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Abstract: Blood rheology is a challenging subject owing to the fact that blood is a mixture of a fluid
(plasma) and of cells, among which red blood cells make about 50% of the total volume. It is precisely
this circumstance that originates the peculiar behavior of blood flow in small vessels (i.e., roughly
speaking, vessel with a diameter less than half a millimeter). In this class we find arterioles, venules,
and capillaries. The phenomena taking place in microcirculation are very important in supporting
life. Everybody knows the importance of blood filtration in kidneys, but other phenomena, of not
less importance, are known only to a small class of physicians. Overviewing such subjects reveals
the fascinating complexity of microcirculation.

Keywords: blood microcirculation; ultrafiltration process; vasomotion; Fårhæus–Lindquist effect

1. Introduction

It is well known that blood is a mixture of plasma (a liquid slightly denser than water
carrying a large number of molecular species performing a huge amount of tasks) and of
a variety of cell populations: red blood cells (RBCS), white blood cells (WBCS), platelets.
In particular, RBCs make 40–50% of total blood volume. Their density is practically the
same as that of plasma. The RBCs volume fraction in blood is called the hematocrit. Cells
of the other families, though extremely important, contribute only 1% to blood volume, so
they do not play any significant role in blood rheology. Such a composite nature is a source
of considerable difficulties in modeling blood rheology. Nevertheless, in sufficiently large
vessels, blood can be safely considered a homogeneous fluid, for which several different
rheological models have been proposed (see, e.g., the book [1] and the review papers [2,3]).
The situation changes in small vessels (arterioles, venules, capillaries) where the fact that
almost half of the volume is occupied by RBCs comes significantly into play. Geometrical
symmetries play an important role, since all flows considered are axisymmetric, and this
is largely exploited throughout the paper in connection with the smallness of the vessel’s
aspect ratio.

In the present paper, we review some recent results in modeling blood flow in such
small vessels, considering three areas:

(i) Flow in capillaries, i.e., vessels whose size is even smaller than RBCs diameter, taking
into account that capillaries allow some plasma to seep through the walls, owing to
the presence of fenestration. An interesting aspect is that when blood enters a capillary
the typical symmetry of the flow in larger vessels breaks down and the classical fluid
dynamic approach has to be abandoned. The main application of this study is to
model the ultra-filtration process taking place in the kidneys.
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(ii) The peristaltic action occurring in arterioles and venules due to the periodic contrac-
tion of their walls (vasomotion). The presence of valves in venules turns vasomotion
into a propulsive action, thus enhancing the flow under the modest venous hydraulic
pressure gradient. The action of valves deeply modifies the classical symmetry of the
normal flow with their alternating openings and closures.

(iii) The amazing phenomenon of the progressive reduction of blood apparent viscosity
when the vessel diameter is reduced (roughly in the range 30 µm to 300 µm). This
phenomenon, discovered about ninety years ago, known as the Fårhæus–Lindquist
effect, has received a satisfactory explanation and a correct interpretation only very
recently. The phenomenon originated from an entrance effect, creating a motion of the
red blood cells toward the vessel axis. Preservation of symmetry is a crucial feature
making the formulation of a model possible.

The focus of our exposition will be on modeling, but we will also try to elucidate the
role of such phenomena in supporting life. We will also take this opportunity to present
further elaborations of the various models.

2. Modeling the Flow through Fenestrated Capillaries

Capillaries are responsible for delivering to body cells the oxygen and the nutrients
carried by blood. Transfer of such substances takes place by diffusion. Due to cells uptake,
they can travel only a short distance, say 0.1 mm. Therefore, capillaries may feed only
a region around them having that radius. That explains why as much as one billion
capillaries are needed to fulfil their task in a body of average size. Capillaries connect the
circulatory system carrying oxygenated blood to the one carrying oxygen deprived blood.

Capillaries are generally fenestrated, meaning that they allow some plasma cross their
walls. Clearly, this is a further complication in the description of circulation at that level.

