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Abstract: We construct characteristic identities for the split (polarized) Casimir operators of the
simple Lie algebras in adjoint representation. By means of these characteristic identities, for all simple
Lie algebras we derive explicit formulae for invariant projectors onto irreducible subrepresentations
in T⊗2 in the case when T is the adjoint representation. These projectors and characteristic identities
are considered from the viewpoint of the universal description of the simple Lie algebras in terms of
the Vogel parameters.
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1. Introduction

In this paper, we demonstrate the usefulness of the g-invariant split Casimir operator
Ĉ (see definition in Section 2) in the representation theory of Lie algebras (see also [1]).
Namely, for all simple Lie algebras g, explicit formulas can be found for invariant projectors
onto irreducible representations that appear in the expansion of the tensor product T ⊗ T′

of two representations T and T′. In particular, these invariant projectors are constructed
in terms of the g-invariant operator Ĉ. It is natural to find invariant projectors in terms
of g-invariant operators, which in general are images of special elements of the so-called
centralizer algebra.

In the paper, we consider a very particular problem of constructing invariant projectors
in representation spaces of T⊗2, where T ≡ ad is the adjoint representation but for all
simple Lie algebras g. Our approach is closely related to the one outlined in [1,2]. In [2],
such invariant projectors were obtained in terms of several special invariant operators and
the calculations were performed using a peculiar diagram technique. In our approach, we
try to construct invariant projectors in the representation space V⊗2 of T⊗2 by using only
one g-invariant operator, which is the split Casimir operator Ĉ.

It turns out (see [3]) that for all simple Lie algebras g in the defining representations
all invariant projectors in V⊗2 are constructed as polynomials in Ĉ. This is not the case
for the adjoint representation, i.e., not for all algebras g the invariant projectors in V⊗2

ad are
constructed as polynomials of only one operator Ĉad ≡ ad⊗2 Ĉ. Namely, in the case of
s`(N) and so(8) algebras there are additional g-invariant operators that are independent of
Ĉad and act, respectively, in the anti-symmetrized and symmetrized parts of the space V⊗2

ad .
In [3], we constructed such additional operators explicitly.

Our study of the split Casimir operator Ĉ was motivated by the works [4–7], and by
the idea that the knowledge of the characteristic identities for Ĉad turns out to be a key
point for understanding the so-called universal formulation of the simple Lie algebras [8]
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(see also the historical notes in [2], Section 21.2). Though some characteristic identities
and formulas for certain g-invariant projectors can be found in a different form in [2], we
believe that the methods we used and the results obtained can be useful for future research,
e.g., from the viewpoint of technical applications of the split Casimir operator.

The split Casimir operator Ĉad for the Lie algebras of the classical series in the adjoint
representation and for the exceptional algebras was considered in detail in [3,9]. Here, we
present only a universal description of these results.

In our paper, to simplify the notation, we always write s`(N), so(N) and sp(2n)
instead of s`(N,C), so(N,C) and sp(2n,C), respectively.

2. Split Casimir Operator for Simple Lie Algebras
2.1. General Definitions

Let g be a simple Lie algebra with the basis Xa and defining relations

[Xa, Xb] = Cd
ab Xd , (1)

where Cd
ab are the structure constants. The Cartan–Killing metric is defined in the

standard way:
gab ≡ Cd

ac Cc
bd = Tr(ad(Xa) · ad(Xb)) , (2)

where ad denotes adjoint representation: ad(Xa)d
b = Cd

ab. Recall that the structure constants
Cabc ≡ Cd

ab gdc are antisymmetric under permutation of indices (a, b, c). We denote an
enveloping algebra of the Lie algebra g as U (g).

