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Abstract: Algebraic structures in which the property of commutativity is substituted by the me-
diality property are introduced. We consider (associative) graded algebras and instead of almost
commutativity (generalized commutativity or ε-commutativity), we introduce almost mediality
(“commutativity-to-mediality” ansatz). Higher graded twisted products and “deforming” brackets
(being the medial analog of Lie brackets) are defined. Toyoda’s theorem which connects (universal)
medial algebras with abelian algebras is proven for the almost medial graded algebras introduced
here. In a similar way we generalize tensor categories and braided tensor categories. A polyadic
(non-strict) tensor category has an n-ary tensor product as an additional multiplication with n´ 1
associators of the arity 2n´ 1 satisfying a

`

n2 ` 1
˘

-gon relation, which is a polyadic analog of the
pentagon axiom. Polyadic monoidal categories may contain several unit objects, and it is also possible
that all objects are units. A new kind of polyadic categories (called groupal) is defined: they are close
to monoidal categories but may not contain units: instead the querfunctor and (natural) functorial
isomorphisms, the quertors, are considered (by analogy with the querelements in n-ary groups).
The arity-nonreducible n-ary braiding is introduced and the equation for it is derived, which for
n “ 2 coincides with the Yang–Baxter equation. Then, analogously to the first part of the paper,
we introduce “medialing” instead of braiding and construct “medialed” polyadic tensor categories.

Keywords: grading; commutativity; mediality; tensor category; monoidal category; braiding; Toy-
oda’s theorem
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1. Introduction

The commutativity property and its “breaking” are quite obvious and unique for
binary algebraic structures, because the permutation group S2 has only one non-identity
element. If the operation is n-ary, however, then one has n!´ 1 non-identity permutations
from Sn, and the uniqueness is lost. The standard way to bring uniqueness to an n-ary
structure is by restricting to a particular n-ary commutation by fixing one chosen permuta-
tion using external (sometimes artificial) criteria (e.g., in Leibniz derivations or JB˚-triples).
We introduce a different, canonical approach: to use another property which would be
unique by definition but which can give commutativity in special cases. Mediality [1]
(acting on n2 elements) is such a property which can be substituted for commutativity
(acting on n elements) in the generators/relations description of n-ary structures. For n “ 2,
mediality means pabqpcdq “ pacqpbdq, and any medial magma is a commutative monoid;
moreover, for binary groups commutativity immediately follows from mediality.

In the first part of our paper we consider n-ary graded algebras and propose the
following idea: instead of considering the non-unique commutativity property and its
“breaking”, to investigate the unique property of mediality and its “breaking”we exploit this
“commutativity-to-mediality” ansatz to introduce and study almost medial n-ary graded
algebras by analogy with almost commutative algebras. By almost we refer to generalized
or ε-commutative graded algebras [2,3] and β-commutative algebras [4] (see, also [5–7]).
For almost medial n-ary graded algebras, we prove an analogue of Toyoda’s theorem,
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which originally connected medial algebras with abelian algebras [8]. Note that almost
comediality for polyadic bialgebras was introduced earlier in [9]. For other (binary) gener-
alizations of grading, see, e.g., [10–12].

The second part of the paper is devoted to a similar consideration of tensor
categories [13,14]. We define polyadic tensor categories by considering an n-ary tensor
product (which may not be iterated from binary tensor products) and n-ary coherence
conditions for the corresponding associators. The peculiarities of polyadic semigroupal
and monoidal categories are studied and the differences from the corresponding binary
tensor categories are outlined. We introduce a new kind of tensor categories, polyadic
nonunital “groupal” categories, which contain a “querfunctor” and “quertors” (similar to
querelements in n-ary groups [15,16]). We introduce arity-nonreducible n-ary braidings
and find the equation for them that in the binary case turns into the Yang–Baxter equation
in the tensor product form. Finally, we apply the “commutativity-to-mediality” ansatz to
braided tensor categories [17] and introduce “medialing” and corresponding “medialed”
tensor categories.

The proposed “commutativity-to-mediality” ansatz can lead to medial n-ary superal-
gebras and Lie superalgebras as well as to a medial analog of noncommutative geometry.

2. Preliminaries

The standard way to generalize the commutativity is using graded vector spaces and cor-
responding algebras together with the commutation factor defined on some abelian grading
group (see, e.g., [2,3,18,19]). First, recall this concept from a slightly different viewpoint.

2.1. Binary Graded Algebra

Let A ” Ap2q “ xA | µ2, ν2; λ1y be an associative (binary) algebra over a field k
(having unit 1 P k and zero 0 P k) with unit e (i.e., it is a unital k-algebra) and zero z P A.
Here A is the underling set and µ2 : Ab A Ñ A is the (bilinear) binary multiplication
(which we write as µ2ra, bs, a, b P A), usually in the binary case denoted by dot µ2 ” p¨q,
and ν2 : Ab A Ñ A is the (binary) addition denoted by p`q; a third (linear) operation λ1 is
the action λ1 : Kb A Ñ A (widely called a “scalar multiplication”, but this is not always
true, as can be seen from the polyadic case [20]).

Informally, if A as a vector space can be decomposed into a direct sum, then one can
introduce the binary gradation concept: each element a P A is endowed by an additional
characteristic, its gradation denoted by a prime a1 showing to which subspace it belongs,
such that a1 belongs to a discrete abelian group (initially N simply to “enumerate” the
subspaces, and this can be further generalized to a commutative semigroup). This group
is called the binary grading group G “

@

G, ν12
D

, and usually its operation is written as plus
ν12 ”

`

`1
˘

and the neutral element by 01. Denote the subset of homogeneous elements of
degree a1 P G by Aa1 [3,21].

Definition 1. An associative algebra A is called a binary graded algebra over k (or G-algebra
AG), if the algebra multiplication µ2 respects the gradation, i.e.,

µ2rAa1 , Ab1s ” Aa1 ¨ Ab1 Ď Aa1`1b1 , @a1, b1 P G, (1)

where equality corresponds to strong gradation.

If there exist invertible elements of each degree a1 P G, then A is called a cross
product, and if all non-zero homogeneous elements are invertible, A is a graded division
algebra [21]. Homogeneous (binary) morphisms ϕ : AG Ñ BG preserve the grading
ϕpAa1q Ă Ba1 ,@a1 P G, and the kernel of ϕ is an homogeneous ideal. The corresponding
class of G-algebras and the homogeneous morphisms form a category of G-algebras G-Alg
(for details, see, e.g., [18,21]).
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2.2. Almost Commutativity

The graded algebras have a rich multiplicative structure, because of the possibility to
deform (or twist) the algebra product µ2 by a function depending on the gradation. Let us
consider the twisting function (twist factor) τ : Gˆ G Ñ k.

Definition 2. A twisted graded product µ
pτq
2 is defined for homogeneous elements by

µ
pτq
2 ra, bs “ τ

`

a1, b1
˘

µ2ra, bs, a, b P A; a1, b1 P G. (2)

Proposition 1. If the twisted algebra
A

A | µ
pτq
2

E

is associative, then the twisting function becomes

a 2-cocycle τ ÞÑ σ : Gˆ G Ñ kˆ on the abelian group G satisfying

σ
`

a1, b1
˘

σ
`

a1 ` b1, c1
˘

“ σ
`

a1, b1 ` c1
˘

σ
`

b1, c1
˘

, a1, b1, c1 P G. (3)

Proof. The result follows from the binary associativity condition for µ
pσq
2 .

Example 1. An example of a solution to the functional Equation (3) is σ
`

a1, b1
˘

“
`

exp
`

a1
˘˘b1 .

The classes of σ form the (Schur) multiplier group [3] and for further properties of σ
and a connection with the cohomology classes H2pG,kq, see, e.g., [6].

In general, the twisted product (2) can be any polynomial in algebra elements. Never-
theless, the special cases where µ

pε0q
2 ra, bs becomes a fixed expression for elements a, b P A

are important.

Definition 3. If the twisted product coincides with the opposite product for all a, b P A, we call
the twisting function a 0-level commutation factor τ ÞÑ ε0 : Gˆ G Ñ kˆ, such that

µ
pε0q
2 ra, bs “ µ2rb, as, or ε0

`

a1, b1
˘

a ¨ b “ b ¨ a, @a, b P A, a1, b1 P G. (4)

Definition 4. A binary algebra Apε0q
2 for which the twisted product coincides with the opposite

product (4) is called 0-level almost commutative (ε0-commutative).

Assertion 1. If the algebra for which (4) takes place is associative, the 0-level commutation factor
ε0 satisfies the relations

ε0
`

a1, b1
˘

ε0
`

b1, a1
˘

“ 1, (5)

ε0
`

a1 ` b1, c1
˘

“ ε0
`

a1, c1
˘

ε0
`

b1, c1
˘

, (6)

ε0
`

a1, b1 ` c1
˘

“ ε0
`

a1, b1
˘

ε0
`

a1, c1
˘

, a1, b1, c1, d1 P G. (7)

Proof. The first relation (5) follows from permutation in (4) twice. The next ones follow
from permutation in two ways: for (6) a ¨ b ¨ c ÞÑ a ¨ c ¨ b ÞÑ c ¨ a ¨ b and pa ¨ bq ¨ c ÞÑ c ¨ pa ¨ bq,
and for (7) a ¨ b ¨ c ÞÑ b ¨ a ¨ c ÞÑ b ¨ c ¨ a and a ¨ pb ¨ cq ÞÑ pb ¨ cq ¨ a, using (4).

In a more symmetric form this is

ε0
`

a1 ` b1, c1 ` d1
˘

“ ε0
`

a1, c1
˘

ε0
`

b1, c1
˘

ε0
`

a1, d1
˘

ε0
`

b1, d1
˘

. (8)

The following general expression

ε0

¨

˝

ja
ÿ

ia“1

a1ia
,

jb
ÿ

ib“1

b1ib

˛

‚“

ja
ź

ia“1

jb
ź

ib“1

ε0

´

a1ia
, b1ib

¯

, a1ia
, b1ib P G, ia, ib, ja, jb P N, (9)

can be written. In the case of equal elements we have
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ε0
`

jaa1, jbb1
˘

“
`

ε0
`

a1, b1
˘˘ja jb . (10)

Remark 1. Recall that the standard commutation factor ε : GˆG Ñ kˆ of an almost commutative
(ε-commutative or ε-symmetric) associative algebra is defined in a different way [2,3]

ε
`

a1, b1
˘

b ¨ a “ a ¨ b. (11)

Comparing with (4) we have

ε0
`

a1, b1
˘

“ ε
`

b1, a1
˘

, @a1, b1 P G. (12)

2.3. Tower of Higher Level Commutation Brackets

Let us now construct the tower of higher level commutation factors and brackets using
the following informal reasoning. We “deform” the almost commutativity relation (4) by a
function L0 : Aˆ A Ñ A as

ε0
`

a1, b1
˘

a ¨ b “ b ¨ a` Lpε0q
0 pa, bq, @a, b P A, a1, b1 P G, (13)

where ε0
`

a1, b1
˘

is the 0-level commuting factor satisfying (5)–(7).

Consider the function (bracket) Lpε0q
0 pa, bq as a multiplication of a new algebra

AL0
2 “

A

A | µ
pε0,L0q
2 “ Lpε0q

0 pa, bq
E

(14)

called a 0-level bracket algebra. Then (13) can be treated as its “representation” by the
associative algebra A.

Proposition 2. The algebra AL0
2 is almost commutative with the commutation factor

´

´ε´1
0

¯

.

Proof. Using (13) and (5)–(7) we get

ε0
`

b1, a1
˘

Lpε0q
0 pa, bq ` Lpε0q

0 pb, aq “ 0,

which can be rewritten in the almost commutativity form (4) as

`

´ε0
`

b1, a1
˘˘

Lpε0q
0 pa, bq “ Lpε0q

0 pb, aq.

It follows from (5) that
´

´ε´1
0
`

a1, b1
˘

¯

Lpε0q
0 pa, bq “ Lpε0q

0 pb, aq. (15)

The triple identity for Lpε0q
0 pa, bq can be obtained using (5)–(7), (13) and (15)

ε0
`

c1, a1
˘

Lpε0q
0

´

Lpε0q
0 pa, bq, c

¯

` ε0
`

a1, b1
˘

Lpε0q
0

´

Lpε0q
0 pb, cq, a

¯

(16)

` ε0
`

b1, c1
˘

Lpε0q
0

´

Lpε0q
0 pc, aq, b

¯

“ 0, @a, b, c P A, a1, b1, c1 P G.

In the more symmetric form using (8) we have

ε0
`

c1, b1
˘

ε0
`

d1, a1
˘

Lpε0q
0

´

Lpε0q
0 pa, bq, Lpε0q

0 pc, dq
¯

` ε0
`

d1, c1
˘

ε0
`

a1, b1
˘

Lpε0q
0

´

Lpε0q
0 pb, cq, Lpε0q

0 pd, aq
¯

ε0
`

a1, d1
˘

ε0
`

b1, c1
˘

Lpε0q
0

´

Lpε0q
0 pc, dq, Lpε0q

0 pa, bq
¯

` ε0
`

b1, a1
˘

ε0
`

c1, d1
˘

Lpε0q
0

´

Lpε0q
0 pd, aq, Lpε0q

0 pb, cq
¯

“ 0. (17)
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By analogy with (13), we successively further “deform” (15) then introduce “deforming”
functions and higher level commutation factors in the following way.

Definition 5. The k-level commutation factor εk
`

a1, b1
˘

is defined by the following “difference-
like”ẽquations

ε1
`

a1, b1
˘

Lpε0q
0 pa, bq “ Lpε0q

0 pb, aq ` Lpε0,ε1q
1 pa, bq, (18)

ε2
`

a1, b1
˘

Lpε0,ε1q
1 pa, bq “ Lpε0,ε1q

1 pb, aq ` Lpε0,ε1,ε2q
2 pa, bq, (19)

...