Blood flow in vessels whose size is comparable to the RBCs dimensions has very
little to do with traditional fluid dynamics. Healthy RBCs have the shape of a disc with a
diameter up to 8 µm and a thickness of 2–3 µm at the edge, slightly less in the middle. They
are not rigid, but flexible and they exploit such a property to enter capillaries where they
proceed in a single file. Occasionally they may stick to each other, forming the so-called
ruleaux, but normally they form a travelling sequence [4], in which it is very reasonable to
suppose (referring to an average situation) that cells are evenly spaced. This is the starting
point of the flow model presented in [5]. This situation is depicted in Figure 1.

h∗RBC

u∗
2R∗

a∗
b∗

Figure 1. Sketch of the RBC/plasma element translating along the capillary (starred symbols refer to
dimensional quantities, see the list of the main symbols below).

RBCs, represented in red (with a simplified geometry), take a shape letting them
exploit the hydraulic pressure gradient. A portion of the RBCs surface slides on the
capillary wall, separated by a thin plasma layer. The no-slip condition at the plasma/cell
and the plasma/wall surface induces a strain rate in the layer. The same is true for the
plasma element between two RBCs, since its translation is accompanied by the presence of
a stressed layer at the wall. This is the origin of energy dissipation and drag. In our model
we are going to neglect the influence of the capillary tortuosity.
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Let us list the main symbols, warning that starred symbols refer to dimensional
quantities (all of them positive):

φ, hematocrit.
φin, inlet hematocrit (typically 0.45).
x∗, longitudinal space coordinate.
t∗, time.
G∗, typical pressure gradient (calculated for a capillary in a renal glomerulus as the
difference between the pressures in the afferent and efferent arterioles (5 mmHg ≈
6.7× 102 Pa) [6] divided by the glomerulus length (0.16 mm)). (∼4.1× 106 Pa/m).
u∗, translation speed.
u∗0 , characteristic translation speed (∼1.7 mm/s).
R∗, vessel radius (∼3 µm).
L∗, vessel length (0.16 mm).
t∗0 = L∗/u∗0 , characteristic transit time (∼9.4× 10−2 s).
R∗RBC, RBC radius (∼4 µm).
h∗RBC, avg. RBC thickness (∼1.8 µm)
V∗RBC, RBC volume (typically ∼90 fl, where 1 fl = 1 µm3).
ρ∗, blood density (1.06× 103 Kg/m3, same as RBCs density).
η∗pl, plasma viscosity (∼3.5× 10−3 Pa s).

a∗, distance between two consecutive cells in the sequence.
b∗, length of the RBC portion sliding over the vessel wall.
ε∗RBC, thickness of the plasma layer between the wall and the RBC.
ε∗pl, thickness of the plasma layer between the wall and the plasma element.

ε =
ε∗RBC
ε∗pl

.

V∗el, volume of a translating element.
L∗el, element length.
∆p∗el, pressure difference across the element length.
p∗, blood pressure.
p∗e , pressure of external fluid.
F∗drag, drag force originated by the friction in the strained layers.

t∗0 = L∗/u∗0 , characteristic transit time (∼9.4× 10−2 s).
c∗, protein concentration in blood.
c∗in, inlet protein concentration in blood (∼7 gr/dl).
K∗, permeability of the capillary wall.

In the sequel any length divided by R∗ will be denoted by the corresponding symbol
without the “∗” (e.g., a = a∗/R∗, etc.). Note that both εpl and εRBC are� 1.

From the geometry represented in Figure 1 we deduce

V∗el = πR∗2a∗ + V∗RBC + πb∗
(

R∗2 − h∗2RBC

)
(1)

V∗RBC = πh∗RBCR∗
2

RBC = V∗1 + V∗2 , (2)

where

V∗1 = πb∗
[

R∗2 − (R∗ − h∗RBC)
2
]
, (3)

is the volume of the RBC portion in contact with the wall. Concerning V∗2 , we take a slightly
better approximation than the one assumed in [5], as illustrated in Figure 2.
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V∗1
V∗2

Figure 2. Splitting the RBC volume into V∗1 and V∗2 .