Let gd f be the inverse matrix to the Cartan–Killing metric (2). We use this matrix and
construct the operator

Ĉ = gabXa ⊗ Xb ∈ g ⊗ g ⊂ U (g) ⊗ U (g) , (3)

which is called the split (or polarized) Casimir operator of the Lie algebra g. This operator is
related to the usual quadratic Casimir operator

C(2) = gab Xa · Xb ∈ U (g) , (4)

by means of the formula

∆(C(2)) = C(2) ⊗ I + I ⊗ C(2) + 2 Ĉ , (5)

where ∆ is the standard co-multiplication for enveloping algebras U (g):

∆(Xa) = (Xa ⊗ I + I ⊗ Xa) . (6)

The following statement holds (see, for example, [10,11]).

Proposition 1. The operator Ĉ, given in (3), does not depend on the choice of the basis in g and
satisfies the condition (which is called ad-invariance or g-invariance):

[∆(A), Ĉ] = [(A⊗ I + I ⊗ A), Ĉ] = 0 , ∀A ∈ g , (7)

where ∆ is co-multiplication (6). In addition, the operator Ĉ obeys the equations

[Ĉ12, Ĉ13 + Ĉ23] = 0 ⇒ [Ĉ13, Ĉ23] =
1
2
[Ĉ12, Ĉ13 − Ĉ23] , (8)

which use the standard notation

Ĉ12 = gabXa ⊗ Xb ⊗ I, Ĉ13 = gabXa ⊗ I ⊗ Xb, Ĉ23 = gab I ⊗ Xa ⊗ Xb. (9)

Here I is the unit element in U (g) and Ĉij ∈ U (g) ⊗ U (g) ⊗ U (g).
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Relations (8) indicate that the split Casimir operator (3) realizes the Kono–Drinfeld
Lie algebra and can be used as a building block for constructing solutions to the quantum
and semi-classical Yang–Baxter equations (see, e.g., [12,13] and references therein).

2.2. The Split Casimir Operator for Simple Lie Algebras in the Adjoint Representation

The generators Xa of a simple Lie algebra g satisfy the defining relations (1) and, in
the adjoint representation, Xa are implemented as matrices ad(Xa)d

b = Cd
ab. In this case the

split Casimir operator (3) is written as

(Ĉad)
a1a2
b1b2
≡ (ad⊗ ad)a1a2

b1b2
(Ĉ) = Ca1

hb1
Ca2

f b2
gh f . (10)

By definition, this operator satisfies identities (8). Below we need one more ad-
invariant rank-1 operator:

(K)a1a2
b1b2

= ga1a2 gb1b2 . (11)

The operators (10) and (11) act in the tensor product Vad ⊗Vad of two spaces Vad = g

of the adjoint representation and have the symmetry properties (Ĉad)
a1a2
b1b2

= (Ĉad)
a2a1
b2b1

and
Ka1a2

b1b2
= Ka2a1

b2b1
, which are conveniently written in the form

(Ĉad)21 = P(Ĉad)12P = (Ĉad)12 , K21 = P K12 P = K12 ,

where 1, 2 are numbers of spaces Vad in the product (Vad ⊗ Vad) and P is a permutation
matrix in (Vad ⊗Vad):

P(Xa1 ⊗ Xa2) = (Xa2 ⊗ Xa1) = (Xb1 ⊗ Xb2)P
b1b2
a1a2 , Pb1b2

a1a2 = δb1
a2 δb2

a1 . (12)

Here (Xa ⊗ Xb) is the basis in the space (Vad ⊗ Vad). Define the symmetrized and
anti-symmetrized parts of the operator Ĉad

(Ĉ±)
a1a2
b1b2

=
1
2
((Ĉad)

a1a2
b1b2
± (Ĉad)

a2a1
b1b2

) , Ĉ± = P(ad)
± Ĉad = Ĉad P(ad)

± , (13)

where P(ad)
± = 1

2 (I± P) and I is the unit operator in (Vad)
⊗2.

