ratio, initial gap, and amplitude of the external excitation
force on the response characteristics of the shrouded blade system are discussed. Denote
fe = ω/2π.

As the characteristics of response of the blocks along all directions are identical, only
the characteristics of X1 are shown. Referring to [26], the common parameters are shown
in Table 1, and specific parameters are given in the corresponding section.

Table 1. Common parameters.

Parameters Values Parameters Values

m 0.08 kg cx 3.57 N·s/m
kx 1 × 105 N/m cy 19.6 N·s/m
ky 3 × 106 N/m β π/6
kd 1 × 106 N/m µ 0.5
φ1 0 φ2 π
I 2.46 × 10−3 kg·m2 cT 0.506 N·m·s/rad

kT 2 × 103 N·m/rad M0 100 N·m
α π/3 loa 0.05 m

lab 0.035 m ω 536 rad/s

3.1.1. Influence of Stiffness Ratio on Characteristics of the Response of the Shrouded Blade

The stiffness ratio is denoted as γ = k/kx. The specific parameters are shown in
Table 2 and the simulation results are shown in Figures 9 and 10.

Table 2. The specific parameters.

Parameters Values

∆ 0.022 mm
F0 60 N
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Figure 9. Bifurcation diagram of X1 vs. γ.

Figure 10. Influence of γ on characteristics of vibration response of the left blade.

Figure 9 shows the bifurcation diagram of X1 vs. γ, which is illustrated by Figure 10.
Analysis of the Poincare map, the spectrum, and the phase diagram shows the following
conclusions. In Figure 10a, where γ = 0.3, only higher harmonics exist, and the response is
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period-1 motion. In Figure 10b, where γ = 2.5, there are fractional harmonic frequencies
( fe/2, 3 fe/2 . . .), and period-2 motion occurs. In Figure 10c, where γ = 4.2, there are
fractional harmonic frequencies ( fe/3, 4 fe/3 . . .), and period-3 motion occurs. In Figure 10d,
where γ = 7.5, chaos occurs. In summary, with the increase of γ, the responses follow a
sequence of period-1, period-2, period-3, and chaotic motion.

3.1.2. Influence of the Initial Gap on Characteristics of the Response of the Shrouded Blade

The specific parameters and simulation results are shown in Table 3 and Figures 11 and 12,
respectively.

Table 3. The specific parameters.

Parameters Values

γ 2.6
F0 60 N

Figure 11. Bifurcation diagram of X1 vs. ∆.

Figure 11 shows the bifurcation diagram of X1 vs. ∆, which is illustrated by Figure 12.
Analysis of the Poincare map, the spectrum, and the phase diagram show the following
conclusions. In Figure 12a, where ∆ = 0.007 mm, the motion of the blade is chaotic. In
Figure 12b, where ∆ = 0.02 mm, there are fractional harmonic frequencies ( fe/4, 3 fe/2 . . .),
and the response is period-4 motion. In Figure 12c, where ∆ = 0.06 mm, there are fractional
harmonic frequencies ( fe/2, 3 fe/2 . . .), and period-2 motion occurs. In Figure 12d, where
∆ = 0.15 mm, the impact and dry friction forces become very small, and period-1 motion
occurs. In summary, for the factor of ∆, with the increase of its value, the responses follow
a sequence of chaotic, period-4, period-2, and period-1 motion.



Symmetry 2021, 13, 1073 14 of 21

Figure 12. Influence of ∆ on characteristics of vibration response of the left blade.

3.1.3. Influence of the Amplitude of Aerodynamic Excitation Forces on Characteristics of
the Response of the Shrouded Blade

The specific parameters are shown in Table 4, while the simulation results are shown
in Figures 13 and 14.

Figure 13 shows the bifurcation diagram of X1 vs. F0, which is illustrated by Figure 14.
Analysis of the Poincare map, the spectrum, and the phase diagram show the following con-
clusions. In Figure 14a, where F0 = 10 N, only higher harmonics exist, and period-1 motion
occurs. In Figure 14b, where F0 = 37 N, fractional harmonic frequencies ( fe/4, 3 fe/2 . . .)
exist, and period-4 motion occurs. In Figure 14c, where F0 = 50 N, the response is chaotic.
In Figure 14d, where F0 = 67 N, fractional harmonics frequencies ( fe/2, 3 fe/2 . . .) exist,
and period-2 motion occurs. In summary, with the increase of the value of F0, the responses
follow a sequence of period-1, period-4, chaotic, and period-2 motion.