εk
`

a1, b1
˘

Lp
ε0,ε1,...,εk´1q

k´1 pa, bq “ Lp
ε0,ε1,...,εk´1q

k´1 pb, aq ` Lpε0,ε1,...,εkq
k pa, bq. (20)

Definition 6. k-level almost commutativity is defined by the vanishing of the last “deform-
ing”f̃unction

Lpε0,ε1,...,εkq
k pa, bq “ 0, @a, b P A, (21)

and can be expressed in a form analogous to (4)

εk
`

a1, b1
˘

Lp
ε0,ε1,...,εk´1q

k´1 pa, bq “ Lp
ε0,ε1,...,εk´1q

k´1 pb, aq. (22)

Proposition 3. All higher level “deforming” functions Lpε0,ε1,...,εiq
i , i “ 1, . . . , k can be expressed

through Lpε0q
0 pa, bq from (13) multiplied by a combination of the lower level commutation factors

εi
`

a1, b1
˘

, i “ 1, . . . , k.

Proof. This follows from Equations (18)–(20).

The first such expressions are

Lpε0,ε1q
1 pa, bq “

“

ε1
`

a1, b1
˘

` ε0
`

b1, a1
˘‰

Lpε0q
0 pa, bq, (23)

Lpε0,ε1,ε2q
2 pa, bq “

“

ε2
`

a1, b1
˘`

ε1
`

a1, b1
˘

` ε0
`

b1, a1
˘˘

` ε1
`

a1, b1
˘

ε0
`

b1, a1
˘

` 1
‰

Lpε0q
0 pa, bq, (24)

...

Recall the definition of the ε-Lie bracket [3]

ra, bsε “ a ¨ b´ ε
`

a1, b1
˘

b ¨ a, @a, b P A, a1, b1 P G. (25)

Assertion 2. The 0-level “deforming” function Lpε0q
0 pa, bq is the ε0-twisted ε-Lie bracket

Lpε0q
0 pa, bq “ ε0

`

a1, b1
˘

ra, bsε“ε0
. (26)

Proof. This follows from (13) and (25).

Remark 2. The relations (16) and (17) are analogs of the ε-Jacobi identity of the ε-Lie algebra [3].

Corollary 1. All higher level “deforming” functions Lpε0,ε1,...,εiq
i , i “ 1, . . . , k can be expressed

through the twisted ε-Lie bracket (25) with twisting coefficients.
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In search of a polyadic analog of almost commutativity, we will need some additional
concepts, beyond the permutation of two elements (in the binary case), called commuta-
tivity, and various sums of permutations (of n elements, in n-ary case, which are usually
non-unique).

Instead we propose to consider a new concept, polyadic mediality (which gives a unique
relation between n2 elements in n-ary case), as a polyadic inductive generalization of
commutativity. We then twist the multiplication by a gradation (as in the binary case above)
to obtain the polyadic version of almost commutativity as almost mediality. However, let us
first recall the binary and polyadic versions of the mediality property.

2.4. Medial Binary Magmas and Quasigroups

The mediality property was introduced as a generalization of the associative law for
quasigroups, which are a direct generalization of abelian groups [1]. Other names for
mediality are entropicity, bisymmetry, alternaton and abelianness (see, e.g., [22–24]).

Let M “ xM | µ2y be a binary magma (a closed set M with one binary operation µ2
without any additional properties, also called a (Hausmann–Ore) groupoid (which should
not be confused with the Brandt groupoid or virtual group).

Definition 7. A (binary) magma M is called medial, if

µ2rµ2ra, bs, µ2rc, dss “ µ2rµ2ra, cs, µ2rb, dss, @a, b, c, d P M. (27)

Definition 8. We call the product of elements in the r.h.s. of (27) medially symmetric to the
l.h.s. product.

Obviously, if a magma M contains a neutral element (identity) e P M, such that
µ2ra, es “ µ2re, as “ a, @a P M, then M is commutative µ2ra, bs “ µ2rb, as, @a, b P M.
Therefore, any commutative monoid is an example of a medial magma. Numerous different
kinds of magma and their classifications are given in [23]. If a magma M is cancellative
(µ2ra, bs “ µ2ra, cs ñ b “ c, µ2ra, cs “ µ2rb, cs ñ a “ b, @a, b, c P M), it is a binary
quasigroup Q “ xQ | µ2y for which the equations µ2ra, xs “ b, µ2ry, as “ b, @a, b P Q , have
a unique solution [25]. Moreover, as per [26], every medial cancellative magma can be
embedded in a medial quasigroup (satisfying (27)), and the reverse statement is also true [27].
For a recent comprehensive review on quasigroups (including medial and n-ary ones), see,
e.g., [28], and references therein.

The structure of medial quasigroups is determined by the Bruck-Murdoch–Toyoda
theorem [8,29,30].

Theorem 1 (Toyoda theorem). Any medial quasigroup Qmedial “ xQ | µ2y can be presented in
the linear (functional) form

µ2ra, bs “ ν2rν2rϕpaq, ψpbqs, cs “ ϕpaq ` ψpbq ` c, @a, b, c P Q, (28)

where xQ | ν2 ” p`qy is an abelian group and ϕ, ψ : Q Ñ Q are commuting automophisms
ϕ ˝ ψ “ ψ ˝ ϕ, and c P Q is fixed.

If Qmedial has an idempotent element (denoted by 0), then

µ2ra, bs “ ν2rϕpaq, ψpbqs “ ϕpaq ` ψpbq, @a, b P Q, (29)

It follows from the Toyoda theorem that medial quasigroups are isotopic to abelian groups,
and their structure theories are very close [29,30].

The mediality property (27) for binary semigroups leads to various consequences [31,32].
Indeed, every medial semigroup Smedial “ xS | µ2y is a Putcha semigroup (b P S1aS1 ñ bm P

S1a2S1, @a, b P S, m P N, S1 “ SY t1u), and therefore Smedial can be decomposed into the
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semilattice (a2 “ a^ ab “ ba, @a, b P S) of Archimedean semigroups (@a, b P S, Dm, k P N,
am “ S1bS1^ bk “ S1aS1^ ab “ ba). If a medial semigroup Smedial is left (right) cancellative,
ab “ ac ñ b “ c (ba “ ca ñ b “ c), then it is left (right) commutative abc “ bac (abc “ acb),
@a, b, c P S and left (right) separative, ab “ a2 ^ ba “ b2, @a, b P S (ab “ b2 ^ ba “ a2) (for a
review, see, [33]).

For a binary group xG | µ2y mediality implies commutativity, because, obviously,
abcd “ acbd ñ bc “ cb, @a, b, c, d P G. This is not the case for polyadic groups, where
mediality implies semicommutativity only (see e.g., [34,35]).

Let A “ xA | µ2, ν2; λ1y be a binary k-algebra which is not necessarily unital, cancella-
tive and associative. Then mediality provides the corresponding behavior which depends
on the properties of the “vector multiplication” µ2. For instance, for unital cancellative and
associative algebras, mediality implies commutativity, as for groups [34].

3. Almost Medial Binary Graded Algebras

Consider an associative binary algebra A over a field k. We introduce a weaker
version of gradation than in (1).

Definition 9. An associative algebra A is called a binary higher graded algebra over k, if the
algebra multiplication of four (“ 22) elements respects the gradation

µ4rAa1 , Ab1 , Ac1 , Ad1s ” Aa1 ¨ Ab1 ¨ Ac1 ¨ Ad1 Ď Aa1`1b1`c1`d1 ,@a1, b1, c1, d1 P G, (30)

where equality corresponds to strong higher gradation.

Instead of (2) let us introduce the higher twisting function (higher twist factor) for four
(“ 22) elements τ : Gˆ4 Ñ k.

Definition 10. A twisted (binary) higher graded product µ
pτq
4 is defined for homogeneous ele-

ments by

µ
pτq
4 ra, b, c, ds “ τ

`

a1, b1, c1, d1
˘

a ¨ b ¨ c ¨ d, a, b, c, d P A; a1, b1, c1, d1 P G. (31)

An analog of (total) associativity for the twisted binary higher graded product
operation µ

pτq
4 is the following condition on seven elements (7 “ 2 ¨ 22 ´ 1) for all

a, b, c, d, t, u, v P A

µ
pτq
4

”

µ
pτq
4 ra, b, c, ds, t, u, v

ı

“ µ
pτq
4

”

a, µ
pτq
4 rb, c, d, ts, u, v

ı

“ µ
pτq
4

”

a, b, µ
pτq
4 rc, d, t, us, v

ı

“ µ
pτq
4

”

a, b, c, µ
pτq
4 rd, t, u, vs

ı

. (32)

Proposition 4. If the twisted higher graded product satisfies the higher analog of associativity given
by (32), then the twisting function becomes a higher analog of the cocycle (3) τ ÞÑ σ : Gˆ4 Ñ kˆ
on the abelian group G satisfying for all a1, b1, c1, d1, t1, u1, v1 P G

σ
`

a1, b1, c1, d1
˘

σ
`

a1 ` b1 ` c1 ` d1, t1, u1, v1
˘

“ σ
`

b1, c1, d1, t1
˘

σ
`

a1, b1 ` c1 ` d1 ` t1, u1, v1
˘

(33)
“ σ

`

c1, d1, t1, u1
˘

σ
`

a1, b1, c1 ` d1 ` t1 ` u1, v1
˘

“ σ
`

d1, t1, u1, v1
˘

σ
`

a1, b1, c1, d1 ` t1 ` u1 ` v1
˘

.

Next we propose a medial analog of almost commutativity as follows. Instead of de-
forming commutativity by the grading twist factor ε0 as in (4), we deform the mediality (27)
by the higher twisting function τ (31).
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Definition 11. If the higher twisted product coincides with the medially symmetric product
(see (27)) for all a, b P A, we call the twisting function a 0-level mediality factor τ ÞÑ ρ0 : Gˆ4 Ñ

kˆ, such that (cf. (4))

µ
pρ0q
4 ra, b, c, ds “ µ4ra, c, b, ds, or (34)

ρ0
`

a1, b1, c1, d1
˘

a ¨ b ¨ c ¨ d “ a ¨ c ¨ b ¨ d, @a, b, c, d P A, a1, b1, c1, d1 P G. (35)

From (35) follows the normalization condition for the mediality factor

ρ0
`

a1, a1, a1, a1
˘

“ 1, @a1 P G. (36)

Definition 12. A binary algebra A
pρ0q
2 “ xA | µ2, ν2y for which the higher twisted product

coincides with the medially symmetric product µ
pρ0q
4 ra, b, c, ds “ µ4ra, c, b, ds (35) is called a 0-level

almost medial (ρ0-commutative) algebra.

Proposition 5. If the algebra for which (35) holds is associative, the 0-level mediality factor ρ0
satisfies the relations

ρ0
`

a1, b1, c1, d1
˘

ρ0
`

a1, c1, b1, d1
˘

“ 1, a1, b1, c1, d1, f 1, g1, h1 P G, 1 P k, (37)

ρ0
`

a1, c1 ` d1 ` f 1 ` g1, b1, h1
˘

“ ρ0
`

a1, c1, b1, d1
˘

ˆ ρ0
`

c1, d1, b1, f 1
˘

ρ0
`

d1, f 1, b1, g1
˘

ρ0
`

f 1, g1, b1, h1
˘

, (38)

ρ0
`

a1, g1, b1 ` c1 ` d1 ` f 1, h1
˘

“ ρ0
`

a1, g1, b1c1
˘

ˆ ρ0
`

c1, g1, d1, f 1
˘

ρ0
`

d1, g1, f 1, h1
˘

ρ0
`

b1, g1, c1, d1
˘

. (39)

Proof. As in (5), the relation (37) follows from applying (35) twice. The next ones follow
from permutation in two ways using (34): for (38)

a ¨ b ¨ pc ¨ d ¨ f ¨ gq ¨ h ÞÑ a ¨ pc ¨ d ¨ f ¨ gq ¨ b ¨ h, a, c, d, f , g, b, h P A, (40)

a ¨ b ¨ c ¨ d ¨ f ¨ g ¨ h ÞÑ a ¨ c ¨ b ¨ d ¨ f ¨ g ¨ h ÞÑ a ¨ c ¨ d ¨ b ¨ f ¨ g ¨ h

ÞÑ a ¨ c ¨ d ¨ f ¨ b ¨ g ¨ h ÞÑ a ¨ c ¨ d ¨ f ¨ g ¨ b ¨ h, (41)

and for (39)

a ¨ pb ¨ c ¨ d ¨ f q ¨ g ¨ h ÞÑ a ¨ g ¨ pb ¨ c ¨ d ¨ f q ¨ h, (42)

a ¨ b ¨ c ¨ d ¨ f ¨ g ¨ h ÞÑ a ¨ b ¨ c ¨ d ¨ g ¨ f ¨ h ÞÑ a ¨ b ¨ c ¨ g ¨ d ¨ f ¨ h

ÞÑ a ¨ b ¨ g ¨ c ¨ d ¨ f ¨ h ÞÑ a ¨ g ¨ b ¨ c ¨ d ¨ f ¨ h. (43)

Assertion 3. If the 0-level almost medial algebra Apρ0q
2 is cancellative, then it is isomorphic to an

almost commutative algebra.