Proposition 2. The operators Ĉad, Ĉ± and K, given in (10), (11) and (13), satisfy the identities

Ĉ2
− = −1

2
Ĉ− , (14)

Ĉ− K = 0 = K Ĉ− , Ĉad K = K Ĉad = −K , (15)

Ĉ+ K = K Ĉ+ = −K . (16)

The proof was presented in [3].
Now we take into account Definitions (10)–(12), Relations (14),

(Ĉ−)
a1a2
b1b2

= −1
2

Ca1a2
d Cd

b1b2
, Ca1a2

d ≡ Ca1
d b2

gb2a2 . (17)

Cd
b1b2

Cb1b2
a = δd

a ⇔ ad(C(2))
f
r = gab C f

a dCd
b r = δ

f
r , (18)

and Ca
ba = 0, which is valid for all simple Lie algebras, and obtain general formulas for

the traces
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Tr(Ĉad) = 0 , Tr(Ĉ±) = ± 1
2 dim g , Tr(Ĉ2

ad) = dim g ,

Tr(Ĉ2
−) = − 1

2 Tr(Ĉ−) = 1
4 dim g,

Tr(Ĉ2
+) = Tr(Ĉ2

ad − Ĉ2
−) =

3
4 dim g,

Tr(K) = dim g , Tr(I) = (dim g)2 , Tr(P) = dim g .

(19)

where Tr ≡ Tr1Tr2 is the trace in the space Vad ⊗ Vad (as usual the indices 1 and 2 are
attributed to factors in the product Vad⊗Vad). These formulas will be used in what follows.

Using the characteristic identity (14) for the operator Ĉ−, one can construct two
mutually orthogonal projectors

P1 = −2 Ĉ− , P2 = 2 Ĉ− + P(ad)
− ⇒ Pi Pk = Pi δik , (20)

which decompose the anti-symmetrized part P(ad)
− (ad⊗ ad) of the representation (ad⊗ ad)

into two sub-representations X1,2 = P1,2(ad⊗ ad). The dimensions of these sub-
representations are equal to the traces of corresponding projectors (20):

dimX1 = Tr(P1) = dim g, dimX2 = Tr(P2) =
1
2

dim g (dim g− 3), (21)

where we use the general formulae (19). Since the constants Cd
b1b2

play the role of the

Clebsch–Gordan coefficients for the fusion ad⊗2 → ad, we see from the explicit form (17)
of the operator Ĉ− that the projector P1, given in (20), extracts the adjoint representation
X1 = ad in P(ad)

− (ad⊗2). Thus, the adjoint representation is always contained in the anti-

symmetrized part P(ad)
− (ad⊗2). The first formula in (21) confirms the equivalence of X1

and ad. Note also that X2 is not necessarily an irreducible representation for all simple Lie
algebras (for the details, see [3]).

2.3. Universal Characteristic Identities for Operator Ĉ+ in the Case of Lie Algebras of
Classical Series

It was shown in [3] that for the algebras of the classical series An, Bn, Cn, Dn the
characteristic identities for the operator Ĉ+ in the adjoint representation can be written in a
generic form:

Ĉ3
+ +

1
2

Ĉ2
+ = µ1Ĉ+ + µ2(I(ad) + P(ad) − 2K) , (22)

where µ1 and µ2 are the parameters of the simple Lie algebras as we define these parameters
at the moment. Multiplying both sides of Equation (22) by K and using the relations

K (I(ad) + P(ad)) = 2 K , K Ĉ+ = −K , K ·K = dim g ·K ,

one may express the dimension of the Lie algebra g through the parameters µ1 and µ2:

dim g =
2µ2 − µ1 + 1/2

2µ2
. (23)

Then, we multiply both sides of (22) by P(ad)
+ (Ĉ+ + 1) and deduce the characteristic

identity for Ĉ+ projected onto the subspace P(ad)
+ (V⊗2

ad ) ≡ 1
2 (I

(ad) + P(ad)) (V⊗2
ad ):

