
symmetryS S

Article

Generalizing Normality: Different Estimation Methods for
Skewed Information

Diego Carvalho do Nascimento 1,*,† , Pedro Luiz Ramos 2,† , David Elal-Olivero 1,†, Milton Cortes-Araya 1,†

and Francisco Louzada 2,†

����������
�������

Citation: Nascimento, D.C.d.; Ramos

P.L.; Elal-Olivero D.; Cortes-Araya M.;

Louzada, F. Generalizing Normality:

Different Estimation Methods for

Skewed Information. Symmetry 2021,

13, 1067. https://doi.org/10.3390/

sym13061067

Academic Editor: Giuseppe Bagliesi

Received: 6 May 2021

Accepted: 10 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Matemática, Facultad de Ingeniería, Universidad de Atacama, Copiapó 1530000, Chile;
david.elal@uda.cl (D.E.-O.); milton.cortes@uda.cl (M.C.-A.)

2 Institute of Mathematical Science and Computing, University of São Paulo, São Carlos 13566590, Brazil;
pedrolramos@usp.br (P.L.R.); louzada@icmc.usp.br (F.L.)

* Correspondence: diego.nascimento@uda.cl
† These authors contributed equally to this work.

Abstract: Normality is the most commonly used mathematical supposition in data modeling.
Nonetheless, even based on the law of large numbers (LLN), normality is a strong presumption,
given that the presence of asymmetry and multi-modality in real-world problems is expected. Thus, a
flexible modification in the normal distribution proposed by Elal-Olivero adds a skewness parameter
called Alpha-skew-normal (ASN) distribution, which enables bimodality and fat-tail, if needed, al-
though it is sometimes not trivial to estimate this third parameter (regardless of the location and scale).
This work analyzed seven different statistical inferential methods towards the ASN distribution
on synthetic data and historical data of water flux from 21 rivers (channels) in the Atacama region.
Moreover, the contributions of this paper are related to the estimations of probability surrounding
rivers’ flux levels in the surroundings of Copiapó city, which is the most economically important city
of the third Chilean region and is known to be located in one of the driest areas on Earth (excluding
the North and the South Poles). The results show the competitiveness of the MPS and RADE methods
with respect to the MLE method, as well as their excellent performance.

Keywords: Alpha-skew-normal; bimodal distribution; asymmetry accommodation; water monitoring

1. Introduction

We live in the Big Data Era, where high volumes and many varieties of data character-
ization are often noticeable in data lakes. Despite the amount of observation, symmetry
and smooth tails are not always observed. These characteristics are natural because we all
live in a complex world with nonlinear relations and outliers that describe extreme values,
which are more recurrent than easy statistical tools take into account. This new age requires
flexible models and different reasoning based on data and information.

A question that is often asked in traditional departments worldwide is: “Are statistical
methods becoming old fashioned?”. Sir David Cox [1] explained that the focus is on
the relevance and quality of data based on their coverage and representativeness, which
provide confidence in the results in spite of the amount of information (large volumes)
in a set, which may hold some potentially biased estimates with measurement errors.
Efron and Hastie [2] discussed the relation between computer-related inferences and
statistical inferences as a system of mathematical logic for guidance and correction that is
complemented by large-scale prediction algorithms that are suitable for this new century.

Therefore, complexity is intrinsic to massive amounts of data, where high dimension-
ality and dynamism are often present [3,4]. Nonetheless, all of the information contained
in the acquired data can be extracted by using an estimation method, e.g., with maximum
likelihood estimation (MLE); a parametric version of such a method will be supported by a
supposed distribution. Parametric approaches can be used to easily interpret patterns by
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using parameters, enable association across variables, present a low computational cost,
and are easier to implement in decision-making systems.

In many cases, the standard MLE may not return desirable results. Other estimation
methods that return accurate estimates have been considered, such as estimators based on
the least-square function [5], the product of spacing [6,7], or goodness-of-fit statistics [8].
There is not a unique method that performs better in all models, and the performance may
depend on the selected parametric form [9,10]. Thus, it is necessary to use an efficient esti-
mation method jointly with a flexible parametric model that covers many data patterns and
that sometimes accommodates the asymmetry and multi-modality that may be contained
in the data under consideration.