Proof. After cancellation by a and d in (35), we obtain ε0
`

b1, c1
˘

b ¨ c “ c ¨ b, where

ε0
`

b1, c1
˘

“ ρ0
`

a1, b1, c1, d1
˘

. (44)

In case Apρ0q
2 is unital, one can choose ε0

`

b1, c1
˘

“ ρ0
`

e1, b1, c1, e1
˘

” ρ0
`

01, b1, c1, 01
˘

, since
the identity e P A is zero graded.
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Tower of Higher Binary Mediality Brackets

By analogy with (13), let us deform the medial twisted product µ
pρ0q
4 (34) by the

function Mpρ0q
0 : Aˆ Aˆ Aˆ A Ñ A as follows

ρ0
`

a1, b1, c1, d1
˘

a ¨ b ¨ c ¨ d “ a ¨ c ¨ b ¨ d`Mpρ0q
0 pa, b, c, dq, @a, b, c, d P A, a1, b1, c1, d1 P G, (45)

where ρ0 is a 0-level mediality factor (34) which satisfies (37)–(39).
Let us next introduce a 4-ary multiplication µ

pρ0,M0q
4 ra, b, c, ds “ Mpρ0q

0 pa, b, c, dq,
@a, b, c, d P A.

Definition 13. A 4-ary algebra

A
pρ0,M0q
4 “

A

A | µ
pρ0,M0q
4

E

(46)

is called a 0-level medial bracket algebra.

Proposition 6. The 4-ary algebra Apρ0,M0q
4 is almost medial with the mediality factor

´

´ρ´1
0

¯

.

Proof. Using (45) and (37)–(39) we get

ρ0
`

a1, c1, b1, d1
˘

Mpρ0q
0 pa, b, c, dq `Mpρ0q

0 pa, c, b, dq “ 0,

which can be rewritten in the almost medial form (35) as

`

´ρ0
`

a1, c1, b1, d1
˘˘

Mpρ0q
0 pa, b, c, dq “ Mpρ0q

0 pa, c, b, dq.

From (37) we get
´

´ρ´1
0

`

a1, b1, c1, d1
˘

¯

Mpρ0q
0 pa, b, c, dq “ Mpρ0q

0 pa, c, b, dq. (47)

Let us “deform” (35) again successively by introducing further “deforming” functions
Mk and higher level mediality factors ρk : Gˆ Gˆ Gˆ G Ñ k in the following way.

Definition 14. The k-level mediality factor ρk
`

a1, b1, c1, d1
˘

is defined by the following “difference-
like” equations

ρ1
`

a1, b1, c1, d1
˘

Mpρ0q

0 pa, b, c, dq “ Mpρ0q

0 pa, c, b, dq `Mpρ0,ρ1q

1 pa, b, c, dq, (48)

ρ2
`

a1, b1, c1, d1
˘

Mpρ0q

1 pa, b, c, dq “ Mpρ0q

1 pa, c, b, dq `Mpρ0,ρ1,ρ2q

2 pa, b, c, dq, (49)
...

ρk
`

a1, b1, c1, d1
˘

Mpρ0,ρ1,...,ρk´1q

k´1 pa, b, c, dq “ Mpρ0,ρ1,...,ρk´1q

k´1 pa, c, b, dq `Mpρ0,ρ1,...,ρkq

k pa, b, c, dq, (50)

@a, b, c, d P A, a1, b1, c1, d1 P G.

Definition 15. k-level almost mediality is defined by the vanishing of the last “deforming” me-
dial function

Mpρ0,ρ1,...,ρkq
k pa, b, c, dq “ 0, @a, b, c, d P A, (51)

and can be expressed in a form analogous to (4) and (35)

ρk
`

a1, b1, c1, d1
˘

Mp
ρ0,ρ1,...,ρk´1q

k´1 pa, b, c, dq “ Mp
ρ0,ρ1,...,ρk´1q

k´1 pa, c, b, dq. (52)
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Proposition 7. The higher level “deforming” functions Mpρ0,ρ1,...,ρiq
i pa, b, c, dq, i “ 1, . . . , k can

be expressed through Mpρ0q
0 pa, b, c, dq from (45) multiplied by a combination of the lower level

mediality factors ρi
`

a1, b1, c1, d1
˘

, i “ 1, . . . , k.

Proof. It follows from Equations (48)–(50).

4. Medial n-Ary Algebras

We now extend the concept of almost mediality from binary to polyadic (n-ary)
algebras in the unique way which uses the construction from the previous section.

Let Apnq “ xA | µn, ν2y be an associative n-ary algebra (with n-ary linear multiplica-
tion Abn Ñ A) over a field k with (possible) polyadic unit e (then Apnq a unital k-algebra)
defined by µn

“

en´1, a
‰

“ a, @a P A (where a can be on any place) and (binary) zero z P A.
We restrict ourselves (as in [36,37]) by the binary addition ν2 : Ab A Ñ A which is denoted
by p`q (for more general cases, see [20]). Now polyadic (total) associativity [37] can be defined
as a kind of invariance [38]

µn

”

a, µn

”

bpnq
ı

, c
ı

“ invariant, (53)

where a, c are (linear) polyads (sequences of elements from A) of the necessary length [16],
bpnq is a polyad of the length n, and the internal multiplication can be on any place.
To describe the mediality for arbitrary arity n we need the following matrix generalization
of polyads (as was implicitly used in [20,38]).

Definition 16. A matrix (n-ary) polyad Âpn2q ” Âpnˆnq of size n ˆ n is the sequence of n2

elements Âpnˆnq “
`

aij
˘

P Abn2
, i, j “ 1, . . . , n, and their product Apµqn2 : Abn2

Ñ A contains
n` 1 of n-ary multiplications µn, which can be written as (we use that for matrices of arguments,
even informally)

Apµqn2 ” pµnq
˝pn`1q

”

Âpn2q

ı

“ µn

»

—

—

—

–

µnra11, a12, . . . , a1ns,
µnra21, a22, . . . , a2ns,

...
µnran1, an2, . . . , anns

fi

ffi

ffi

ffi

fl

P A (54)

due to the total associativity (53) (by “omitting brackets”).

This construction is the stack reshape of a matrix or row-major order of an array.

Example 2. In terms of matrix polyads the (binary) mediality property (27) becomes

pµ2q
˝3
”

Âp4q
ı

“ pµ2q
˝3
”

ÂT
p4q

ı

, or Apµq4 “ ATpµq
4 (55)

Âp4q “
ˆ

a11 a12
a21 a22

˙

ñ pa11, a12, a21, a22q P Ab4, (56)

where ÂT
p4q is the transposed polyad matrix representing the sequence pa11, a21, a12, a22q P Ab4,

Apµq4 “ ppa11 ¨ a12q ¨ pa21 ¨ a22qq P A and ATpµq
4 “ ppa11 ¨ a21q ¨ pa12 ¨ a22qq P A with p¨q ” µ2.

Definition 17. A polyadic (n-ary) mediality property is defined by the relation

pµnq
˝n`1

”

Âpn2q

ı

“ pµnq
˝n`1

”

ÂT
pn2q

ı

, or Apµqn2 “ ATpµq
n2 , (57)

Âpn2q “
`

aij
˘

P Abn2
. (58)
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Definition 18. A polyadic medial twist map χ
pn2q
medial is defined on the matrix polyads as [9]

Âpn2q

χ
pn2q
medial
ÞÑ ÂT

pn2q
. (59)

Definition 19. A n-ary algebra Apnq is called medial, if it satisfies the n-ary mediality
property (57) for all aij P A.

It follows from (55) that not all medial binary algebras are abelian.

Corollary 2. If a binary medial algebra Ap2q is cancellative, it is abelian.

Assertion 4. If a n-ary medial algebra Apnq is cancellative, each matrix polyad Âpn2q satisfies
n2 ´ 2 commutativity-like relations.

5. Almost Medial n-Ary Graded Algebras

The gradation for associative n-ary algebras was considered in [36,39]. Here we
introduce a weaker version of gradation, because we need to define the grading twist not
for n-ary multiplication, i.e., the polyads of the length n but only for the matrix polyads (58)
of the length n2 (for the binary case, see (30)).

Definition 20. An associative n-ary algebra Apnq is called a higher graded n-ary algebra over k,
if the algebra multiplication of n2 elements respects the gradation, i.e.,

pµnq
˝n`1

«

A´

a1ij

¯

ff

” µn

»

—

—

—

—

—

—

–

µn

”

Aa111
, Aa112

, . . . , Aa11n

ı

,

µn

”

Aa121
, Aa122

, . . . , Aa121

ı

,
...

µn

”

Aa1n1
, Aa1n2

, . . . , Aa1nn

ı

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ď Aa111`...`a1nn
, (60)

@a1ij P G, i, j “ 1, . . . , n,

where equality corresponds to strong higher gradation.

Let us define the higher twisting function (higher twist factor) for n2 elements τn2 :
Gˆn2

Ñ k by using matrix polyads (for n “ 2 see (31)).

Definition 21. A n-ary higher graded twisted product µ
pτq

n2 is defined for homogeneous elements by

µ
pτq

n2

”

Âpn2q

ı

“ τn2

´

Â1
pn2q

¯

Apµqn2 , aij P A; a1ij P G, i, j “ 1, . . . , n, (61)

where Âpn2q “
`

aij
˘

P Abn2
is the matrix polyad of elements (58), and Â1

pn2q
“

´

a1ij
¯

P Gbn2
is

the matrix polyad of their gradings.

A medial analog of n-ary almost mediality can be introduced in a way analogous to
the binary case (35).

Definition 22. If the higher twisted product coincides with the medially symmetric product

(see (59)) for all aij P A, we call the twisting function a 0-level n-ary mediality factor τn2 ÞÑ ρ
pn2q
0 :

Gˆn2
Ñ kˆ, such that (cf. (4))
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µ
pρ0q

n2

”

Âpn2q

ı

“ ATpµq
n2 , or (62)

ρ
pn2q
0

´

Â1
pn2q

¯

Apµqn2 “ ATpµq
n2 , aij P A; a1ij P G, i, j “ 1, . . . , n. (63)

It follows from (63) that the normalization condition for the n-ary mediality factor is

ρ
pn2q
0

¨

˚

˝

n2
hkkkikkkj

a1, . . . , a1

˛

‹

‚

“ 1, @a1 P G. (64)

Assertion 5. The 0-level n-ary mediality factor ρ
pn2q
0 satisfies

ρ
pn2q
0

´

Â1
pn2q

¯

ρ
pn2q
0

ˆ

´

Â1
pn2q

¯T
˙

“ 1. (65)

Proof. It follows from (63) and its transpose together with the relation
`

BT˘T
“ B for any

matrix over k.

Definition 23. An n-ary algebra for which the higher twisted product coincides with the medially
symmetric product (63), is called a 0-level almost medial (ρ0-commutative) n-ary algebra Apρ0q

n .

Recall [18], that a tensor product of binary algebras can be naturally endowed with
a ε0-graded structure in the following way (in our notation). Let Apε0q

2 “

A

A | µ
paq
2

E

and B
pε0q
2 “

A

A | µ
pbq
2

E

be binary graded algebras with the multiplications µ
paq
2 ” p¨aq

and µ
pbq
2 ” p¨bq and the same commutation factor ε0 (see (4)), that is the same G-graded

structure. Consider the tensor product Apε0q
2 bB

pε0q
2 and introduce the total ε0-graded

multiplication
´

A
pε0q
2 bB

pε0q
2

¯

‹pε0q
´

A
pε0q
2 bB

pε0q
2

¯

ÝÑA
pε0q
2 bB

pε0q
2 defined by the de-

formation (cf. (2))

ε0
`

b11, a12
˘

pa1 b b1q ‹
pε0q pa2 b b2q, b11, a12 P G, ai P A, bi P B, i “ 1, 2. (66)

Proposition 8. If the ε0-graded multiplication (66) satisfies (cf. (4))

ε0
`

b11, a12
˘

pa1 b b1q ‹
pε0q pa2 b b2q “ pa1 ¨a a2q b pb1 ¨b b2q, (67)

then A
pε0q
2 bB

pε0q
2 is a ε0-graded commutative algebra.

Proposition 9. If Apε0q
2 and Bpε0q

2 are associative, then A
pε0q
2 bB

pε0q
2 is also associative.

Proof. This follows from (66), (67) and the properties of the commutation factor
ε0 (6)–(7).

In the matrix form (67) becomes (with ‹pε0q ” µ
‹pε0q
2 )

ε0
`

b11, a12
˘

µ
‹pε0q
2

„

µb2 ra1, b1s

µb2 ra2, b2s



“ µb2

«

µ
paq
2 ra1, a2s

µ
pbq
2 rb1, b2s

ff

, (68)

where µb2 is the standard binary tensor product. For numerous generalizations (including
braidings), see, e.g., [40], and references therein.

Now we can extend (68) to almost medial algebras.
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Definition 24. Let A
pρ0q
2 and B

pρ0q
2 be two binary medial algebras with the same medial-

ity factor ρ0. The total ρ0-mediality graded multiplication µ
‹pρ0q
2 :

´

A
pρ0q
2 bB

pρ0q
2

¯

‹pρ0q

´

A
pρ0q
2 bB

pρ0q
2

¯

ÝÑA
pρ0q
2 bB

pρ0q
2 is defined by the mediality deformation (cf. (2))

ρ0

ˆ

a11 b11
a12 b12

˙

pa1 b b1q ‹
pρ0q pa2 b b2q, b11, a12 P G, ai P A, bi P B, i “ 1, 2. (69)

Proposition 10. If the ρ0-graded multiplication (69) satisfies (cf. (4))

ρ0

ˆ

a11 b11
a12 b12

˙

µ
‹pρ0q
2

„

µb2 ra1, b1s

µb2 ra2, b2s



“ µb2

«

µ
paq
2 ra1, a2s

µ
pbq
2 rb1, b2s

ff

, (70)

then A
pρ0q
2 bB

pρ0q
2 is a ρ0-graded binary (almost medial) algebra.

Using the matrix form (70) one can generalize the ρ0-graded medial algebras to
arbitrary arity.

Let Bpρ0q,1
n , . . . ,Bpρ0q,n

n be n ρ0-graded (almost medial) n-ary algebras (Bpρ0q,i
n “

A

Bi | µ
piq
n

E

) with the same mediality factor ρ0 and the same graded structure. Consider

their tensor product Bpρ0q,1
n b . . .bB

pρ0q,n
n and the ρ0-graded n-ary multiplication µ

‹pρ0q
n

on it.