P(ad)
+ (Ĉ+ + 1)(Ĉ3

+ +
1
2

Ĉ2
+ − µ1Ĉ+ − 2µ2) = 0 , (24)

which can be written in a factorized form:
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P(ad)
+ (Ĉ+ + 1)(Ĉ+ +

α

2t
)(Ĉ+ +

β

2t
)(Ĉ+ +

γ

2t
) = 0 ⇔ P(ad)

+

4

∏
i=1

(Ĉ+ − ai) = 0 . (25)

Here, we introduce the notation for the roots of the identity (24)

a1 = −1 , a2 = − α

2t
, a3 = − β

2t
, a4 = − γ

2t
, t = α + β + γ , (26)

and the last equation follows from the condition (a2 + a3 + a4) = −1/2, which is obtained
from the comparison of (24) and (25). The parameter t normalizes the eigenvalues of the
operator Ĉ+. For each simple Lie algebra g we choose t−1 such that

(θ, θ) =
1
t

, (27)

where θ is the highest root of g. Thus, t coincides with the dual Coxeter number h∨ of
the algebra g. The parameters α, β, γ were introduced by Vogel [8]. The values of these
parameters for the algebras An, Bn, Cn, Dn are summarized in Table 1.

Table 1. The Vogel parameters for the Lie Algebras of Classical Series.

s`(n + 1) so(2n + 1) sp(2n) so(2n)

t n + 1 2n− 1 n + 1 2n− 2

α
2t −1/(n + 1) −1/(2n− 1) −1/(n + 1) −1/(2n− 2)

β
2t 1/(n + 1) 2/(2n− 1) 1/(2n + 2) 1/(n− 1)

γ
2t 1/2 (2n− 3)/(4n− 2) (n + 2)/(2n + 2) (n− 2)/(2n− 2)

Here we encounter an interesting non-linear diophantine problem of finding all
integers dim g in (29) for which the parameters α, β,γ and dim V(ai)

are integers. The partial
solutions of this problem are given in Table 1. The analogous diophantine problems were
considered in [14,15].

Comparison of Equations (24) and (25) implies that the parameters µ1 and µ2 are
expressed via the Vogel parameters as

µ1 = −αβ + αγ + βγ

4t2 , µ2 = −αβγ

16t3 , (28)

and the dimensions (23) of the simple Lie algebras acquire a remarkable universal form
obtained by Deligne and Vogel [8,16]:

dim g =
(α− 2t)(β− 2t)(γ− 2t)

αβγ
. (29)

Now, by using the characteristic identity (25), one can obtain the universal form of the
projectors P(+)

(ai)
on the invariant subspaces V(ai)

in the symmetrized space P(ad)
+ (V⊗2

ad ):

P(+)
(− α

2t )
= 4t2

(β−α)(γ−α)

(
Ĉ2
+ +

( 1
2 −

α
2t
)
Ĉ+ + βγ

8t2

(
I(ad) + P(ad) − 2α

(α−2t)K
))
≡ P(+)(α|β, γ),

P(+)

(− β
2t )

= P(+)(β|α, γ) , P(+)

(− γ
2t )

= P(+)(γ|α, β) , P(+)
(−1) =

1
dim g

K .
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The irreducible representations that act in the subspaces V(−1), V(− α
2t )

, V
(− β

2t )
, V(− γ

2t )

were respectively denoted in [8] as X0, Y2(α), Y2(β), Y2(γ); see Section 3 below. Finally, we
calculate (by means of trace Formulas (19)) the universal expressions [8] for the dimensions
of the invariant eigenspaces V(ai)

:

dim V(−1) = Tr P(+)
(−1) = 1 ,

dim V(− α
2t )

= Tr P(+)
(− α

2t )
= − (3α− 2t)(β− 2t)(γ− 2t)t(β + t)(γ + t)

α2(α− β)β(α− γ)γ
, (30)

dim V
(− β

2t )
= Tr P(+)