This is the case of meteorological data, which show significant changes, as well as a
complex dynamic [11,12]. This field demands extra attention on data-driven models, which
are needed in order to incorporate space–time dependence [13], structural changes [14], and
extreme values [15]. Moreover, in a parametric world, a model supported by a probabilistic
model (which deals with asymmetry and multi-modality [16,17]) is necessary. Thus, this
paper was motivated by a case study of the water flux of 21 rivers (channels) in the
surroundings of Copiapó city, which is located in the Atacama Desert and is one of the
planet’s driest areas. Moreover, we intend to exemplify evidence of the probability densities
associated with these events’ empirical distribution by using seven different approaches to
statistical inference.

This paper is divided into four parts. Section 2 presents the motivation and details
regarding the analyzed data. Section 3 provides the background of the adopted method-
ology with respect to the elements of statistical inference. Then, Sections 4 and 5 show
the developments related to the methods when implemented on synthetic data and for
the analysis of real-world data. Finally, Section 6 discusses the findings based on the
obtained results.

2. The Data

The dataset adopted is related to fluviometric records (average monthly flows) from the
Atacama Desert region (third-largest region of Chile) in the surroundings of Copiapó city.
The historical period of these data is that of the ten years from January 2011 to December
2020; the data are associated with 21 rivers (or stream channels) and were obtained from
the Chilean government website called Direccion General de Aguas (Información Oficial
Hidrometeorológica y de Calidad de Aguas en Línea).

Historical events revealed the high periodicity of the low water flux of the region.
However, cyclical events were also noticeable (such as two rainfall events and defrosting
of glaciers/snow in summer, amongst others), creating the expected multi-modality and a
large leptokurtosis.

During the processing of information, a decision-support system (DSS) sifts through
and analyzes massive amounts of data, compiling comprehensive information that can
be used in solving problems and making decisions. Figure 1 presents a flowchart of
knowledge discovery in databases (KDD); the process involves information retrieval (IR),
the decision-support system (DSS), and monitoring and forecasting.

Thus, the Atacama Desert watershed problem is part of a multi-dimensional study
related to the analysis of a circular economy. It is essential to mention that uncertainty
is always presented globally (as a measurement error or sample bias, amongst others).
Nonetheless, probabilistic reasoning allows one to generalize results through statistical
inference procedures.
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Figure 1. Visual summary of the role of probabilistic reasoning in knowledge discovery in databases
as a cornerstone for the quantification of uncertainty. Statistical inference procedures enable us to
draw conclusions based on a sample and generalize them to an entire population.

3. Statistical Inference Elements
3.1. Alpha-Skew-Normal (ASN) Distribution

Let X be a random variable that follows an Alpha-skew-normal (ASN) distribution [18];
then, its probability density function (PDF) is given by

f (x|α) = (1− αx)2 + 1
2 + α2 φ(x), (1)

where x ∈ R, α ∈ R, and φ(·) is the PDF of the standard normal distribution.
The cumulative density function (CDF) is given by

F(x|α) = Φ(x) + α

(
2− αx
2 + α2

)
φ(x). (2)

Then, wrapping the ASN density f(x|α) with the parameters for location (µ) and scale
(σ), that is, the random variable T is defined by T = µ + σX for µ ∈ R and σ > 0, this value
is given by:

f (t|µ, σ, α) =
(1− α(t− µ)σ−1)2 + 1

(2 + α2)σ
φ

(
t− µ

σ

)
. (3)

Figure 2 presents different forms of the PDF of the ASN distribution.
The CDF related to Equation (4) is

F(t|µ, σ, α) = Φ
(

t− µ

σ

)
+ α

(
2σ− α(t− µ)

(2 + α2)σ

)
φ

(
t− µ

σ

)
. (4)

Given its flexibility, the ASN distribution has been used in data modeling and has
been adopted in different fields, such as astronomy [19], the modeling of wind speed [20],
and for benchmark data [21]. Figure 2 presents different forms of the PDF of the ASN
distribution, assuming, for instance, µ = 0 (location), σ = 1 (scale), and other values for
α, in order to show the presence of asymmetry and bimodality (incorporating different
heights between the modalities).
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Figure 2. The PDF f (t) of the ASN distribution, where t is a random variable, assuming µ = 0 (location), σ = 1 (scale), and
different values for α (skewness).