Proposition 11. If the ρ0-graded n-ary multiplication µ
‹pρ0q
n satisfies (cf. (4))

ρ0

¨

˚

˝

b11
1 . . . bn1

1
... . . .

...
b11

n . . . bn1
n

˛

‹

‚

µ
‹pρ0q
n

»

—

–

µbn
“

b1
1, . . . , bn

1
‰

...
µbn

“

b1
n, . . . , bn

n
‰

fi

ffi

fl

“ µbn

»

—

—

–

µ
p1q
n

“

b1
1, . . . , b1

n
‰

...
µ
pnq
n

“

b1
n, . . . , bn

n
‰

fi

ffi

ffi

fl

, (71)

bi
1, . . . , bi

n PA
pρ0q,i
n , bi1

n , . . . , bi1
n P G, i “ 1, . . . , n. (72)

then the tensor product Bpρ0q,1
n b . . .bB

pρ0q,n
n is a ρ0-graded n-ary (almost medial) algebra.

Symbolically, we can write this in the form, similar to the almost mediality condition (63)

ρ0

´

B̂1
pn2q

¯

µ
‹pρ0q
n ˝ µbn2

”

B̂pn2q

ı

“ µbn ˝ µ
p1q
n ˝ . . . ˝ µ

pnq
n

”

B̂T
pn2q

ı

, (73)

where

B̂1
pn2q

“

¨

˚

˝

b11
1 . . . bn1

1
... . . .

...
b11

n . . . bn1
n

˛

‹

‚

, B̂pn2q “

¨

˚

˝

b1
1 . . . bn

1
... . . .

...
b1

n . . . bn
n

˛

‹

‚

(74)

and B̂T
pn2q

is its transpose.

Example 3. In the lowest nonbinary example, for three ternary ρ0-graded algebras Apρ0q
3 “

A

A | µ
paq
3

E

, Bpρ0q
3 “

A

B | µ
pbq
3

E

, Cpρ0q
3 “

A

C | µ
pcq
3

E

, from (71) we have the ternary multiplica-

tion µ
‹pρ0q
3 for their ternary tensor product Apρ0q

3 bB
pρ0q
3 bC

pρ0q
3 given by

ρ0

¨

˝

a11 b11 c11
a12 b12 c12
a13 b13 c13

˛

‚µ
‹pρ0q
3

¨

˝

pa1 b b1 b c1q

pa2 b b2 b c2q

pa3 b b2 b c3q

˛

‚

“

´

µ
paq
3 ra1, a2, a3s b µ

paq
3 rb1, b2, b3s b µ

pcq
3 rc1, c2, c3s

¯

, (75)
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where ai P A, bi P B, ci P C, a1i, b1i , c1i P G, i “ 1, 2, 3.

Higher Level Mediality n2-Ary Brackets

Binary almost mediality algebras for n “ 2 were considered in (35), together with the
tower of mediality factors (45), (48)–(50). Here we generalize this construction to any arity
n which can be done using the matrix polyad construction.

First, we deform the almost mediality condition (63)

ρ
pn2q
0

´

Â1
pn2q

¯

Apµqn2 “ ATpµq
n2 `Mpρ0q

0

´

Âpn2q

¯

, aij P A; a1ij P G, i, j “ 1, . . . , n, (76)

where Mpρ0q
0 : Abn2

Ñ A is the higher mediality n2-ary bracket of 0-level. Consider Mpρ0q
0 as a

new n2-ary (bracket) multiplication

µ
pρ0,M0q

n2

”

Âpn2q

ı

:“ Mpρ0q
0

´

Âpn2q

¯

. (77)

Definition 25. A n2-ary algebra

A
pρ0,M0q

n2 “

A

A | µ
pρ0,M0q

n2

E

(78)

is called a 0-level mediality bracket n2-ary algebra.

Proposition 12. The n2-ary algebra A
pρ0,M0q

n2 is almost medial with the mediality factor
˜

´

ˆ

ρ
pn2q
0

˙´1
¸

.

Proof. We multiply the definition (76) by ρ
pn2q
0

ˆ

´

Â1
pn2q

¯T
˙

and use (65) to obtain

ρ
pn2q
0

ˆ

´

Â1
pn2q

¯T
˙

Mpρ0q
0

´

Âpn2q

¯

“ Apµqn2 ´ ρ
pn2q
0

ˆ

´

Â1
pn2q

¯T
˙

ATpµq
n2 . (79)

Taking into account that the r.h.s. here is exactly ´Mpρ0q
0

´

ÂT
pn2q

¯

, we have

´ ρ
pn2q
0

ˆ

´

Â1
pn2q

¯T
˙

Mpρ0q
0

´

Âpn2q

¯

“ Mpρ0q
0

´

ÂT
pn2q

¯

, (80)

and using (65) again, we get

´ ρ
pn2q
0

´

Â1
pn2q

¯´1
Mpρ0q

0

´

Âpn2q

¯

“ Mpρ0q
0

´

ÂT
pn2q

¯

, (81)

which should be compared with (63).

Now we “deform” (76) successively by defining further n2-ary brackets Mk and higher

level mediality factors ρ
pn2q
k : Gˆn2

Ñ k as follows.
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Definition 26. The k-level mediality n2-ary brackets and factors are defined by

ρ
pn2q
1

´

Â1
pn2q

¯

Mpρ0q
0

´

Âpn2q

¯

“ Mpρ0q
0

´

ÂT
pn2q

¯

`Mpρ0,ρ1q
1

´

Âpn2q

¯

, (82)

ρ
pn2q
2

´

Â1
pn2q

¯

Mpρ0,ρ1q
1

´

Âpn2q

¯

“ Mpρ0,ρ1q
1

´

ÂT
pn2q

¯

`Mpρ0,ρ1,ρ2q
2

´

Âpn2q

¯

, (83)

...

ρ
pn2q
k

´

Â1
pn2q

¯

Mp
ρ0,ρ1,...,ρk´1q

k´1

´

Âpn2q

¯

“ Mp
ρ0,ρ1,...,ρk´1q

k´1

´

ÂT
pn2q

¯

`Mpρ0,ρ1,...,ρkq
k

´

Âpn2q

¯

(84)

@aij P A; a1ij P G, i, j “ 1, . . . , n.

Definition 27. k-level n2-ary almost mediality is given by the vanishing of the last “deforming”
medial n2-ary bracket

Mpρ0,ρ1,...,ρkq
k

´

Âpn2q

¯

“ 0, @aij P A, (85)

and has the form

ρ
pn2q
k

´

Â1
pn2q

¯

Mp
ρ0,ρ1,...,ρk´1q

k´1

´

Âpn2q

¯

“ Mp
ρ0,ρ1,...,ρk´1q

k´1

´

ÂT
pn2q

¯

. (86)

Proposition 13. The higher level “deforming” functions (n2-ary brackets) Mpρ0,ρ1,...,ρkq
i

´

Âpn2q

¯

,

i “ 1, . . . , k can be expressed through Mpρ0q
0

´

Âpn2q

¯

from (76) using a combination of the lower

level n2-ary mediality factors ρ
pn2q
k

´

Â1
pn2q

¯

, i “ 1, . . . , k.

Proof. This follows from Equations (82)–(84).

6. Toyoda’s Theorem for Almost Medial Algebras

The structure of the almost medial graded algebras (binary and n-ary) can be estab-
lished by searching for possible analogs of Toyoda’s theorem (28) (see, [8,29,30]) which is
the main statement for medial groupoids [23] and quasigroups [28]. As Toyoda’s theorem
connects medial algebras with abelian algebras, we can foresee that in the same way the
almost medial algebras can be connected with almost commutative algebras.

First, let us consider almost medial graded binary algebras, as defined in (35)–(39).

Theorem 2. Let Apρq
2 “ xA | µ2y be an almost medial (ρ-commutative) G-graded binary algebra,

then there exists an almost commutative (ε-commutative G-graded binary algebra Āpεq
2 “ xA | µ̄2y,

two grading preserving automorphisms ϕ1,2 and a fixed element h P A, such that (cf. (28))

µ2ra, bs “ µ̄2rµ̄2rϕ1paq, ϕ2pbqs, hs or a ¨ b “ ϕ1paqϕ2pbqh, (87)

ρ
`

a1, b1, c1, d1
˘

“ ε
`

b1, c1
˘

,@a, b, c, d P A, a1, b1, c1, d1 P G, (88)

where we denote µ2 ” p¨q and µ̄2ra, bs ” ab. We use the multiplicative notation for the algebra
Ā
pεq
2 , because it is non-commutative.
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Proof. We use the “linear” presentation (87) for the product in A
pρq
2 and insert it into the

condition of almost mediality (35) to obtain

ρ
`

a1, b1, c1, d1
˘

pa ¨ bq ¨ pc ¨ dq “ pa ¨ cq ¨ pb ¨ dq ñ

ρ
`

a1, b1, c1, d1
˘

ϕ1pϕ1paqϕ2pbqhqϕ2ppϕ1pcqϕ2pdqhqqh

“ ϕ1pϕ1paqϕ2pcqhqϕ2ppϕ1pbqϕ2pdqhqq ñ

ρ
`

a1, b1, c1, d1
˘

ϕ1 ˝ ϕ1paqϕ1 ˝ ϕ2pbqϕ1phqϕ2 ˝ ϕ1pcqϕ2 ˝ ϕ2pdqϕ2phqh

“ ϕ1 ˝ ϕ1paqϕ1 ˝ ϕ2pcqϕ1phqϕ2 ˝ ϕ1pbqϕ2 ˝ ϕ2pdqϕ2phqh, (89)

where p˝q is the composition of automorphisms. Using the cancellativity of Āpεq
2 , we get

ρ
`

a1, b1, c1, d1
˘

ϕ1 ˝ ϕ2pbqϕ2 ˝ ϕ1pcq “ ϕ1 ˝ ϕ2pcqϕ2 ˝ ϕ1pbq. (90)

Because the automorphisms ϕ1,2 preserve grading, after implementing almost (ε-)
commutativity (4), the r.h.s. of (90) becomes ε

`

b1, c1
˘

ϕ2 ˝ ϕ1pbqϕ1 ˝ ϕ2pcqwhich gives (88) for
commuting automorphisms.

The higher arity cases are more nontrivial and very cumbersome. Therefore, we
restrict ourselves by the case n “ 3 only.

Theorem 3. Let Apρq
3 “ xA | µ3, ν2y be an almost medial (ρ-commutative) G-graded ternary

algebra over a field k. Then there exists an almost commutative (ε-commutative G-graded binary
algebra Āpεq

2 “ xA | µ̄2y, three commuting grading preserving automorphisms ϕ1,2,3 and a fixed
element h P A, such that (cf. (28))

µ3ra, b, cs “ µ̄2rµ̄2rµ̄2rϕ1paq, ϕ2pbqs, hs, hs

” ϕ1paqϕ2pbqϕ3pcqh, @a, b, c, h P A (91)

ρp3
2q
´

Â1
p32q

¯

“ ε
`

a112, a131
˘

ε
`

a112, a121
˘

ε
`

a113, a131
˘

ε
`

a113, a132
˘

ε
`

a123, a132
˘

ε
`

a123, a131
˘

, (92)

Â1
p32q

“

´

a1ij
¯

, @a1ij P G, i, j “ 1, . . . , 3,

where we denote µ̄2ra, bs ” ab.

Proof. Using the matrix form of ternary (n “ 3) almost regularity (63) and inserting there
the ternary “linear” presentation (91) we get (in matrix form), @aij P A, i, j “ 1, . . . , 3,

ρp3
2q
´

Â1
p32q

¯

¨

˝

ϕ1 ˝ ϕ1pa11q ϕ1 ˝ ϕ2pa12q ϕ1 ˝ ϕ3pa13q

ϕ2 ˝ ϕ1pa21q ϕ2 ˝ ϕ2pa22q ϕ2 ˝ ϕ3pa23q

ϕ3 ˝ ϕ1pa31q ϕ3 ˝ ϕ2pa32q ϕ3 ˝ ϕ3pa33q

˛

‚ (93)

“

¨

˝

ϕ1 ˝ ϕ1pa11q ϕ1 ˝ ϕ2pa21q ϕ1 ˝ ϕ3pa31q

ϕ2 ˝ ϕ1pa12q ϕ2 ˝ ϕ2pa22q ϕ2 ˝ ϕ3pa32q

ϕ3 ˝ ϕ1pa13q ϕ3 ˝ ϕ2pa23q ϕ3 ˝ ϕ3pa33q

˛

‚. (94)

Applying the cancellativity of the binary algebra Āpεq
2 , we have

ρp3
2q
´

Â1
p32q

¯

ϕ1 ˝ ϕ2pa12qϕ1 ˝ ϕ3pa13qϕ2 ˝ ϕ1pa21qϕ2 ˝ ϕ3pa23qϕ3 ˝ ϕ1pa31qϕ3 ˝ ϕ2pa32q

“ ϕ1 ˝ ϕ2pa21qϕ1 ˝ ϕ3pa31qϕ2 ˝ ϕ1pa12qϕ2 ˝ ϕ3pa32qϕ3 ˝ ϕ1pa13qϕ3 ˝ ϕ2pa23q. (95)

Implementing almost (ε-) commutativity (4) on the r.h.s. of (95), we arrive (for pairwise
commuting grading preserving automorphisms ϕi ˝ ϕj “ ϕj ˝ ϕi, i, j “ 1, 2, 3) at (92).
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7. Binary Tensor Categories

We now apply the above ideas to construct a special kind of categories with multiplica-
tion [41,42] which appeared already in [43] and later on they were called tensor categories
and monoidal categories (as they “remind” us of the structure of a monoid) [13]. For
reviews, see, e.g., [44,45]. The monoidal categories can be considered as the categorifica-
tion [46] of a monoid object and can be treated as an instance of the microcosm principle:
“certain algebraic structures can be defined in any category equipped with a categorified version of the
same structure” [47]. We start from the definitions of categories [48,49] and binary tensor
categories [13] (in our notation).