(− β
2t )

= − (3β− 2t)(α− 2t)(γ− 2t)t(α + t)(γ + t)
β2(β− α)α(β− γ)γ

, (31)

dim V(− γ
2t )

= Tr P(+)

(− γ
2t )

= − (3γ− 2t)(β− 2t)(α− 2t)t(β + t)(α + t)
γ2(γ− β)β(γ− α)α

. (32)

2.4. Universal Characteristic Identities for Operator Ĉ in the Case of Exceptional Lie Algebras

The antisymmetric parts of the split Casimir operators Ĉ− for all simple Lie algebras
in the adjoint representation obey the same identity (14):

Ĉ−

(
Ĉ− +

1
2

)
= 0. (33)

The symmetric parts of the split Casimir operators Ĉ+ in the adjoint representation
for the exceptional Lie algebras obey identities that have a similar structure (The universal
formulae (34) were obtained in [2], eq. (17.10), under the assumption that Ĉ 2

+ is expressed
as a linear combination of g-invariant operators (I + P), K and Ĉ+. We explicitly checked
this assumption for all exceptional Lie algebras [3].)

Ĉ2
+ = −1

6
Ĉ+ + µ (I + P + K) , (34)

where the universal parameter µ is fixed as follows:

µ =
5

6(2 + dim(g))
. (35)

Note that the identities for the algebras s`(3) and so(8) have the same structure.
From (34) one can obtain the universal characteristic identity on the symmetric part of

the split Casimir operator Ĉ+ projected onto the subspace P(ad)
+ (V(⊗2

ad ) :

P(ad)
+ (Ĉ+ + 1)(Ĉ2

+ +
1
6

Ĉ+ − 2µ) ≡ P(ad)
+ (Ĉ+ + 1)(Ĉ+ +

α

2t
)(Ĉ+ +

β

2t
) = 0 , (36)

where we introduced the notation for two eigenvalues of the Ĉ+ :

α

2t
=

1− µ′

12
,

β

2t
=

1 + µ′

12
, µ′ :=

√
1 + 288µ =

√
dim g+ 242

dim g+ 2
. (37)

According to (36), these parameters are related as

3(α + β) = t.

With the fixed value of the parameter α, this relation defines the line of the exceptional
Lie algebras on the β, t plane (see Equation (47) below). Following [2], note that µ′ is a
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rational number only for a certain sequence of dimensions dim g. It turns out that this
sequence is finite (We thank D. O. Orlov who proved the finiteness of this sequence):

dim g = 3, 8, 14, 28, 47, 52, 78, 96, 119, 133, 190, 248, 287, 336,
484, 603, 782, 1081, 1680, 3479 ,

(38)

which includes the dimensions 14, 52, 78, 133, 248 of the exceptional Lie algebras
g2, f4, e6, e7, e8, and the dimensions 8 and 28 of the algebras s`(3) and so(8), which are
sometimes also referred to as exceptional. Thus, for these algebras, using (37), we calculate
the values of the parameters α

2t , β
2t given in Table 2.

Table 2. The Vogel parameters for the exceptional Lie algebras.

s`(3) so(8) g2 f4 e6 e7 e8
α
2t −1/3 −1/6 −1/4 −1/9 −1/12 −1/18 −1/30

β
2t 1/2 1/3 5/12 5/18 1/4 2/9 1/5

Taking into account that Ĉ− satisfies (14) and Ĉ+ satisfies (36), we obtain the following
identities for the total split Casimir operator Ĉad = (Ĉ+ + Ĉ−) in the case of the exceptional
Lie algebras:

Ĉad

(
Ĉad +

1
2

)(
Ĉad + 1

)(
Ĉ2

ad +
1
6

Ĉad − 2µ

)
= 0 ⇒ (39)

Ĉad

(
Ĉad +

1
2

)(
Ĉad + 1

)(
Ĉad +

α

2t

)(
Ĉad +

β

2t

)
= 0 . (40)

Here µ is defined in (35) and α
2t , β

2t are given in Table 2.