3.2. Different Estimation Methods for the ASN Distribution

In this subsection, we will discuss seven different estimation methods (maximum like-
lihood estimation, ordinary and weighted least-square estimate, method of the maximum
product of spacings, Cramer–von Mises minimum distance estimators, Anderson–Darling
estimators, and right-tail Anderson–Darling estimators) for the parameters (µ, σ, and α) of
the ASN distribution. Table 1 describes the methods used and the authors that proposed
these inferential procedures. A comparison that used the cited estimators was presented
for other models [22–24].

Table 1. A summary of seven inferential estimation methods.

Estimation Method Abbreviation Created by

Maximum Likelihood Estimation MLE Fisher [25]
Ordinary Least-Square Estimate LSQ Swain et al. [5]
Weighted Least-Square Estimate WLQ Swain et al. [5]
Maximum Product of Spacings MPS Cheng & Amin [6]
Cramer–von Mises Estimators CME Macdonald [26]
Anderson–Darling Estimator ADE Boos [27]

Right-Tail Anderson–Darling Estimator RADE Luceno [8]

Note that Carl Friedrich Gauss introduced the LSQ in 1822, and it is one of the
oldest estimation procedures, although it was only in the paper of Swain et al. [5] that
this approach was discussed for a class of non-normal models, and it then became a
standard reference when applied in different probability distributions. The additional
details related to the estimation of the ASN distribution’s parameters are presented in the
following subsections.

3.2.1. Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is widely used in data analysis; Fisher’s
derivation of information inequality was first used for the analysis of variance, and later
for the estimation of functions derived from Euler’s relation for homogeneous functions.
Despite the fact that historical records of this technique have been widely exposed and
defended by Ronald A. Fisher (who likely gained visibility because of his epic fights with
Egon S. Pearson), its reasoning dates back to the mid-1700s [28].
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Let t1, t2, · · · , tn be a sample of a random sample of size n from F(t|µ, σ, α). Consider-
ing zi =

(ti−µ)
σ , the maximum likelihood estimators µ̂MLE, σ̂MLE, and α̂MLE can be obtained

by maximizing

L(µ, σ, α) =
1

(2 + α2)nσn

n

∏
i=1

(
(1− αzi)

2 + 1
)

φ(zi), (5)

with respect to µ, σ, and α. The log-likelihood function of (5) is given by

l(µ, σ, α) =
n

∑
i=1

log
(
(1− αzi)

2 + 1
)
− n log

(
2 + α2

)
− n log(σ) +

n

∑
i=1

log φ(zi). (6)

From the expressions ∂
∂µ l(µ, σ, α) = 0, ∂

∂σ l(µ, σ, α) = 0, ∂
∂α l(µ, σ, α) = 0, the likelihood

equations are
n

∑
i=1

2α(1− αzi)

(1− αzi)
2 + 1

+
n

∑
i=1

zi = 0, (7)

n

∑
i=1

2αzi(1− αzi)

(1− αzi)2 + 1
+

n

∑
i=1

z2
i = 0, (8)

n

∑
i=1

2zi(1− αzi)

(1− αzi)2 + 1
+

2nα

1 + α2 = 0. (9)

Numerical methods, such as the Newton–Rapshon, method are required in order to
find the solution of a nonlinear system. Under mild conditions, the MLEs are asymptotically
normally distributed with a joint multivariate normal distribution that is given by

(µ̂MLE, σ̂MLE, α̂MLE) ∼ N3

[
(µ, σ, α), I−1(µ, σ, α))

]
as n→ ∞, (10)

where I(µ, σ, α) is the Fisher information matrix given by Elal-Olivero [18], who discussed
that the ASN family satisfies these mild conditions.

This methodology is often adopted because of the sufficiency of the MLE, combined
with its consistency (which leads to the statistical efficiency) and the fact that asymptotic
normality is guaranteed. Next, we will present a series of minimum distance estimations
(which are easily applied to estimate consistently unknown parameters) that are designed
to reflect the proposed model in order to reproduce the probabilistic structure of the real-
world phenomenon under study [29]. Minimum distance estimations provide consistent
parameter estimates and are competitive, especially where other methods do not succeed.