Let C be a category with the class of objects ObC and morphisms MorC, such
that the arrow from the source X1 to the target X2 is defined by MorC Q f12 : X1 Ñ X2,
X1,2 P ObC, and usually HomCpX1, X2q denotes all arrows which do not intersect. If ObC
and MorC are sets, the category is small. The composition p˝q of three morphisms, their
associativity and the identity morphism (idX) are defined in the standard way [13].

If C and C1 are two categories, then a mapping between them is called a covariant
functor F : C Ñ C1 which consists of two different components: (1) the X-component is a
mapping of objects FOb : ObC Ñ ObC1; (2) the f-component is a mapping of morphisms
FMor : MorC Ñ MorC1 such that F “

 

FOb,FMor
(

. A functor preserves the identity
morphism FMorpidXq “ idFObpXq and the composition of morphisms FMorpf23 ˝ f12q “

FMorpf23q ˝
1 FMorpf12q (“ FMorpf12q ˝

1 FMorpf23q for a contravariant functor), where
`

˝1
˘

is the
composition in C1.

The (binary) product category C ˆC1 consists of all pairs of objects
`

ObC, ObC1
˘

,
morphisms

`

MorC, MorC1
˘

and identities pidX , idX1q, while the composition
`

˝2
˘

is made
component-wise

`

f23, f123
˘

˝2
`

f12, f112
˘

“
`

f23 ˝ f12, f123 ˝
1 f112

˘

, (96)

fij : Xi Ñ Xj,@Xi P ObC, f1ij : X1i Ñ X1j,@X1i P ObC1, i, j “ 1, 2, 3,

and by analogy this may be extended for more multipliers. A functor on a binary prod-
uct category is called a bifunctor (multifunctor). A functor consists of two components
 

FOb,FMor
(

, and therefore a mapping between two functors F and G should also be

two-component TFG “

!

TFG
Ob , TFG

Mor

)

. Usually [13], the components are denoted by the
same letter, but for clarity we will distinguish them, because their action, arguments and
corresponding commutative diagrams are different. Without other conditions TFG is called
an infranatural transformation from F to G. A natural transformation (denoted by the double
arrow TFG : F ñ G) is defined by the consistency condition of the above mappings in C1

TFG
Ob ˝

1 FMor “ GMor ˝
1 TFG

Ob . (97)

Application to objects gives the following commutative diagram for the natural trans-
formations (bifunctoriality)

FObpX1q ” X1F1

TFG
ObpX1q

��

FMorpfq”f
1F

//

TFG
Morpfq

**

FObpX2q ” X1F2

TFG
ObpX2q

��
GObpX1q ” X1G1

GMorpfq”f
1G

// GObpX2q ” X1G2

(98)
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which is the consistency of the objects in C1 transformed by F and G. The the diagonal
in (98) may also be interpreted as the action of the natural transformation on a morphism
TFG

Morpfq : FObpX1q Ñ GObpX2q, f : X1 Ñ X2, f P MorC, X1, X2 P ObC , such that

TFG
Morpfq “ TFG

ObpX2q ˝
1 FMorpfq “ GMorpfq ˝

1 TFG
ObpX1q, (99)

where the second equality holds valid due to the naturality (97).
In a concise form the natural transformations are described by the commutative diagram

C

F

))

G

55 C1TFG
��

(100)

For a category C, the identity functor IdC “
`

IdC,Ob, IdC,Mor
˘

is defined by
IdC,ObpXq “ X, IdC,Morpfq “ f, @X P ObC, @f P MorC. Two categories C and
C1 are equivalent, if there exist two functors F and G and two natural transformations
TFG : IdC1 ñ F ˝1 G and TGF : G ˝F ñ IdC .

For more details and standard properties of categories, see, e.g., [13,48,49] and refer-
ences therein.

The categorification [46,50] of most algebraic structures can be provided by endowing
categories with an additional operation [41,42] “reminding” us of the tensor product [13].

A binary “magmatic” tensor category is
´

C,Mp2bq
¯

, where Mp2bq ” b : C ˆC Ñ C

is a bifunctor. We use this notation with brackets Mp2bq [51], because they are convenient
for further consideration of the n-ary case [20]. In component form the bifunctor is Mp2bq “
!

M
p2bq
Ob ,Mp2bq

Mor

)

, where Mp2bq
Mor is

M
p2bq
Mor rf111 , f221s “M

p2bq
Ob rX1, X2s ÑM

p2bq
Ob

“

X11, X12
‰

, (101)

fii1 : Xi Ñ X1i , fii1 P MorC,@Xi, Xi1 P ObC, i “ 1, 2.

The composition of the f-components is determined by the binary mediality property
(cf. (27))

M
p2bq
Mor rf23, g23s ˝M

p2bq
Mor rf12, g12s “M

p2bq
Mor rf23 ˝ f12, g23 ˝ g12s, (102)

fij : Xi Ñ Xj, gij : Yi Ñ Yj, fij, gij P MorC,@Xi, Yi P ObC, i “ 1, 2, 3.

The identity of the tensor product satisfies

M
p2bq
Mor

“

idX1 , idX2

‰

“ id
Mp2bq

Ob rX1,X2s
. (103)

We call a categoryC a strict (binary) semigroupal [52,53] (or strictly associative semigroupal
category [54], also, semi-monoidal [55]), if the bifunctor Mp2bq satisfies only (without unit
objects and unitors) the binary associativity condition pX1 b X2q b X3 “ X1 b pX2 b X3q

and pf1 b f2q b f3 “ f1 b pf2 b f3q, where Xi P ObC, fi P MorC, i “ 1, 2, 3 (also denoted by
sSGCat). Strict associativity is the equivalence

M
p2bq
Ob

”

M
p2bq
Ob rX1, X2s, X3

ı

“M
p2bq
Ob

”

X1,Mp2bq
Ob rX2, X3s

ı

, (104)

M
p2bq
Mor

”

M
p2bq
Mor rf1, f2s, f3

ı

“M
p2bq
Mor

”

f1,Mp2bq
Mor rf2, f3s

ı

. (105)
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Remark 3. Usually, only the first equation for the X-components is presented in the definition
of associativity (and other properties), while the equation for the f-components is assumed to be
satisfied “automatically” having the same form [13,56]. In some cases, the diagrams for Mp2bq

Ob

and M
p2bq
Mor can fail to coincide and have different shapes, for instance, in the case of the dagger

categories dealing with the “reverse” morphisms [57].

The associativity relations guarantee that in any product of objects or morphisms
different ways of inserting parentheses lead to equivalent results (as for semigroups).

In the case of a non-strict semigroupal category SGCat (with no unit objects and uni-
tors) [52,54] (see, also, [53,58,59]) a collection of mappings can be introduced which are just
the isomorphisms (associators) Ap3bq “

!

Ap3bqOb , Ap3bqMor

)

from the left side functor to the right
side functor of (104) and (105) as

Ap3bqOb pX1, X2, X3q : Mp2bq
Ob

”

M
p2bq
Ob rX1, X2s, X3

ı

»
ÑM

p2bq
Ob

”

X1,Mp2bq
Ob rX2, X3s

ı

, (106)

where Ap3bqMor may be interpreted similarly to the diagonal in (98), because the associators are
natural transformations [13] or trifunctorial isomorphisms (in the terminology of [54]). Now
different ways of inserting parentheses in a product of N objects give different results in
the absence of conditions on the associator Ap3bq. However, if the associator Ap3bq satisfies
some consistency relations, they can give isomorphic results, such that the corresponding
diagrams commute, which is the statement of the coherence theorem [42,60]. This can also
be applied to SGCat, because it can be proved independently of existence of units [52–54].
It was shown [42] that it is sufficient to consider one commutative diagram using the
associator (the associativity constraint) for two different rearrangements of parentheses for
three tensor multiplications of four objects, giving the following isomorphism

M
p2bq
Ob

”

M
p2bq
Ob

”

M
p2bq
Ob rX1, X2s, X3

ı

, X4

ı

»
ÑM

p2bq
Ob

”

X1,Mp2bq
Ob

”

X2,Mp2bq
Ob rX3, X4s

ıı

. (107)

The constraint of associativity is called a pentagon axiom [13], such that the diagram

rrX1, rX2, X3ss, X4s //
Ap3bq1,23,4

rX1, rrX2, X3s, X4ss

idX1 bAp3bq2,3,4

!!
rrrX1, X2s, X3s, X4s

Ap3bq1,2,3 bidX4

>>

» //

Ap3bq12,3,4 ((

rX1, rX2, rX3, X4sss

rrX1, X2s, rX3, X4ss

Ap3bq1,2,34

66

(108)

commutes. We omit Mp2bq
Ob in diagrams by leaving the square brackets only and using the

obvious subscripts in Ap3bq.
A similar condition for morphisms, but in another context (for H-spaces), was pre-

sented in [56,61]. Note that there exists a different (but not alternative) approach to natural
associativity without the use of the pentagon axiom [62].

The transition from the semigroupal non-strict category SGCat to the monoidal non-
strict category MonCat can be done in a way similar to passing from a semigroup to
a monoid: by adding the unit object E P ObC and the (right and left) unitors Up2bq

p1q “
!

Up2bq
p1qOb, Up2bq

p1qMor

)

and Up2bq
p2q “

!

Up2bq
p2qOb, Up2bq

p2qMor

)

(“unit morphisms” which are functorial
isomorphisms, natural transformations) [13]
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Up2bq
p1qOb : Mp2bq

Ob rX, Es »Ñ X, (109)

Up2bq
p2qOb : Mp2bq

Ob rE, Xs »Ñ X, @X P ObC, (110)

and Up2bq
p1,2qMor can be viewed as the diagonal in the diagram of naturality similar to (98).

The unitors are connected with the associator Ap3bq, such that the diagram (triangle axiom)

rrX1, Es, X2s

Up2bqp1qObbidX2 &&

Ap3bqOb // rX1, rE, X2ss

idX1 bUp2bqp2qObxx
rX1, X2s

(111)

commutes.
Using the above, the definition of a binary non-strict monoidal category MonCat can be

given as the 6-tuple
´

C,Mp2bq, Ap3bq, E, Up2bq
¯

such that the pentagon axiom (108) and
the triangle axiom (111) are satisfied [13,42] (see, also, [60,63]).

The following “normalizing” relations for the unitors of a monoidal non-strict category

Up2bq
p1qObpEq “ Up2bq

p2qObpEq, (112)

can be proven [17], as well as that the diagrams

rrX1, X2s, Es

Up2bqp1qOb
��

Ap3bqOb // rX1, rX2, Ess

idX1 bUp2bqp1qOb
��

rX1, X2s

rrE, X1s, X2s

Up2bqp2qObbidX2 ��

Ap3bqOb // rE, rX1, X2ss

Up2bqp2qOb
��

rX1, X2s

(113)

commute.
The coherence theorem [41,42] proves that any diagram in a non-strict monoidal cat-

egory, which can be built from an associator satisfying the pentagon axiom (108) and
unitors satisfying the triangle axiom (111), commutes. Another formulation [13] states that
every monoidal non-strict category is (monoidally) equivalent to a monoidal strict one
(see also [64]).

Thus, it is important to prove analogs of the coherence theorem for various existing
generalizations of categories (having weak modification of units [55,65,66] and from the
“periodic table” of higher categories [67]) as well as for further generalizations (e.g., n-ary
ones below).

8. Polyadic Tensor Categories

The arity of the additional multiplication in a category (the tensor product) was
previously taken to be binary. Here we introduce categories with tensor multiplication
which “remind” n-ary semigroups, n-ary monoids and n-ary groups [15,16] (see, also [68]),
i.e., we provide the categorification [50,69] of “higher-arity” structures according to the
Baez–Dolan microcosm principle [47]. In our considerations we use the term “tensor
category” in a wider context, because it can include not only binary monoid-like struc-
tures and their combinations but also n-ary-like algebraic structures. It is important to
note that our construction is different from other higher generalizations of categories,
such as 2-categories [70] and bicategories [71], n-categories [72,73] and n-categories of
n-groups [74], multicategories [75–77], n-tuple categories and multiple categories [78], iter-
ated (n-fold) monoidal categories [79], iterated icons [80], and obstructed categories [81,82].
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We introduce the categorification of “higher-arity” structures like [20] and consider their
properties, some of them are different from the binary case (as in n-ary (semi)groups and
n-ary monoids). Also, the terms “k-ary algebraic category” and “k-ary category” appeared
in [83,84], respectively, but they describe different constructions.

Let C be a category [13], we introduce an additional multiplication as an n-ary tensor
product similar to [20,38].

Definition 28. An n-ary tensor product in a category C is an n-ary functor

Mpnbq :

n
hkkkkkkikkkkkkj

C ˆ . . .ˆC Ñ C (114)

having the component form Mpnbq “
!

M
pnbq
Ob ,Mpnbq

Mor

)

where the f-component Mpnbq
Mor is

M
pnbq
Mor rf111 , f221 , . . . fnn1s “M

pnbq
Ob rX1, X2, . . . Xns ÑM

pnbq
Ob

“

X11, X12, . . . X1n
‰

, (115)

fii1 : Xi Ñ X1i , fii1 P MorC,@Xi, X1i P ObC, i “ 1, . . . , n.

The n-ary composition of the f-components (morphism products of length n) is deter-
mined by the n-ary mediality property (cf. (57))

M
pnbq
Mor

”

fp1,1q, fp1,2q, . . . , fp1,nq
ı

˝ . . . ˝Mpnbq
Mor

”

fpn,1q, fpn,2q, . . . , fpn,nq
ı

,

“M
pnbq
Mor

”

fp1,1q ˝ fp2,1q ˝ . . . ˝ fpn,1q, . . . , fp1,nq ˝ . . . ˝ fpn,nq
ı

, (116)

fpi,jq P MorC, i, j “ 1, 2 . . . , n.