Remark 1. The sequence (38) contains dimensions dim g∗ = (10m− 122 + 360/m), (m ∈ N)
referring to the adjoint representations of the so-called E8 family of algebras g∗; see [2], eq. (21.1).
For these dimensions we have the relation µ′ = |(m + 6)/(m− 6)|. The two numbers 47 and 119
from the sequence (38) do not belong to the sequence dim g∗. Thus, the interpretation of these two
numbers as dimensions of some algebras is missing. Moreover, for values dim g given in (38), using
(37), one can calculate dimensions (30) of the corresponding representations Y(α):

dim V(− α
2t )

=
{

5, 27, 77, 300, 14553
17 , 1053, 2430, 48608

13 , 111078
19 , 7371, 15504, 27000,

841279
23 , 862407

17 , 107892, 2205225
13 , 578151

2 , 559911, 42507504
31 , 363823677

61

}
Since dim V(− α

2t )
should be an integer, we conclude that no Lie algebras exist with dimensions

47, 96, 119, 287, 336, 603, 782, 1680, 3479, for which we assume characteristic identity (36) and the
trace Formulas (19).

3. Universal Characteristic Identities for Operator Ĉ and Vogel Parameters

In Sections 2.2 and 2.3 we constructed the projectors onto the spaces of irreducible
sub-representations in the representation ad⊗2 for all simple Lie algebras of classical series
An, Bn, Cn, Dn. In all cases, the construction was carried out by finding the characteristic
identities for the split Casimir operators. We note that the construction of projectors in terms
of the split Casimir operator and finding the dimensions of the corresponding subspaces
can be obtained by using the Vogel parameters α, β and γ, which were introduced in [8]
(see also [5,17]). The values of the Vogel parameters specify simple Lie algebras and we
present these values in Table 3 (see below). Since all universal formulas for the simple Lie
algebras are written as homogeneous and symmetric functions of the parameters α, β and
γ, one can consider simple Lie algebras as points in the space RP3/S3. It is convenient to
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choose a normalization of the parameters such that α = −2, see Table 3. Note that the data
in the first six lines of Table 3 coincide with the data given in Table 1 of Section 2.3. We list
the Vogel parameters for the algebras s`(3) and so(8) in the separate lines of Table 3, since
the characteristic identities for the symmetric part Ĉ+ of the split Casimir operator in the
adjoint representations have the same order and the same structure as for the exceptional
Lie algebras (see [3]).

Table 3. The Vogel parameters for the simple Lie algebras.

Type Lie Algebra α β γ t − α
2t = 1

t − β
2t − γ

2t

An s`(n + 1) −2 2 n + 1 n + 1 1
n+1 − 1

n+1 −1/2

Bn so(2n + 1) −2 4 2n− 3 2n− 1 1
2n−1 − 2

2n−1 − 2n−3
2(2n−1)

Cn sp(2n) −2 1 n + 2 n + 1 1
n+1 − 1

2(n+1) − n+2
2(n+1)

Dn so(2n) −2 4 2n− 4 2n− 2 1
2n−2 − 1

n−1 − n−2
2(n−1)

A2 s`(3) −2 2 3 3 1/3 −1/3 −1/2

D4 so(8) −2 4 4 6 1/6 −1/3 −1/3

G2 g2 −2 10/3 8/3 4 1/4 −5/12 −1/3

F4 f4 −2 5 6 9 1/9 −5/18 −1/3

E6 e6 −2 6 8 12 1/12 −1/4 −1/3

E7 e7 −2 8 12 18 1/18 −2/9 −1/3

E8 e8 −2 12 20 30 1/30 −1/5 −1/3

As usual, we split the tensor product of two adjoint representations into the symmetric
and antisymmetric parts:

ad⊗ ad = P(ad)
+ (ad⊗ ad) + P(ad)