3.2.2. Ordinary and Weighted Least-Square Estimates

Consider a random sample of order statistics of size n as t = {t(1), t(2), · · · , t(n)},
where t(i) is not independent of t(i+1), and F(t|µ, σ, α) is its monotonic function. The least-
square (LSQ) estimators µ̂LSE, σ̂LSE, and α̂LSE for the ASN distribution can be obtained by
minimizing the parameters µ, σ, and α:

V(µ, σ, α) =
n

∑
i=1

[
F
(

t(i) | µ, σ, α
)
− i

n + 1

]2
. (11)

Thus, the LSQ equations can be obtained by solving the non-linear equations

n

∑
i=1

[
F
(

t(i) | µ, σ, α
)
− i

n + 1

]
∆j

(
t(i) | µ, σ, α

)
= 0, j = 1, 2, 3, (12)
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where

∆1

(
t(i) | µ, σ, α

)
=

∂

∂µ
F
(

t(i) | µ, σ, α
)
=

φ(zi)

(2 + α2)σ
[2αzi − α2z2

i − 2],

∆2

(
t(i) | µ, σ, α

)
=

∂

∂σ
F
(

t(i) | µ, σ, α
)
=

ziφ(zi)

σ(2 + α2)
[2αzi − α2z2

i − 2],

∆3

(
t(i) | µ, σ, α

)
=

∂

∂α
F
(

t(i) | µ, σ, α
)
=

φ(zi)

(2 + α2)2 [2− 2α2 − 4αzi].

(13)

Alternative solutions are obtained through high-precision numerical approximations
of ∆j for j = 1, 2, 3 partial derivatives.

Alternatively, the weighted least-squares (WLQ) estimates have been proposed for
whenever an efficient method is required with small sets of data. µ̂WLSE, σ̂WLSE, and α̂WLSE
can be obtained by adopting the following minimized equation:

W(µ, σ, α) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F
(

t(i) | µ, σ, α
)
− i

n + 1

]2
. (14)

The solutions deviate from those of the non-linear equations:

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F
(

t(i) | µ, σ, α
)
− i

n + 1

]
∆j

(
t(i) | µ, σ, α

)
= 0, j = 1, 2, 3, (15)

where ∆1(· | µ, σ, α), ∆2(· | µ, σ, α) and ∆3(· | µ, σ, α) are given in (13). The WLQ estimation
technique is particularly useful whenever one aims to weigh observations in proportion to
the equivalence of the error variance for an observation in order to overcome the issue of
non-constant variance.

3.2.3. Method of the Maximum Product of Spacings

The maximum product of spacings (MPS) method is a powerful alternative to MLE
for estimating unknown parameters of continuous univariate distributions; it aims to
maximize the geometric mean of the spacings in the data (differences between the values
of the cumulative distribution function at neighborhood data points). Cheng and Amin
proposed this method [6,30]—though it was also found independently by Ranneby [7]—
as a Kullback–Leibler information approximation measurement. Some desirable properties
of the MPS methods, such as their asymptotic efficiency, invariance, and, most importantly,
consistency, are held more broadly (under general conditions) than for MLEs [30].

Let us represent the differences between the values of the cumulative distribution func-
tions on their neighborhood data points with the function Di(µ, σ, α) = F

(
t(i) | µ, σ, α

)
−

F
(

t(i−1) | µ, σ, α
)

for i = {1, 2, . . . , n+ 1, . . .} as a uniform spacing of a random sample from
the ASN distribution, which is defined by F(t(0) | µ, σ, α) = 0 and F(t(n+1) | µ, σ, α) = 1.
The constraint of ∑n+1

i=1 Di(µ, σ, α) = 1 holds. Thus, the MPS estimates µ̂MPS, σ̂MPS, and
α̂MPS can be obtained by maximizing the geometric mean of the spacings:

GASN(µ, σ, α) =

[
n+1

∏
i=1

Di(µ, σ, α)

] 1
n+1

, (16)

considering the maximization of this function (GASN) by adopting its logarithm as