Table 4. The specific parameters.

Parameters Values

∆ 0.022 mm
γ 2.6
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Figure 13. Bifurcation diagram of X1 vs. F0.

Figure 14. Influence of F0 on characteristics of vibration response of the left blade.

3.2. Evaluation of the Vibration Reduction Characteristics of the System

In Section 3.1, the response characteristics of the shrouded blade system were analyzed.
It is clear that fractional harmonics or chaos may appear in the forced response of the
blade under some parameters. In this section, how to evaluate the vibration reduction
characteristics of the chaotic response is proposed.

The average power of the response is introduced to describe the vibration reduction
characteristics of the system. In order to denote the average power of the response of a
bending-torsion coupling system, a fixed orthogonal coordinate system o1XY, which is
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parallel to the coordinate system o1xy, is established in the centroid of the left mass block,
and point L is an arbitrary point on the mass block.

The total displacement of point L is denoted as
→
u L(X, Y, t) whose projections along

the X direction and Y direction are rLX and rLY. According to the response of the bending-
torsion coupling system, rLX and rLY can be described as Equation (22). Denote T = 2π/ω.
The average power of the steady-state response of the bending-torsion coupling system
is described as Equation (23), in which P and P0 correspond to the average power of
impact occurrence state and no impact occurrence state during the whole movement of the
shrouded blade system, respectively. In Equation (23), the area covered by the left mass
block is denoted as A, while n (a positive integer) is the number of the time periods of
integration which should be selected when the response of the system is steady. Pd is the
percentage of the average steady-state power reduction of the system, which is defined
as Equation (24). When no impact occurs between the two mass blocks during the whole
motion, the total displacement of the arbitrary point on the mass block is

→
u 0L(X, Y, t).{

rLX(X, Y, t) = x1(t) + 2
√

X2 + Y2 sin( θ1(t)
2 ) sin(ϕ− θ1(t)

2 )

rLY(X, Y, t) = y1(t) + 2
√

X2 + Y2 sin( θ1(t)
2 ) cos(ϕ− θ1(t)

2 )
(22)


P =

∫
nT
s

A

∣∣∣→u L(X,Y,t)
∣∣∣2dXdYdt

nT

P0 =

∫
nT
s

A

∣∣∣→u 0L(X,Y,t)
∣∣∣2dXdYdt

nT

(23)

Pd =
P0 − P

P0
× 100% (24)

When no impact occurs during the whole motion, according to the linear vibration
theory, the steady-state response of the system must be periodic motion without fractional
harmonics. Based on analysis of the system response characteristics in Section 3.1, when
impact occurs, the steady state responses of the bending-torsion coupling system can be
divided into three types, periodic motion with higher harmonics, periodic motion with
fractional harmonics, and chaotic motion. According to the three different motions, how
to determine the value of n, which is very important for the evaluation of the vibration
reduction characteristics of the system, is discussed:

1. When impact occurs and the steady state response of the blade is periodic motion
with higher harmonics, n can be taken as any integer greater than or equal to 1;

2. When impact occurs and the steady-state response is periodic motion and has fe/i
(i is a positive integer) harmonics in the frequency spectrum, n can be taken as any
positive integral multiple of i;

3. When impact occurs and the steady-state response of the blade is chaotic motion, we
discuss whether or not the value of Pd approach a stable value with the increase of
the value of n.

As the simulation results under selected parameters are consistent, only the simulation
results under two parameters are shown here. The two sets of parameters are taken from
Table 5, and the simulation results are shown in Figure 15.

Table 5. Two parameters of the system.

Parameters Values Values

∆ 0.022 mm 0.022 mm
γ 7 2.6
F0 60 N 50 N
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Figure 15. The influence of n on Pd.

In Figure 15, it can be seen that the value of Pd eventually stabilizes with the increase
of the value of n. Therefore, when the chaos occurs, we can select the stable value of Pd for
the vibration reduction analysis of the system.