− (ad⊗ ad). (41)

In the general case of the Lie algebras of the classical series (the algebras s`(3) and so(8)
are exceptional cases), the symmetric part P(ad)

+ (ad⊗2) decomposes into four irreducible
representations (see, e.g., [8]): a singlet, denoted as X0, with a zero eigenvalue of the
quadratic Casimir operator C(2) (which corresponds to the eigenvalue (−1) for the split
operator Ĉ), and three representations that we denote as Y2(α), Y2(β) and Y2(γ). Their
dimensions, as well as the corresponding values of the quadratic Casimir operator C(2)

(defined in (4)) and split Casimir operator Ĉ are equal to:

dim Y2(α) = dim V(− α
2t )

, C(2) = 2− α

t
, Ĉ = − α

2t
, (42)

dim Y2(β) = dim V
(− β

2t )
, C(2) = 2− β

t
, Ĉ = − β

2t
, (43)

dim Y2(γ) = dim V(− γ
2t )

, C(2) = 2− γ

t
, Ĉ = − γ

2t
. (44)

where the explicit expressions for dim V(− α
2t )

, dim V
(− β

2t )
and dim V(− γ

2t )
are given in

(30)–(32), respectively, and the eigenvalues of the operators C(2) and Ĉ are related by
the condition:

Ĉ =
1
2

C(2) − 1 . (45)

The eigenvalues of the operator Ĉ on the representations Y2(α), Y2(β), Y2(γ) in
P(ad)
+ (ad× ad) are presented in the three last columns of Table 3. Therefore, taking into
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account that Ĉ+ has four eigenvalues (−1,− α
2t ,− β

2t ,− γ
2t ) and Ĉ− has two eigenvalues

(0,− 1
2 ), the generic characteristic identity for the split Casimir operator reads:

Ĉad(Ĉad +
1
2
)(Ĉad + 1)(Ĉad +

α

2t
)(Ĉad +

β

2t
)(Ĉad +

γ

2t
) = 0 . (46)

In the case of the s`(N) algebras, the eigenvalue (−1/2) of the operator Ĉad is doubly
degenerated, since γ

2t = 1/2; therefore, in the identity (46) one should keep only one factor
(Ĉad + 1

2 ) of two.
We now turn to the discussion of the case of the exceptional Lie algebras. Note that all

exceptional Lie algebras are distinguished in Table 3 by the value of the parameter γ/(2t)
being equal to 1/3 (all other parameters of the exceptional Lie algebras in Table 3 are in
agreement with the parameters listed in Table 2 of Section 2.4). Thus, all exceptional Lie
algebras in the three-dimensional space of the Vogel parameters (α, β, γ) lie in the plane
α = −2 on the line:

3γ = 2t ⇒ γ = 2β− 4 . (47)

We chose the coordinates (β, γ) on this plane and visualized all simple Lie algebras as
points on this plane (Vogel map):

Vogel map (1999)

R.Mkrtchyan, P.Cvitanović

so(2n) = sp(−2n)

(α, β, γ) = −2(β, α, γ)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(γ + 4) = 2β

s`(n + 1) = An
(β↔ γ)

sp(2n) = Cn

so(2n + 1) = Bn

so(2n) = Dn

•D4 (4, 4)

• F4 (5, 6)

•

•B4

G2

• C2

• C3

• C4 •D5

•B5

•
D3

A3A2•
A5•

•
B2 = C2 (β↔ γ)

• E8 (12, 20)20

• E7 (8, 12)12

• E6 (6, 8)8

γ

4

4 6 12

β

When Condition (47) is fulfilled, Dimension (32) and (44) of the space of the repre-
sentation Y2(γ) is zero in view of the factor (3γ − 2t) in the numerator of (32). Hence
the corresponding projector P(− γ