HASN(µ, σ, α) =
1

n + 1

n+1

∑
i=1

log Di(µ, σ, α). (17)
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The estimates of the unknown parameters µ̂MPS, σ̂MPS, and α̂MPS are obtained by
solving the nonlinear equations

1
n + 1

n+1

∑
i=1

1
Di(µ, σ, α))

[
∆j(t(i)|µ, σ, α)− ∆j(t(i−1)|µ, σ, α)

]
= 0, j = 1, 2, 3, (18)

where ∆1(· | µ, σ, α), ∆2(· | µ, σ, α), and ∆3(· | µ, σ, α) are given, respectively, in Equation (13).
It is important to mention that if t(i+k) = t(i+k−1) = . . . = t(i), then Di+k(µ, σ, α) =

Di+k−1(µ, σ, α) = . . . = Di(µ, σ, α) = 0. Therefore, the MPS estimators are sensitive to
closely spaced observations—especially ties. When the ties are due to multiple observations,
Di(µ, σ, α) should be replaced with the corresponding likelihood, f (t(i), µ, σ, α), because
t(i) = t(i−1).

Under mild conditions, for the ASN distribution, the MPS estimators are asymptoti-
cally normally distributed with a joint trivariate normal distribution given by

(µ̂MPS, σ̂MPS, α̂MPS) ∼ N3

[
(µ, σ, α), I−1(µ, σ, α))

]
as n→ ∞. (19)

3.2.4. The Cramer–von Mises Minimum Distance Estimators

Alternatively, an estimator that requires no assumptions about the distributions’ paramet-
ric form, the Cramer–von Mises estimator (CME), is based on the difference between the esti-
mates of the cumulative distribution function and the empirical distribution function [31,32].
These estimators operate based on the minimum distance across the “true” distribution
(observed) and the “modeled” distribution (adjusted) through the maximum goodness of fit.

Macdonald [26] showed that the bias of the estimator in the CME presents smaller
distances than those of other minimum distance estimators. The Cramer–von Mises
estimates µ̂CME, σ̂CME, and α̂CME of the parameters µ, σ, and α are obtained through
minimization with

C(µ, σ, α) =
1

12n
+

n

∑
i=1

(
F
(

t(i) | µ, σ, α
)
− 2i− 1

2n

)2
. (20)

Thus, these estimates are also obtained by solving the non-linear equations:

n

∑
i=1

(
F
(

t(i) | µ, σ, α
)
− 2i− 1

2n

)
∆j

(
t(i) | µ, σ, α

)
= 0, j = 1, 2, 3, (21)

where ∆1(· | µ, σ, α), ∆2(· | µ, σ, α), and ∆3(· | µ, σ, α) are given, respectively, in Equation (13).

3.2.5. The Anderson–Darling and Right-Tail Anderson–Darling Estimators

Another type of minimum distance estimator is based on Anderson–Darling statistics,
and it is often called an Anderson–Darling estimator (ADE). This estimator is based on
the minimum distance estimation obtained by sampling data sorted in ascending order
from the observed set (Y), and then X = Sort(Y), in combination with the permutation of
{1, 2, . . . , n}, which causes the X series to be sorted. Thus, this process is associated with
the cumulative distribution function F(·) and the survival function S(·) = 1− F(·) for
any PDF. In contrast, samples are only drawn from a uniform distribution if Y (and X) are
samples from the PDF distribution.

The Anderson–Darling estimates µ̂ADE, σ̂ADE, and α̂ADE of the parameters µ, σ, and α
are obtained by minimizing, with respect to µ, σ, and α, the function:

A(µ, σ, α) = −n− 1
n

n

∑
i=1

(2i− 1)
(

log F
(

t(i) | µ, σ, α
)
+ log S

(
t(n+1−i) | µ, σ, α

) )
. (22)
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These estimates can also be obtained by solving the non-linear equations:

n

∑
i=1

(2i− 1)

∆j

(
t(i) | µ, σ, α

)
F
(

t(i) | µ, σ, α
) − ∆j

(
t(n+1−i) | µ, σ, α

)
S
(

t(n+1−i) | µ, σ, α
)
 = 0, j = 1, 2, 3. (23)