The total volume V∗2 can be calculated as π
∫ h∗RBC

0
f 2(x∗)d x∗, where f (x∗) = R∗ −

h∗RBC +
√

h∗2RBC − x∗2 , hence (in [5] V∗2 is simply estimated as πh∗RBCR∗2).

V∗2 = πh∗RBCR∗2 Ξ, with Ξ = 1−
(

2− π

2

)
hRBC +

(
5
3
− π

2

)
h2

RBC . (4)

Considering h ≈ 1.8 µm, we obtain Ξ ≈ 0.78 if R∗ = 3 µm. Actually R∗ is not allowed
to approach h∗, otherwise the flow becomes impossible (see [4] for a discussion).

Equations (2)–(4) provide an expression for b∗, which we write directly in dimension-
less form

b =
R2

RBC − Ξ
2− hRBC

. (5)

For instance, when R∗ = 3 µm, we get (in [5] b =
R2

RBC−1
2−hRBC

, thus giving b∗ = 1.6 µm, if
R∗ = 3 µm). b∗ = 2.1 µm. The approximation is valid as long as b∗ > h∗, since on one side
we have written V∗ = πh∗R∗2RBC, (RBC of cylindrical shape) but when b∗ = 0 the domain
left V∗2 is slightly smaller. Actually, since the RBC boundary is round there is some interval
of values of R, before it reaches R∗RBC, in which b∗ ≈ 0, and we should simply replace V∗2
with V∗.

The length a∗ is a function of the hematocrit φ and is found by imposing the condition

φ =
V∗RBC
V∗el

. (6)

Hence, from (1),

a(φ) = H
1− φ

φ
− b
(

1− h2
RBC

)
, (7)

where b is given by (5) and

H =
V∗RBC
πR∗3

=
(2)

hRBCR
2

RBC, (8)

is a dimensionless constant (if, e.g., R∗ = 3 µm, then H ≈ 1). Note that b does not depend
on φ. Moreover, the total length of a single element is

L∗el = a∗ + b∗ + h∗RBC. (9)

Now recalling (7), we introduce the O(1) dimensionless quantity

λ(φ) =
R∗

L∗el
=

[
H

1− φ

φ
+ hRBC(1 + bhRBC)

]−1
. (10)

Figure 3 shows the behaviour of λ and L∗el versus φ.
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Figure 3. Plots of λ(φ) (left panel) and of L∗el(φ) (right panel) for R∗ = 3 µm, h∗RBC = 1.8 µm,
R∗RBC = 4 µm, b given by (5), Ξ by (4), and H by (8). We remark that about twenty elements are
simultaneously present in the capillary.

If plasma filtrates through the vessel wall, the distance a∗ and the volume element V∗el
will decrease in time. Thus, the element motion equation takes the following form

ρ∗
d

d t∗
(u∗V∗el) = πR∗2∆p∗el − F∗drag . (11)

The expression for F∗drag can be obtained as follows: compute the power dissipation
in each stressed plasma layer for some translational velocity u∗, imposing the no-slip
condition at both layer boundaries, then write that the overall power dissipation equals
the product F∗dragu∗. Omitting standard calculations (for more details we refer the readers
to [5]), the result is

F∗drag = 2πη∗plu
∗R∗

 a(φ)∣∣∣ln(1− εpl

)∣∣∣ + b
|ln(1− εRBC)|

 ≈ 2πη∗plu
∗R∗

[
a(φ)
εpl

+
b

εRBC

]
. (12)

Hence, recalling (6), we rewrite (11) as

ρ∗V∗RBC
d

d t∗

(
u∗

φ

)
= πR∗2L∗el

∣∣∣∣∂p∗

∂x∗

∣∣∣∣− F∗drag , (13)

where we set ∆p∗el = L∗el

∣∣∣∣∂p∗

∂x∗

∣∣∣∣, to put the equation in a form applicable to a continuum.