The identity morphism of the n-ary tensor product satisfies

M
pnbq
Mor

“

idX1 , idX2 , . . . , idXn

‰

“ id
Mpnbq

Ob rX1,X2 ...,Xns
. (117)

Definition 29. An n-ary tensor product Mpnbq which can be constructed from a binary tensor
product M1p2bq by successive (iterative) repetitions is called an arity-reduced tensor product,
by analogy with the “derived n-ary group” [15,16], and otherwise it is called an arity-nonreduced
tensor product.

Categories containing iterations of the binary tensor product were considered
in [79,80]. We will mostly be interested in the arity-nonreducible tensor products and
their corresponding categories.

Definition 30. A polyadic (n-ary) “magmatic” tensor category is
´

C,Mpnbq
¯

, where Mpnbq

is an n-ary tensor product (functor (114)), and it is called an arity-reduced category or arity-
nonreduced category depending on its tensor product.

8.1. Polyadic Semigroupal Categories

We call sequences of objects and morphisms X-polyads and f-polyads [16] and denote
them X and f, respectively (as in (53)).

Definition 31. The n-ary functor Mpnbq is totally (n-ary) associative, if it satisfies the following
pn´ 1q pairs of X equivalences

M
pnbq
Ob

”

X,Mpnbq
Ob rYs, Z

ı

“ equivalent, (118)

where X, Y, Z are X-polyads of the necessary length, and the total length of each pX, Y, Zq-polyad is
2n´ 1, while the internal tensor products in (118) can be on any of the n places.
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Example 4. In the ternary case (n “ 3) the total associativity for the X-polyads of the length
5 “ 2 ¨ 3´ 1 gives 2 “ 3´ 1 pairs of equivalences

M
p3bq
Ob

”

M
p3bq
Ob rX1, X2, X3s, X4, X5

ı

“M
p3bq
Ob

”

X1,Mp3bq
Ob rX2, X3, X4s, X5

ı

“M
p3bq
Ob

”

X1, X2,Mp3bq
Ob rX3, X4, X5s

ı

, (119)

@Xi P ObC, @fi P MorC, i “ 1, . . . , 5.

Definition 32. A category
´

C,Mpnbq
¯

is called a polyadic (n-ary) strict semigroupal cat-

egory sSGCatn, if the bifunctor Mpnbq satisfies objects and unitors) the n-ary associativity
condition (118).

Thus, in a polyadic strict semigroupal category for any (allowed, i.e., having the size
kpn´ 1q ` 1, @k P N, where k is the number of n-ary tensor multiplications) product of
objects (or morphisms), all different ways of inserting parentheses give equivalent results
(as for n-ary semigroups).

8.2. n-Ary Coherence

As in the binary case (106), the transition to non-strict categories results in the consid-
eration of independent isomorphisms instead of the equivalence (118).

Definition 33. The pn´ 1q pairs of X and f isomorphisms Ap2n´1qb “
!

Ap2n´1qb
Ob , Ap2n´1qb

Mor

)

such that

Ap2n´1qb
i,Ob : Mpnbq

Ob

”

X,Mpnbq
i,Ob rYs, Z

ı

»
ÑM

pnbq
Ob

”

X,Mpnbq
i`1,ObrYs, Z

ı

, (120)

are called n-ary associators being p2n´ 1q-place natural transformations, where Ap2n´1qb
Mor may

be viewed as corresponding diagonals as in (98). Here i “ 1, . . . , n´ 1 is the place of the inter-
nal brackets.

In the ternary case (n “ 3) we have 2 “ 3´ 1 pairs of the ternary associators

Ap5bq1,Ob : Mp3bq
Ob

”

M
p3bq
Ob rX1, X2, X3s, X4, X5

ı

»
ÑM

p3bq
Ob

”

X1,Mp3bq
Ob rX2, X3, X4s, X5

ı

, (121)

and

Ap5bq2,Ob : Mp3bq
Ob

”

X1,Mp3bq
Ob rX2, X3, X4s, X5

ı

»
ÑM

p3bq
Ob

”

X1, X2,Mp3bq
Ob rX3, X4, X5s

ı

. (122)

It is now definite that different ways of inserting parentheses in a product of N objects
will give different results (the same will be true for morphisms as well), if we do not
impose constraints on the associators. We anticipate that we will need (as in the binary
case (107)) only one more (i.e., three) tensor multiplication than appears in the associa-
tivity conditions (118) to make a commutative diagram for the following isomorphism of
3 ¨ pn´ 1q ` 1 “ 3n´ 2 objects

M
pnbq
Ob

”

M
pnbq
Ob

”

M
pnbq
Ob rX1, . . . , Xns, Xn`1, . . . , X2n´1

ı

, X2n, . . . , X3n´2

ı

»
ÑM

pnbq
Ob

”

X1, . . . , Xn´1,Mpnbq
Ob

”

Xn, . . . , X2n´2,Mpnbq
Ob rX2n´1, . . . , X3n´2s

ıı

. (123)

Conjecture 1 (N-ary coherence). If the n-ary associator Ap2n´1qb satisfies such n-ary coherence
conditions that the isomorphism (123) takes place, then any diagram containing Ap2n´1qb together
with the identities (117) commutes.
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The n-ary coherence conditions are described by a “
`

n2 ` 1
˘

-gon”, which is the pen-
tagon (108) for n “ 2 (for classification of “N-gons” see, e.g., [85]).

Definition 34. A category
´

C,Mpnbq
¯

is called a polyadic (n-ary) non-strict semigroupal cate-

gory sSGCatn, if the bifunctor Mpnbq satisfies the n-ary coherence.

Example 5. In the ternary case n “ 3 we have 2 pairs of 5-place associators (121)–(122) Ap5bq1

and Ap5bq2 which act on 7 “ 3 ¨ 3´ 2 objects (123). We consider the diagram for objects only, then

the associativity constraint for the associators Ap5bq1,Ob and Ap5bq2,Ob will be a decagon axiom requiring
that the diagram

rX1, rX2, rX3, X4, X5s, X6s, X7s

Ap5bq2,Ob 1,2,345,6,7

%%
rrX1, X2, rX3, X4, X5ss, X6, X7s

Ap5bq1,Ob 1,2,345,6,7

99

rX1, X2, rrX3, X4, X5s, X6, X7ss

idX1 b idX2 bAp5bq1,Ob 3,4,5,6,7

��
rrX1, rX2, X3, X4s, X5s, X6, X7s

Ap5bq2,Ob 1,2,3,4,5bidX6 b idX7

OO

rX1, X2, rX3, rX4, X5, X6s, X7ss

idX1 b idX2 bAp5bq2,Ob 3,4,5,6,7

��
rrrX1, X2, X3s, X4, X5s, X6, X7s

Ap5bq1,Ob 1,2,3,4,5bidX6 b idX7

OO

Ap5bq1,Ob 123,4,5,6,7

��

»

p123q

// rX1, X2, rX3, X4, rX5, X6, X7sss

rrX1, X2, X3s, rX4, X5, X6s, X7s

Ap5bq2,Ob 123,4,5,6,7
%%

rX1, rX2, X3, X4s, rX5, X6, X7ss

Ap5bq2,Ob 1,2,3,4,567

OO

rrX1, X2X3s, X4, rX5, X6, X7ss

Ap5bq1,Ob 1,2,3,4,567

99

(124)

commutes (cf. (124) and the pentagon axiom (108) for binary non-strict tensor categories).

9. n-Ary Units, Unitors and Quertors

Introducing n-ary (polyadic) analogs of units and unitors is nontrivial, because in
n-ary (polyadic) structures there are various possibilities: one unit, many units, all ele-
ments are units or there are no units at all (see, e.g., for n-ary groups [15,16,68], and for
n-ary monoids [86]). A similar situation is expected in the category theory after proper
categorification [46,50,69] of n-ary (polyadic) structures.

9.1. Polyadic Monoidal Categories

Let
´

C,Mpnbq, Ap2n´1qb
¯

be an n-ary non-strict semigroupal category SGCatn

(see Definition 32) with n-ary tensor product Mpnbq and the associator Ap2n´1qb satisfying
n-ary coherence. If a category has a unit neutral sequence of objects Epn´1q “ pE1, . . . , Eiq,
Ei P ObC, i “ 1, . . . , n´ 1, we call it a unital category. Note that the unit neutral sequence
may not be unique. If all Ei coincide Ei “ E P ObC, then E is called a unit object of C. The
n-ary unitors Upnbq

piq , i “ 1, . . . , n (n-ary “unit morphisms” being natural transformations)
are defined by

Upnbq
piqOb : Mpnbq

Ob rE1, . . . Ei´1, X, Ei`1, . . . Ens
»
Ñ X, @X, Ei P ObC, i “ 1, . . . , n´ 1. (125)
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The n-ary unitors Upnbq
piq are compatible with the n-ary associators Ap2n´1qb by the

analog of the triangle axiom (111). In the binary case (109)–(110), we have Up2bq
p1q “ Rp2bq,

Up2bq
p2q “ Lp2bq.

Definition 35. A polyadic (n-ary) non-strict monoidal category MonCatn is a polyadic (n-ary)
non-strict semigroupal category SGCatn endowed with a unit neutral sequence Epn´1q and n unitors

Upnbq
piq , i “ 1, . . . , n, that is a 5-tuple

´

C,Mpnbq, Apnbq, Epn´1q, Upnbq
¯

satisfying the “
`

n2 ` 1
˘

-

gon” axiom for the pn´ 1q associators Ap2n´1qb
piq and the triangle axiom (the analog of (111)) for

the unitors and associators compatibility condition.

Example 6. If we consider the ternary non-strict monoidal category MonCat3 with one unit object
E P ObC, then we have 2 associators Ap5bq1 and Ap5bq2 satisfying the decagon axiom (124) and
3 unitors

Up3bq
p1qOb : Mp3bq

Ob rX, E, Es »Ñ X, (126)

Up3bq
p2qOb : Mp3bq

Ob rE, X, Es »Ñ X, (127)

Up3bq
p3qOb : Mp3bq

Ob rE, E, Xs »Ñ X, @X P ObC, (128)

which satisfy the “normalizing” conditions Up3bq
piqObpEq “ E, i “ 1, 2, 3 and the ternary analog of

the triangle axiom (111), such that the diagram

rE, rE, X, Es, Es

Ap5bq2,Ob

$$

Up3bqp2qOb E,EXE,E

��

rrE, E, Xs, E, Es

Ap5bq1,Ob

::

Up3bqp1qOb EEX,E,E

��

rE, E, rX, E, Ess

Up3bqp3qOb E,E,XEE

��
rE, E, Xs

Up3bqp3qOb E,E,X

$$

rE, X, Es

Up3bqp2qOb E,X,E

��

rX, E, Es

Up3bqp1qOb X,E,E

zz
X

(129)

commutes.

9.2. Polyadic Nonunital Groupal Categories

The main result of n-ary group theory [15,16] is connected with units and neutral
polyads: if they exist, then such n-ary group is reducible to a binary group. A similar
statement can be true in some sense for categories.

Conjecture 2. If a polyadic (n-ary) tensor category has unit object and unitors, it can be arity-
reducible to a binary category, such that the n-ary product can be obtained by iterations of the binary
tensor product.
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Therefore, it would be worthwhile to introduce and study non-reducible polyadic
tensor categories which do not possess unit objects and unitors at all. This can be done
by “categorification” of the querelement concept [15]. Recall that, for instance, in a ternary
group xG | µ3y for an element g P G a querelement ḡ is uniquely defined by µ3rg, g, ḡs “ g,
which can be treated as a generalization of the inverse element concept to the n-ary case.
The mapping g Ñ ḡ can be considered as an additional unary operation (queroperation) in
the ternary (and n-ary) group, while viewing it as an abstract algebra [87] such that the
notion of the identity is not used. The (binary) category of n-ary groups and corresponding
functors were considered in [88–90].

Let
´

C,Mpnbq, Ap2n´1qb
¯

be a polyadic (n-ary) non-strict semigroupal category,

where Mpnbq is the n-ary tensor product, and Ap2n´1qb is the associator making the
“
`

n2 ` 1
˘

-gon” diagram of n-ary coherence commutative. We propose a “categorification”
analog of the queroperation to be a covariant endofunctor of C.

Definition 36. A querfunctor Q : C Ñ C is an endofunctor of C sending QObpXq “ X̄ and
QMorpfq “ f̄, where X̄ and f̄ are the querobject and the quermorphism of X and f, respectively,
such that the i diagrams (i “ 1, . . . , n)

»

–

n
hkkkikkkj

X, . . . , X

fi

fl

PrpnbqOb

''

i´1
hkkkkkkkkkikkkkkkkkkj

idX b, . . . ,b idXbQObb

n´i
hkkkkkkkkkikkkkkkkkkj

idX b, . . . ,b idX
//

»

–

i´1
hkkkikkkj

X, . . . , X, X̄,

n´i
hkkkikkkj

X, . . . , X

fi

fl

QpnbqpiqOb

vvX

(130)

commute (and analogously for morphisms), where Qpnbq
piq are quertors

Qpnbq
piqOb : Mpnbq

Ob

»

–

i´1
hkkkikkkj

X, . . . , X, X̄,

n´i
hkkkikkkj

X, . . . , X

fi

fl

»
Ñ X, @X P ObC, i “ 1, . . . , n, (131)

and Prpnbq : Cnb Ñ C is the projection. The action on morphisms Qpnbq
piqMor can be found

using the diagonal arrow in the corresponding natural transformation, as in (98).