Alternatively, one can improve the ADE’s performance by considering the infor-
mation held in the non-symmetrical differences between the theoretical CDF and the
empirical CDF [33]. Thus, the right-tail Anderson–Darling estimator (RADE) is an alterna-
tive; µ̂RADE, σ̂RADE, and α̂RADE of the parameters µ, σ, and α are obtained by minimizing
the function:

R(µ, σ, α) =
n
2
− 2

n

∑
i=1

F(ti:n | µ, σ, α)− 1
n

n

∑
i=1

(2i− 1) log S(tn+1−i:n | µ, σ, α). (24)

These estimates can also be obtained by solving the non-linear equations:

− 2
n

∑
i=1

∆j(ti:n | µ, σ, α) +
1
n

n

∑
i=1

(2i− 1)
∆j
(
tn+1−i:n | µ, σ, α

)
S(tn+1−i:n | µ, σ, α)

= 0, j = 1, 2, 3, (25)

where ∆1(· | µ, σ, α), ∆2(· | µ, σ, α), and ∆3(· | µ, σ, α) are given, respectively, in Equation (13).

4. Numerical Analysis

In this section, we investigated the behavior of the ASN distribution based on artificial
(synthetic) data, as well as the modification of its parameters as a condition of the estimation
method. Thus, a Monte Carlo simulation was carried out, the seven most commonly used
estimation methods were considered for the parameters, and their efficiency was compared.
The following approach was adopted. The procedure was:

1. Given a set of parameters from the ASN(µ, σ, α) distribution, N samples of size n
were generated;

2. For each generated set, based on the estimation methods (MLE, LSQ, WLQ, MPS,
CME, ADE, and RADE), estimates of the parameters (µ, σ, and α) were calculated;

3. Then, considering θ̂ = (µ̂, σ̂, α̂) and θ = (µ, σ, α), the bias and mean squared error (MSE)

of θ̂, which were given, respectively, by 1
N ∑N

k=1

(
θ̂
(k)
j − θj

)
and 1

N ∑N
k=1

(
θ̂
(k)
j − θj

)2

for j = {1, 2, 3} (each parameter), were computed. θ̂
(k)
j denotes the estimate of θj

obtained from sample k for k = 1, 2, · · · , N.
4. The overall bias and the overall MSE were computed with 1

N ∑N
k=1 ∑3

j=1(
θ̂
(k)
j − θj

)
and 1

N ∑N
k=1 ∑3

j=1

(
θ̂
(k)
j − θj

)2
.

The results of this simulation should return the estimation method that can be ex-
pected to be the most efficient based on if the estimations of both the bias and MSE are close
to zero. For this simulation study, we adopted the R software [34], and for the maximization
method, we used the maxLik and stats4 packages [35]. The values chosen for the simulation
parameters were N = 10, 000 and n = {40, 60, 80, · · · , 300}. Due to the lack of space, we
will present the results only for {µ = 0, σ = 1, α = 1} and {µ = 0, σ = 1, α = 6}. Nonethe-
less, the following results are generalized by other choices of the vector of parameters θ.
The estimation methods were considered under the same conditions in terms of samples,
numbers of limit iterations, and initial values. Here, we considered the true values as initial
values. However, we provide a simple approach that will be discussed in the next section
in order to deal with real cases where good initial values are not available.

Figures 3 and 4 present the performance of the estimators in terms of the bias and
MSE for the parameters µ, σ, and α when using the MLE, LSQ, WLQ, MPS, CME, ADE, and
RADE with N = 10.000 simulated samples and different values of n. It can be observed
that the MLE did not return adequate estimates for some parameter values and only
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converged for samples of large sizes (moreover, an identifiability problem was noticeable
when the MLE was adopted). These results show a drawback in the current approaches to
obtaining parameter estimates with an ASN distribution. Although there is not a method
that uniformly returns better estimates for all parameters and different parameter values,
we observed that the MPS obtained the best results in terms of the minimum bias and MSE.
Additionally, obtaining an estimate for α was quite challenging, but the MPS returned
the smallest bias for this parameter. Therefore, we recommend using the MPS to obtain
estimates for all practical purposes.
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Figure 3. Bias and MSE of the estimates of µ = 0, σ = 1, and α = 1 for N = 10,000 simulated samples of size n using the
following methods: MLE, MPS, ADE, RADE, LSE, WLSE, and CME. Based on Figure 2, by choosing the configuration of
these parameters (µ = 0.5, σ = 0.5, and α = 3), a bimodal PDF can be seen, which presents a larger peak to the left and a
smaller peak to the right.
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Figure 4. Bias and MSE of the estimates of µ = 0, σ = 1, and α = 6 for N = 10,000 simulated samples of size n using the
following methods: MLE, MPS, ADE, RADE, LSE, WLSE, and CME.