3.3. The Vibration Reduction Characteristics of the Bending-Torsion Coupling System

In this section, the influences of some key parameters are discussed, including stiff-
ness ratio, the initial gap, and external excitation amplitude on the vibration reduction
characteristics of the bending-torsion coupling system. Some main parameters have been
shown in Table 1, while other parameters are given in the following simulation.

3.3.1. Influence of the Stiffness Ratio on Vibration Reduction Characteristics of the System

The parameters needed are taken from Table 6. The simulation results of the influence
of the stiffness ratio γ on the vibration reduction characteristics of the system are shown in
Figure 16.

Table 6. Parameters needed.

Parameters Values

∆ 0.022 mm
F0 60 N

Figure 16. The influence of γ on the vibration power reduction.
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In Figure 16, when γ = 0 and k = 0, the normal load and the friction force are equal
to zero, therefore, Pd is equal to zero. With the increase of the value of γ, the responses
follow a sequence of period motion with higher harmonics, period motion with fractional
harmonics, and chaotic motion, while the value of Pd first increases and then decreases to
an approximate stable value as the normal load and friction force increase. There exists a
value of γ with which the average power reduction of the system is the best and the system
is in stick-slip motion. With the larger value of γ, Pd stabilizes and chaotic motion occurs,
the reason for which being that viscous motion plays a dominant role in stick-slip motion.
The law of variation of Pd with γ is mainly related to the complex separation-stick-slip
motion.

3.3.2. Influence of the Initial Gap on the Vibration Reduction Characteristics of the System

The parameters needed are taken from Table 7. The simulation results of the influence of
the initial gap on the vibration reduction characteristics of the system is shown in Figure 17.

Table 7. Parameters needed.

Parameters Values

γ 4
F0 60 N

Figure 17. The influence of ∆ on the vibration power reduction.

In Figure 17, with the increase of the value of ∆ from zero, the responses follow a
sequence of chaotic motion, period motion with fractional harmonics, and period motion
with higher harmonics, while the value of Pd keeps decreasing as the amplitude of normal
load and friction force decreases. When the value of ∆ is larger and larger, the two masses
of the system are separated during the whole motion, and the value of Pd is equal to zero.
In the range of the selected values of ∆, the steady system has no pure viscous motion.

3.3.3. The Influence of the Amplitude of Aerodynamic Excitation Forces on the Vibration
Reduction Characteristics of the System

The parameters needed are taken from Table 8. The simulation results of the influence
of the amplitude of excitation force on the vibration reduction characteristics of the system
is shown in Figure 18.
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Table 8. Parameters needed.

Parameters Values

γ 4
∆ 0.022 mm

Figure 18. The influence of F0 on the vibration power reduction.

In Figure 18, with the increase of the value of F0, the responses follow a sequence
of period motion with higher harmonics, period motion with fractional harmonics, and
chaotic motion, while the value of Pd approximately increases to an approximate stable
value. The law of variation of Pd with F0 is mainly due to the increase of the amplitude of
normal load and friction force as F0 increases. The reason for the stabilization of Pd is that
viscous motion plays a dominant role when the system is steady, as the normal load and
friction force increase to a certain extent.

4. Conclusions

In this paper, the bending-torsion coupling vibration of shrouded blades is considered,
and the complex contact-separation transition boundary conditions are set up. On the basis
of the analysis above, the response characteristics, how to evaluate the vibration reduc-
tion characteristics of the bending-torsion coupling system, and the vibration reduction
characteristics of the system are discussed. Major conclusions can be drawn as follows:

1. When impact occurs in the motion, with parameters varying, the steady-state response
of the bending-torsion coupling system displays three types of motions which are
periodic motion with higher harmonics, periodic motion with fractional harmonics,
and chaotic motion;

2. When chaotic motion occurs, the average power of the bending-torsion coupling
system eventually stabilizes with the increase of the integral period number;

3. When the normal load and friction force increase to a certain extent, viscous motion
will play a dominant role in the steady system, and the effect of the bending-torsion
vibration reduction is obvious and tends to be approximately stable. The best steady-
state vibration reduction effect of the bending-torsion coupling system relates to
complex separation-stick-slip motion.

The dynamic model in this paper is a spring-mass model. In future research, the com-
plex contact-separation transition boundary conditions under bending-torsion vibration
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can be developed and introduced into the finite element model to obtain more meaningful
conclusions for engineering design.
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