2t )
on this space is also equal to zero and the parameter

−γ/(2t) cannot be an eigenvalue of Ĉad. In this case, in the general characteristic identity
(46) for the operator Ĉad = (ad⊗ ad)(Ĉ), the last factor (Ĉad + γ

2t ) will be absent and the
universal characteristic identity coincides with (40):

Ĉad(Ĉad +
1
2
)(Ĉad + 1)(Ĉad +

α

2t
)(Ĉad +

β

2t
) = 0 . (48)

As we showed in Section 2.4, identity (48) for the values of the parameters α, β given in
Tables 2 and 3 exactly reproduces the characteristic identities for the split Casimir operator
Ĉad in the case of the exceptional Lie algebras. Note that both algebras so(8) and s`(3) (the
latter one has to replace the parameters β ↔ γ) lie on the line (47) and the characteristic
identities are also given by the generic Formula (48). Indeed, for the algebra s`(3), we have
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γ
2t =

1
2 ; therefore, the eigenvalue (−1/2) of the operator Ĉad is doubly degenerated and one

of the factors (Ĉad + 1/2) in (46) must be omitted. By contrast, for the algebra so(8) both
parameters β

2t and γ
2t are equal to the critical value 1

3 , which gives zero in denominators
of Expressions (31), (43) and (32), (44) for the dimensions dim V

(− β
2t )

and dim V(− γ
2t )

of

the representations Y2(β) and Y2(γ), respectively. However, these zeros are cancelled by
zeros coming from the terms (3β− 2 t) and (3γ− 2 t) in the numerators of the expressions
for dim V

(− β
2t )

, dim V(− γ
2t )

and these dimensions turn out to be 35. Since the eigenvalue

− β
2t = − γ

2t = − 1
3 of the operator Ĉad is doubly degenerated, we must omit one of the

factors (Ĉad + 1/3) in (46) and this identity is transformed into identity (48).
The antisymmetric part P(ad)

− (ad⊗ ad) decomposes for all simple Lie algebras into
a direct sum of two terms, X1 and X2 (see Section 2.2), one of which, X1, is the adjoint
representation ad with the value of the quadratic Casimir C(ad)

(2) = 1, and the other repre-

sentation, X2, has the value of the quadratic Casimir C(X2)
(2) = 2. The representation X2 is

reducible for the case of algebras s`(N) and irreducible for all other simple Lie algebras.
The dimension of the representations X1,X2 and the corresponding eigenvalues Ĉ(ad) and
Ĉ(X2) of the split Casimir operator are equal to (cf. (21)):

dimX1 = dim g, Ĉ(ad) = −1/2 ,

dimX2 = 1
2 dim g (dim g− 3), Ĉ(X2) = 0 .

The values Ĉ(ad) and Ĉ(X2) agree with the characteristic identity (14) for the antisym-
metrized part of Ĉ−, which is valid for all simple Lie algebras.

4. Conclusions

In this paper, we demonstrated the usefulness of the g-invariant split Casimir operator
Ĉ in the representation theory of Lie algebras. Namely, for all simple Lie algebras g, explicit
formulas were found for invariant projectors onto irreducible representations that appear
in the expansion of the tensor product T⊗2 of two adjoint representations. These projectors
are constructed in terms of the operator Ĉ. The key role of this approach is to play the
characteristic identities for the split Casimir operator. It is quite remarkable that these
identities have the generic form (46), which depends on Vogel parameters only. If for some
algebra one of the factor becomes equal to zero, it has to be omitted and the corresponding
identity has a lower degree in terms of the split Casimir operator.

One hope the proposed approach will also be useful for the analysis of the structure
of the tensor product of T⊗3 of three adjoint representations. The dimensions of the
irreducible representations that appear in the expansion of the tensor product T⊗3 are well
known [8], whereas the structure of the projectors is missing. We are planning to report the
corresponding results elsewhere.
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