5. Results

As we stated in Section 2, the motivation of this paper was driven by the water flux in
the Atacama Desert or, more precisely, in the surroundings of Copiapó city. Figure 5 shows
the empirical density of this phenomenon; a high concentration of low values is presented
(near zero), although important events were also captured in this 10-year time window,
such as a large amount of rainfall that caused a large leptokurtosis.
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Figure 5. Empirical density function of the water flux in the 21 rivers/channels in the surroundings
of Copiapó city. The solid gray shade represents the density (frequency) of each of the numerical
records of the water flux, and the solid red line represents a smooth adjusted function.

Table 2 presents the statistical summaries (minimum, first quartile, median, mean,
third quartile, and maximum) of the water flux by month. Because the weather is very
constant in the region, the seasonality across years can be ignored, as low flux is common
(close values through the minimum of the months). Nonetheless, the cycle in each month
is essential; given events such as defrosting at the end of spring/beginning of summer
(higher values in the third quartile in November and December), it is expected to that more
water will be received in the system.

Table 2. Summary statistics of the water flux by month.

Month Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

JAN 0.02 0.06 0.31 0.5374 0.68 3.45 39
FEB 0.01 0.065 0.2 0.5165 0.6875 3.15 40

MAR 0.01 0.06 0.31 0.5449 0.85 3.24 37
APR 0.03 0.08 0.27 0.4494 0.5275 2.25 36
MAY 0.03 0.12 0.29 0.7859 0.55 19.47 47
JUN 0.02 0.12 0.35 0.9106 0.62 19.01 51
JUL 0.01 0.14 0.46 0.5636 0.64 2.58 53

AUG 0.01 0.1125 0.33 0.4692 0.6175 2.23 50
SEP 0.01 0.2025 0.45 0.5356 0.6775 2.66 52
OCT 0.02 0.1 0.37 0.5229 0.77 2.46 49
NOV 0.01 0.0775 0.365 0.5536 0.855 3.36 48
DEC 0.01 0.055 0.265 0.5639 0.7975 5.04 46

Logarithmic transformations have been used for a long time [36], though a normal
distribution is often obtained. In some other situations, this is not the case; for instance,
the dynamic of the water flux in the observed period, which is shown in Figure 6, shows
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the presence of bimodality in this data transformation, and its monthly representation is
shown in Figure 7. It is essential to mention that the maximum historical values were in
May and June (of 2017); they were related to the heavy rains that occurred in the region,
which are also notable in the previous Table 2.

Figure 6. The empirical distribution of the log of the water flux and its frequency, which is represented
by gray blocks. The black dashed line represents the adjusted ASN distribution based on the MPS
(µ = −1.93, σ = 0.896, α = −7.87), which is represented by the blue dashed line, and the RADE
(µ = −1.87, σ = 1.05, α = −8.88), which is represented by the red dot-dashed line.

Figure 7. The logarithm of the water flux dispersion records (y-coordinates) for each year (per panel)
by month (x-coordinates).
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The empirical distribution of this phenomenon is visualized in Figure 6, in which the
dashed lines represents the adjusted density functions: the MPS in red and the RADE in
blue. The initial values used to start the iteration procedures were obtained from

µ̃ =
n

∑
i=1

xi
n

and σ̃ =
n

∑
i=1

(xi − µ̃)2

n
, (26)

while α̃ was obtained from a grid search in the range (−10,−9.5, . . . , 9, 10). To confirm that
the MPS returned better estimates than the others, we used Ecdf-based goodness-of-fit
tests of the ASN distribution model. Figure 8 shows a particular type of distance between
the functions Fn and the observed values.