Example 7. In the ternary case we have (for objects) the querfunctor QObpXq “ X̄ and three
quertor isomorphisms

Qp3bq
p1qOb : Mp3bq

Ob

“

X̄, X, X
‰ »
Ñ X, (132)

Qp3bq
p2qOb : Mp3bq

Ob

“

X, X̄, X
‰ »
Ñ X, (133)

Qp3bq
p3qOb : Mp3bq

Ob

“

X, X, X̄
‰ »
Ñ X, @X P ObC. (134)

The three quertors Qp3bq
piqOb and the querfunctor Q are connected with two ternary associators

Ap5bq1,Ob , Ap5bq2,Ob (121) and (122) such that the following diagram
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rX, X, Xs

Diagp3bqbidb id

ww

idb idbDiagp3bq

''

idbDiagp3bqbid

��
rrX, X, Xs, X, Xs

Ap5bq1,Ob

//

idb idbQObbidb id

��

rX, rX, X, Xs, Xs

Ap5bq2,Ob

//

idb idbQObbidb id

��

rX, X, rX, X, Xss

idb idbQObbidb id

��
““

X, X, X̄
‰

, X, X
‰

Qp3bq
p3qObbidXb idX

''

Ap5bq1,Ob

// “X,
“

X, X̄, X
‰

, X
‰

Ap5bq2,Ob

//

idXbQp3bq
p2qObbidX

��

“

X, X,
“

X̄, X, X
‰‰

idXb idXbQp3bq
p1qOb

ww
rX, X, Xs

(135)

commutes, where Diagpnbq : C Ñ Cnb is the diagonal.

Definition 37. A nonunital non-strict groupal category is

GCatn “
´

C,Mpnbq, Ap2n´1qb,Q, Qpnbq
¯

,

i.e., a polyadic non-strict semigroupal category SGCatn equipped with the querfunctor Q and the
quertors Qpnbq satisfying (130).

Conjecture 3. There exist polyadic nonunital non-strict groupal categories which are arity-non-
reducible (see Definition 30), and so their n-ary tensor product cannot be presented in the form of
binary tensor product iterations.

10. Braided Tensor Categories

The next step in the investigation of binary tensor categories is consideration of the
tensor product “commutativity” property. The tensor product can be “commutative” such
that for a tensor category C there exists the equivalence X bY “ Y b X, @X, Y, P ObC,
and such tensor categories are called symmetric [13]. By analogy with associativity, one
can introduce non-strict “commutativity”, which leads to the notion of a braided (binary)
tensor category and the corresponding coherence theorems [17]. Various generalizations of
braiding were considered in [81,91,92], and their higher versions are found, e.g., in [93–95].

10.1. Braided Binary Tensor Categories

Let
´

C,Mp2bq, Ap3bq
¯

be a non-strict semigroupal category with the bifunctor Mp2bq

and the associator Ap3bq (106) satisfying the pentagon axiom (108) [52,54].

Definition 38. A (binary) braiding Bp2bq “
!

Bp2bqOb , Bp2bqMor

)

of a semigroupal category SGCat2

is a natural transformation of the bifunctor Mp2bq (bifunctorial isomorphism) such that

Bp2bqOb : Mp2bq
Ob rX1, X2s

»
ÑM

p2bq
Ob rX2, X1s, @Xi P ObC, i “ 1, 2, (136)

and the action on morphisms Bp2bqMor may be interpreted as a diagonal, similarly to (98).

Definition 39. A non-strict semigroupal category endowed with a binary braiding is called a
(binary) braided semigroupal category bSGCat2

´

C,Mp2bq, Ap3bq, Bp2bq
¯

.
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The braiding Bp2bq is connected with the associator Ap3bq by the hexagon identity

rrX1, X2s, X3s

Ap3bqOb 1,2,3

&&

Bp2bqOb 1,2bidX3

xx
rrX2, X1s, X3s

Ap3bqOb 2,1,3

��

rX1, rX2, X3ss

Bp2bqp3qOb 1,23

��
rX2, rX1, X3ss

idX2 bBp2bqOb 1,3
&&

rrX2, X3s, X1s

Ap3bqOb 2,3,1xx
rX2, rX3, X1ss

(137)

for objects, and similarly for the inverse associator.

Definition 40. A symmetric braided semigroupal category sbSGCat2 has the “invertible” braiding

Bp2bqOb X1,X2
˝Bp2bqOb X2,X1

“ idX1bX2 or (138)

Bp2bqOb X2,X1
“ Bp2bq,´1

Ob X1,X2
, @Xi P ObC (139)

A von Neumann regular generalization [96] (weakening) of (138) leads to

Definition 41. A (von Neumann) regular braided semigroupal category is defined by a braiding
which satisfies [92,97]

Bp2bqOb X1,X2
˝B˚p2bqOb X1,X2

˝Bp2bqOb X1,X2
“ Bp2bqOb X1,X2

, (140)

where B˚p2bqOb X1,X2
is a generalized inverse [98,99] of Bp2bqOb X1,X2

, and such that B˚p2bqOb X1,X2
‰ Bp2bq,´1

Ob X1,X2
(cf. (139)).

Proposition 14. If the (binary) braided semigroupal category is strict (the associator becomes the
equivalence (104) and (105), and we can omit internal brackets), then the diagram

rX1, X2, X3s

idX1 bBp2bqOb 2,3

((

Bp2bqOb 1,2bidX3

vv
Bp2bqOb 1,23

||

rX2, X1, X3s

idX2 bBp2bqOb 1,3

��

rX1, X3, X2s

Bp2bqOb 1,3bidX2

��
Bp2bqOb 1,32

||

rX2, X3, X1s

Bp2bqOb 2,3bidX1
((

rX3, X1, X2s

idX3 bBp2bqOb 1,2vv
rX3, X2, X1s

(141)

commutes [56,61].
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Proof. The triangles commute due to the hexagon identity (137) and the internal rectan-
gle commutes, because the binary braiding Bp2bq is a natural transformation (bifuncto-
rial isomorphism).

Omitting indices (141) becomes the Yang–Baxter equation in terms of tensor prod-
ucts [100] (or the binary braid group relation—for their difference, see [101])

´

Bp2bqOb b id
¯

˝

´

idbBp2bqOb

¯

˝

´

Bp2bqOb b id
¯

“

´

idbBp2bqOb

¯

˝

´

Bp2bqOb b id
¯

˝

´

idbBp2bqOb

¯

. (142)

If the braided semigroupal category bSGCat2 contains a unit object, then we have

Definition 42. A (binary) braided monoidal category

MonCat2

´

C,Mp2bq, Ap3bq, E, Up2bq, Bp2bq
¯

is the category bSGCat2 together with a unit object E P ObC satisfying the triangle axiom (111)
and a unitor Up2bq (109) and (110) the compatibility condition with the braiding Bp2bq such that
the diagram (for objects)

rX, Es

Up2bqp1qOb
$$

Bp2bqOb // rE, Xs

Up2bqp2qOb
zz

X

(143)

commutes.

For more details on binary braided monoidal categories, see [17,102] and for review,
see, e.g., [14,103,104].

10.2. Braided Polyadic Tensor Categories

Higher braidings for binary tensor categories were considered (from an n-category
viewpoint) in [93,105]. We will discuss them for polyadic categories, defined above
in Section 8. The difference will be clearer if a polyadic category is not arity-reduced
(see Definition 30) and for non-unital groupal categories (Section 9.2).

Let
´

C,Mpnbq, Ap2n´1qb
¯

be a polyadic non-strict semigroupal category, where

Mpnbq is a (not arity reduced) n-ary tensor product (n-ary functor) and Ap2n´1qb is an
associator, i.e., n´ 1 different p2n´ 1q-ary natural transformations (see Definition 32). Now
the braiding becomes an n-ary natural transformation, which leads to any of n permuta-
tions from the symmetry (permutation) group Sn rather than one possibility only, as for
the binary braiding (136). Note that in the consideration of higher braidings [93,105] one

(“order reversing”) element of Sn was used σ
prevq
n ”

ˆ

1 2 . . . n
n n´ 1 . . . 1

˙

P Sn. Thus, we

arrive at the most general

Definition 43. An n-ary braiding Bnb “
!

BpnbqOb , BpnbqMor

)

of a polyadic non-strict semigroupal
category is an n-ary natural (or infranatural) transformation

BpnbqOb : Mpnbq
Ob rXs »ÑM

pnbq
Ob rσn ˝Xs, (144)

where X is an X-polyad (see Definition 31) of the necessary length (which is n here), and σn P Sn

are permutations that may satisfy some consistency conditions. The action on morphisms BpnbqMor
may be found from the corresponding diagonal of the natural transformation square (cf. (98)).
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The binary non-mixed (standard) braiding (136) has σ2 “ σ
prevq
2 “

ˆ

1 2
2 1

˙

P S2.

Definition 44. A polyadic (non-strict) semigroupal category endowed with the n-ary braiding
´

C,Mpnbq, Ap2n´1qb, Bpnbq
¯

is called a braided semigroupal polyadic category bSGCatn.

The n-ary braiding Bpnbq is connected with the associator Ap2n´1qb by a polyadic
analog of the hexagon identity (137).

Example 8. In the case n “ 3, the braided non-strict semigroupal ternary category bSGCat3

contains two associators Ap5bq1 and Ap5bq2 (see Example 5) satisfying the decagon axiom (124). Let
us take for the ternary braiding Bp3bq its “order reversing” version

Bp3bqOb : Mp2bq
Ob rX1, X2, X3s

»
ÑM

p2bq
Ob rX3, X2, X1s, @Xi P ObC, i “ 1, 2, 3. (145)

Then the ternary analog of the hexagon identity is the decagon identity such that the diagram

rrX1, X2, X3s, X4, X5s

Ap5bq1,Ob 1,2,3,4,5

%%

Bp3bqOb 1,2,3bidX4 b idX5

yy
rrX3, X2, X1s, X4, X5s

Ap5bq1,Ob 3,2,1,4,5

��

rX1, rX2, X3, X4s, X5s

Ap5bq2,Ob 1,2,3,4,5

��
rX3, rX2, X1, X4s, X5s

idX3 bBp3bqOb 2,1,4bidX5

��

rX1, X2, rX3, X4, X5ss

Bp3bqOb 1,2,345

��
rX3, rX4, X1, X2s, X5s

Ap5bq2,Ob 3,4,1,2,5

��

rrX3, X4, X5s, X2, X1s

Ap5bq1,Ob 3,4,5,2,1

��
rX3, X4, rX1, X2, X5ss

idX3 b idX4 bBp3bqOb 1,2,5
%%

rX3, rX4, X5, X2s, X1s

Ap5bq2,Ob 3,4,5,2,1yy
rX3, X4, rX5, X2, X1ss

(146)

commutes.

Conjecture 4 (Braided n-ary coherence). If the n-ary associator Ap2n´1qb satisfies such n-ary
coherence conditions that the isomorphism (123) takes place, and the n-ary braiding Bpnbq sat-
isfies the polyadic analog of the hexagon identity, then any diagram containing Ap2n´1qb and
Bpnbq commutes.

Proposition 15. If the braided semigroupal ternary category bSGCat3 is strict (the associators
becomes equivalences, and we can omit internal brackets), then the diagram containing only the
ternary braidings Bp3bq
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rX1, X2, X3, X4, X5s

idX1
b idX2

bBp3bqOb 3,4,5

''

Bp3bqOb 1,2,3bidX4
b idX5

ww

Bp3bqOb 1,2,345

��

rX3, X2, X1, X4, X5s

idX3
b idX2

bBp3bqOb 1,4,5

��

rX1, X2, X5, X4, X3s

idX1
bBp3bqOb 2,5,4bidX3

��

Bp3bqOb 1,2,543

��

rX3, X2, X5, X4, X1s

idX3
bBp3bqOb 2,5,4bidX1

��

rX1, X4, X5, X2, X3s

Bp3bqOb 1,4,5bidX2
b idX3

��
rX3, X4, X5, X2, X1s

Bp3bqOb 3,5,4bidX2
b idX1

''

rX5, X4, X1, X2, X3s

idX5
b idX4

bBp3bqOb 1,2,3ww
rX5, X4, X3, X2, X1s

(147)

commutes (cf. the binary braiding (141)).

Proof. This is analogous to (141).

There follows from (147), omitting indices, the ternary braid group relation in terms of
tensor products (cf. the tetrahedron equation [93,106,107])

´

Bp3bq b idb id
¯

˝

´

idbBp3bq b id
¯

˝

´

idb idbBp3bq
¯

˝

´

Bp3bq b idb id
¯

“

´

idb idbBp3bq
¯

˝

´

Bp3bq b idb id
¯

˝

´

idbBp3bq b id
¯

˝

´

idb idbBp3bq
¯

, (148)

which was obtained in [9] using another approach: by the associative quiver technique
from [38]. For instance, the 4-ary braid group relation for 4-ary braiding Bp4bq has the form

´

Bp4bq b idb idb id
¯

˝

´

idbBp4bq b idb id
¯

˝

´

idbidbBp4bq b id
¯

˝

´

idb idb idbBp4bq
¯

˝

´

Bp4bq b idb idb id
¯

“

´

idb idb idbBp4bq
¯

˝

´

Bp4bq b idb idb id
¯

˝

´

idbidbBp4bq b id
¯

˝

´

idbBp4bq b idb id
¯

˝

´

idb idb idbBp4bq
¯

. (149)

For the non-mixed “order reversing” n-ary braiding (see Definition 43) we have [9].
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Proposition 16. The n-ary braid equation contains pn` 1q multipliers, and each one acts on
p2n´ 1q tensor products as

¨

˝Bpnbqb

n´1
hkkkkkkikkkkkkj

idb . . .b id

˛

‚˝

¨

˝idbBpnbqb

n´2
hkkkkkkikkkkkkj

idb . . .b id

˛

‚˝

¨

˝idb idbBpnbqb

n´3
hkkkkkkikkkkkkj

idb . . .b id

˛

‚..