Figure 8. Ecdf-based test of the ASN distribution; RADE returned an AIC estimation of 274 and
MPS returned an AIC estimation of 251.

After transforming the parameters with the exponential function, the practical impli-
cations of the obtained results are that, on average, it is expected that a monthly water
flux of 0.1452 (from the MPS)—compared to 0.1541 (from the RADE)—will be observed,
which will show a monthly dispersion of 2.45 (MPS) versus 2.85 (RADE) by considering
the value of µ. Regarding the asymmetry estimated with both methods (α), they showed
that it is expected that a frequent occurrence will be seen on the right side of the empirical
distribution, that is, the recurrence of values greater than the average (µ) is expected. Based
on the results found by Elal-Olivero [18], if an ASN distribution presents a parameter
α > 1.34, a bimodality will be obtained; if not, then shall only see a skewness. Through
the transformation of the estimations towards the skewed parameter (α), it bimodality was
obtained (in cases of both MPS and RADE); on the other hand, through the exponentiation
of α̂, elements in the direction of skewed information were obtained. Figure 5 shows the
presence of skewed data.

After confirming the ASN distribution’s goodness of fit, the occurrence of an event
could be associated with its density (or cumulative) probability function. For instance,
extreme values can be seen; Table 3 shows some exemplifications that consider 1%, 10%,
50%, 99%, and 99.99%.
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Table 3. Cumulative event probability based on the adjusted ASN distribution (using RADE).

CUM Prob. 1% 10% 50% 99% 99.99%

Flux 0.0059 0.0174 0.3396 1.5068 16.281

6. Conclusions

Uncertainty reveals a wide variety of processes and experiences that may follow
different rules. However, other attributions of uncertainty, such as external (disposition)
versus internal factors (ignorance), are assessed through statistical inference with certain
philosophical interpretations of probability [37]. The utilities of each possible outcome lead
to the choice of rational actions regardless of the observed results’ uncertainty.

The example presented by this paper is the modeling of water flux, which is an
essential element that has been placed under stress by significant population growth
and an increase in the demand for water supply (for agriculture, industrial processes,
mineral extraction, and human consumption) [38]. Therefore, planning the logistics of
excessive water decisions according to their probabilistic distributions helps in unraveling
this complex task [39,40]; this can be initiated by the analysis of the water flux, especially
when environmental factors present limited sources for the water levels.

In the Atacama Desert, a north–south geographic band that is mainly located in
northern Chile, precipitation is only a few millimeters per year, making it one of the driest
places on Earth [41,42]. However, the vast expanses of the desert are punctuated by fertile
valleys with rivers that originate in the central Andes and flow into the Pacific Ocean. Along
these rivers, human populations have logically settled, exploiting this rare and precious
water more and more throughout history, especially with the growing development of the
mining industry, which is logically interested in the mineral resources of the Cordillera.

The hydrological regime of these rivers is characteristic of arid areas: Water flows
from the peaks after the melting of the snowfall, glaciers, and permafrost located in
the upper parts of the Cordillera [43]. In the context of climate change, it is therefore
essential to understand the global hydrological cycles of these regions in order to set
up a sustainable management policy [44]. This requires the implementation of tools for
forecasting river flows, relative humidity, or any other water-related quantities, resulting
in an inevitable need for in-depth knowledge of the physical phenomena that govern the
entire hydrological cycle and, more precisely, the complex interactions among climate, ice,
snow, and river flows.

Thus, this work proposed the investigation of different inference methods for the
ASN probabilistic distribution, which is a promising and flexible distribution. Bimodality
was noticeable and skewed information was observed in the historical series, but the
distribution was nevertheless accommodated by the adopted probabilistic approach.

By using real-time analysis, big data solutions can now be implemented, as the
process’s probabilistic function was estimated and evidence of the goodness of fit was
shown. In addition to the elements of the ASN distribution shown here, monitoring charts
and other statistical process control (SPC) tools can also be explored because parametric
distributions are often adopted. Future work should expand on the reasoning of the
quantile estimations with explainable features (in a regression structure) that are associated
with this problem, and forecasting may also be a motivation for future research.
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