˝

¨

˝

n´2
hkkkkkkikkkkkkj

idb . . .b idbBpnbq b id

˛

‚˝

¨

˝

n´1
hkkkkkkikkkkkkj

idb . . .b idbBpnbq

˛

‚˝

¨

˝Bpnbqb

n´1
hkkkkkkikkkkkkj

idb . . .b id

˛

‚

“

¨

˝

n´1
hkkkkkkikkkkkkj

idb . . .b idbBpnbq

˛

‚˝

¨

˝Bpnbqb

n´1
hkkkkkkikkkkkkj

idb . . .b id

˛

‚˝

¨

˝idbBpnbqb

n´2
hkkkkkkikkkkkkj

idb . . .b id

˛

‚. . .

˝

¨

˝

n´3
hkkkkkkikkkkkkj

idb . . .b idbBpnbq b idb id

˛

‚˝

¨

˝

n´2
hkkkkkkikkkkkkj

idb . . .b idbBpnbq b id

˛

‚

˝

¨

˝

n´1
hkkkkkkikkkkkkj

idb . . .b idbBpnbq

˛

‚. (150)

Remark 4. If a polyadic category is arity-nonreducible, then the higher n-ary braid relations cannot
be “iterated”, i.e., obtained from the lower n ones.

Consider a polyadic monoidal category MonCatn with one unit object E (see Definition 35).
Then the n-ary braiding Bpnbq satisfies the triangle identity connecting it with the unitors
Upnbq.

Example 9. In the case of the ternary monoidal category MonCat3 (see Example 6) the “order
reversing” braiding Bp3bq (145) satisfies an additional triangle identity analogous to (143) such
that the diagram

rX, E, Es

Up3bqp1qOb
%%

Bp3bqOb // rE, E, Xs

Up3bqp3qOb
yy

X

(151)

commutes.

For the polyadic non-unital groupal category GCatn (see Definition 37) the n-ary
braiding Bpnbq should be consistent with the quertors Upnbq and the querfunctor Q (see
Definition 36).

Definition 45. A braided polyadic groupal category bGCatn is a polyadic groupal category GCatn

endowed with the n-ary braiding
´

C,Mpnbq, Ap2n´1qb,Q, Qpnbq, Bpnbq
¯

.
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Example 10. In the ternary groupal category GCat3 (see Example 7) the “order reversing” braiding
Bp3bq (145) satisfies the additional identity of consistency with the querfunctor Q and quertor
Qp3bq such that the diagram

rX, X, Xs
QObbidb id

xx

idb idbQOb

&&
“

X̄, X, X
‰

Qp3bqp1qOb &&

Bp3bqOb
//
“

X, X, X̄
‰

Qp3bqp3qObxx
X

(152)

commutes.

The above diagrams ensure that some version of coherence can also be proven for
braided polyadic categories.

11. Medialed Polyadic Tensor Categories

Here we consider a medial approach to braiding inspired by the first part of our paper.
As opposed to binary braiding which is defined by one unique permutation (136), the n-ary
braiding can be defined by the enormous number of possible allowed permutations (144).
Therefore, in most cases only one permutation, that is the “order reversing”, is usually (and
artificially) used (see, e.g., [105]) ignoring other possible cases. On the other side, for n-ary
structures it is natural to use the mediality property (54) which is unique in the n-ary case
and for binary groups reduces to commutativity. So we introduce a medialing instead of
braiding for the tensor product in categories, and (by analogy with braided categories)
we call them medialed categories.

Let
´

C,Mpnbq, Ap2n´1qb
¯

be a polyadic non-strict semigroupal category SGCatn

(see Definition 32).

Definition 46. An n-ary medialing Mpn
2bq (or “medial braiding”) is a mediality constraint which

is a natural (or infranatural) transformation of two composed n-ary tensor product functors Mpnbq

(or functorial n2-isomorphism)

Mp
n2bq

Ob : Mpnbq
Ob

»

—

—

—

—

—

–

M
pnbq
Ob rX11, X12, . . . , X1ns,

M
pnbq
Ob rX21, X22, . . . , X2ns,

...
M
pnbq
Ob rXn1, Xn2, . . . , Xnns

fi

ffi

ffi

ffi

ffi

ffi

fl

»
ÑM

pnbq
Ob

»

—

—

—

—

—

–

M
pnbq
Ob rX11, X21, . . . , Xn1s,

M
pnbq
Ob rX12, X22, . . . , Xn2s,

...
M
pnbq
Ob rX1n, X2n, . . . , Xnns

fi

ffi

ffi

ffi

ffi

ffi

fl

, (153)

where the action on morphisms Mpnbq
Mor can be viewed as the corresponding diagonal in the natural

transformation diagram as in (98).

Remark 5. The advantage of n-ary medialing is its uniqueness, because it does not contain a huge
number of possible permutations σn P Sn as does the n-ary braiding (144).

Example 11. In the binary case n “ 2 we have (using the standard notation Mp2bq ÝÑ b)

Mp4bqOb : pX1 b X2q b pX3 b X4q
»
Ñ pX1 b X3q b pX2 b X4q, @Xi P ObC, i “ 1, . . . , 4, (154)

which is called a binary medialing by analogy with binary braiding (136).
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In the compact matrix notation (see Definition 16) instead of (153) we have
(symbolically)

Mp
n2bq

Ob :
´

M
pnbq
Ob

¯2”
X̂pn2q

ı

»
Ñ

´

M
pnbq
Ob

¯2”
X̂T
pn2q

ı

, (155)

where the matrix polyads of objects is (cf. (57))

X̂pn2q “
`

Xij
˘

P pObCqbn2
, Xij P ObC, (156)

and p qT is matrix transposition.

Definition 47. A medialed polyadic semigroupal category

mSGCatn “
´

C,Mpnbq, Ap2n´1qb, Mpn
2bq

¯

is a polyadic non-strict semigroupal category SGCatn (see Definition 34) endowed with the n-ary
medialing Mpn

2bq satisfying the n-ary medial coherence condition (a medial analog of the hexagon
identity (137)).

Definition 48. A medialed polyadic monoidal category

mMonCatn “
´

C,Mpnbq, Ap2n´1qb, E, Upnbq, Mpn
2bq

¯

is a medialed polyadic semigroupal category mSGCatn with the unit object E P ObC and the unitor
Upnbq satisfying some compatibility condition.

Let us consider the polyadic nonunital groupal category GCatn (see Definition 37), then
the n-ary medialing Mpn

2bq should be consistent with the quertors Upnbq and the querfunc-
tor Q (see Definition 36 and also the consistency condition for the ternary braiding (152)).

Definition 49. A braided polyadic groupal category

mGCatn “
´

C,Mpnbq, Ap2n´1qb,Q, Qpnbq, Mpn
2bq

¯

is a polyadic groupal category GCatn endowed with the n-ary medialing Mpn
2bq.

Medialed Binary and Ternary Categories

Due to the complexity of the relevant polyadic diagrams, it is not possible to draw
them in a general case for arbitrary arity n. Therefore, it would be worthwhile to consider
first the binary case, and then some of the diagrams for the ternary case.

Example 12. Let
mSGCat2 “

´

C,Mp2bq, Ap3bq, Mp4bq
¯

be a binary medialed semigroupal category and the binary medialing be as in (154). Then the medial
analog of the hexagon identity (137) is given by the binary medial coherence condition such that
the diagram
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rrrrX1, X2s, X3s, X4s, X5s

Ap3bqOb 12,3,4bidX5

��

Ap3bqOb 1,2,3bidX4 b idX5
// rrrX1, rX2, X3ss, X4s, X5s

Ap3bqOb 123,4,5

��
rrrX1, X2s, rX3, X4ss, X5s

Mp4bq
Ob 1,2,3,4bidX5

��

rrX1, rX2, X3ss, rX4, X5ss

Mp4bq
Ob 1,23,4,5

��
rrrX1, X3s, rX2, X4ss, X5s

Ap3bqOb 13,24,5

��

rrX1, X4s, rrX2, X3s, X5ss

Ap3bqOb 1,4,235

��
rrX1, X3s, rrX2, X4s, X5ss

Mp4bq
Ob 1,3,24,5

��

rX1, rX4, rrX2, X3s, X5sss

idX1 b idX4 bAp3bqOb 2,3,5

��
rrX1, rX2, X4ss, rX3, X5ss

Ap3bq´1
Ob 1,2,4 bidX3 b idX5

��

rX1, rX4, rX2, rX3, X5ssss

rrrX1, X2s, X4s, rX3, X5ss

Ap3bq´1
Ob 124,3,5

��

rrX1, X4s, rX2, rX3, X5sss

Ap3bqOb 1,4,235

OO

rrrrX1, X2s, X4s, X3s, X5s

Ap3bqOb 12,4,3bidX5

��

rrX1, X4s, rrX2, X3s, X5ss

idX1 b idX4 bAp3bqOb 2,3,5

OO

rrrX1, X2s, rX4, X3ss, X5s

Mp4bq
Ob 1,2,4,3bidX5

// rrrX1, X4s, rX2, X3ss, X5s

Ap3bqOb 14,23,5

OO

(157)

commutes.

If a medialed semigroupal category mSGCat2 contains a unit object and the unitor, then
we have

Definition 50. A medialed monoidal category

mMonCat2 “
´

C,Mp2bq, Ap3bq, E, Up2bq, Mp4bq
¯

is a (binary) medialed semigroupal category mSGCat2 together with a unit object E P ObC and a
unitor Up2bq (109) and (110) satisfying the triangle axiom (111).
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For mMonCat2 the compatibility condition of the medialing Mp4bq with E and Up2bq is
given by the commutative diagram

rrX1, Es, rX, X2ss
Mp4bq

Ob
//

Ap3bqOb X1,E,XX2

��

rrX1, Xs, rE, X2ss

Ap3bqOb X1,X,EX2

��
rX1, rE, rX, X2sss

idX1 bAp3bq´1
Ob

��

rX1, rX, rE, X2sss

idX1 bAp3bq´1
Ob

��
rX1, rrE, Xs, X2ss

idX1 bUp2bqp2qObbidX2

$$

rX1, rrX, Es, X2ss

idX1 bUp2bqp1qObbidX2

zz
rX1, rX, X2ss

(158)

which is an analog of the triangle diagram for braiding (143).

Example 13. In the ternary nonunital groupal category GCat3 (see Example 7) the medialing
Mp9bq satisfies the additional identity of consistency with the querfunctor Q and quertor Qp3bq

such that the diagram
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rrX, X, Xs, rX, X, Xs, rX, X, Xss

idbQObbQObbidb idbQObbidb idb id

xx

idb idb idbQObbidb idbQObbQObbid

&&
““

X, X̄, X̄
‰

,
“

X, X, X̄
‰

, rX, X, Xs
‰

Mp9bq
Ob

//

idb idb idbQp3bqp3qObbidb idb id

��

“

rX, X, Xs,
“

X̄, X, X
‰

,
“

X̄, X̄, X
‰‰

idb idb idbQp3bqp1qObbidb idb id
��

““

X, X̄, X̄
‰

, X, rX, X, Xs
‰

Ap5bq1,Ob X,X̄,X̄,X,XXX

��

“

rX, X, Xs, X
“

X̄, X̄, X
‰‰

Ap5bq´1
2,Ob XXX,X,X̄,X̄,X

��
“

X,
“

X̄, X̄, X
‰

, rX, X, Xs
‰

Ap5bq2,Ob X,X̄,X̄,X,XXX

��

“

rX, X, Xs,
“

X, X̄, X̄
‰

, X
‰

Ap5bq´1
1,Ob XXX,X,X̄,X̄,X

��
“

X, X̄,
“

X̄, X, rX, X, Xs
‰‰

idb idbAp5bq´1
2,Ob

��

““

rX, X, XsX, X̄,
‰

, X̄, X
‰

Ap5bq1,Ob bidb id

��
“

X, X̄,
“

X̄, rX, X, Xs, X
‰‰

idb idbAp5bq´1
1,Ob

��

““

X, rX, X, Xs, X̄
‰

, X̄, X
‰

Ap5bq2,Ob bidb id

��
“

X, X̄,
““

X̄, X, X
‰

, X, X
‰‰

idb idbQp3bqp1qObbidb id

��

““

X, X,
“

X, X, X̄
‰‰

, X̄, X
‰

idb idbQp3bqp3qObbidb id

��
“

X, X̄, rX, X, Xs
‰

Ap5bq´1
2,Ob

��

“

rX, X, Xs, X̄, X
‰

Ap5bq1,Ob

��
“

X,
“

X̄, X, X
‰

, X
‰

idbQp3bqp1qObbid &&

“

X,
“

X, X, X̄
‰

, X
‰

idbQp3bqp3qObbidxx
rX, X, Xs

(159)
commutes. An analog of the hexagon identity in GCat3 can be expressed by a diagram which is

similar to (157).

12. Conclusions

Commutativity in polyadic algebraic structures is defined non-uniquely, if one consid-
ers permutations and their combinations. We proposed a canonical way out: to substitute
the commutativity property by mediality. Following this “commutativity-to-mediality”
ansatz, we first investigated mediality for graded linear n-ary algebras and arrived at the
concept of almost mediality, which is an analog of almost commutativity. We constructed
“deforming” medial brackets, which could be treated as a medial analog of Lie brackets. We
then proved Toyoda’s theorem for almost medial n-ary algebras. Inspired by the above as
examples, we proposed generalizing tensor and braided categories in a similar way. We de-
fined polyadic tensor categories with an additional n-ary tensor multiplication for which
a polyadic analog of the pentagon axiom was given. Instead of braiding we introduced
n-ary “medialing” which satisfies a medial analog of the hexagon identity and constructed
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the “medialed” polyadic version of tensor categories. More details and examples will be
presented in a forthcoming paper.
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