This is justified by the fact that the number of elements in the capillary is sufficiently
large (≈ 40).

Let us now recall that
d

d t∗
=

∂

∂t∗
+ u∗

∂

∂x∗
and (10). So, (13) takes the form

ρ∗V∗RBCλ(φ)

(
∂

∂t∗
+ u∗

∂

∂x∗

)(
u∗

φ

)
= πR∗3

∣∣∣∣∂p∗

∂x∗

∣∣∣∣− λ(φ)F∗drag . (14)

At this point it is convenient to recall the ratio ε = ε∗RBC/ε∗pl that we are going to use
as a fitting parameter (the only one in the model). With the help of it and recalling (12), we
rewrite the expression of F∗drag

F∗drag =
2πη∗plu

∗R∗

εRBC
[εa(φ) + b], (15)

which, being proportional to u∗, has the character of a viscous force.
Concerning εRBC, we estimate it by considering a steady flow in typical conditions,

imposing that the l.h.s. of (14) vanishes and taking the guess ε = 0.5, to be verified a
posteriori. This has been done in [5] obtaining

εRBC ≈ 6× 10−2 .
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Let us now derive the dimensionless form of (14) recalling the characteristic transit
time t∗0 = L∗/u∗0 ≈ 9.4× 10−2 s, and introducing the dimensionless variables u = u∗/u∗0 ,
x = x∗/L∗, t = t∗/t∗0 , and

p =
p∗ − p∗e
L∗G∗

. (16)

Dividing (14) by πR∗3G∗, we obtain

λ(φ)Γ
(

∂

∂t
+ u

∂

∂x

)(
u
φ

)
= −∂p

∂x
− λ(φ)Λu[εa(φ) + b], (17)

where a(φ) and λ(φ) are given by (7) and (10), respectively, and

Γ =
ρ∗V∗RBCu∗0
πR∗3G∗t∗0

, Λ =
2η∗plu

∗
0

R∗2G∗εRBC
.

We recall that λ is O(1) and (if, e.g., R∗ = 3 µm) we find Γ ≈ 10−6. Thus, inertia
has no role in (17). With the same value of R∗ we get Λ ≈ 5.4, which confirms that the
performed rescaling is suitable. Eventually, (17) reduces to

1
Λ

∂p
∂x

= −λ(φ)u[εa(φ) + b]. (18)

Now we shift our attention to the dynamics of plasma filtration through the capillary
wall, in other words to the evolution of φ. On one side we have that no RBCs are loss
during the flow, thus their concentration φ obeys the continuity equation

∂φ

∂t∗
+

∂(u∗φ)
∂x∗

= 0. (19)

The plasma loss rate through the capillary wall is driven by the difference p∗ − p∗e ,
p∗e being the external fluid pressure, and is opposed by the so called oncotic pressure
resulting from the presence of proteins in plasma (mainly albumin), responsible for osmosis.
Since the plasma volume fraction is 1− φ, the plasma balance can be written as follows
(Starling’s law)

∂(1− φ)

∂t∗
+

∂(u∗(1− φ))

∂x∗
= −K∗[p∗ − p∗e −Π∗(c∗)], (20)

where K∗ in the permeability of the capillary wall and Π∗(c∗) is the oncotic pressure, a
function of the total proteins concentration in blood c∗, usually given in g/dL,

Π∗(c∗) =
3

∑
j=1

A∗j c∗ j, (21)

given by the Landis–Pappenhaimer formula (see [7], vol. 2, Chapt. 29). The three coeffi-
cients A∗j , j = 1, 2, 3, have the values reported in Table 1.

Table 1. Values of the three coefficients A∗j , j = 1, 2, 3 in (21).

A∗
1 [Pa/(g/dL)] A∗

2 [Pa/(g/dL)2] A∗
2 [Pa/(g/dL)3]

280 21.3 1.2

As plasma flows out, proteins keep concentrating, since the product a∗c∗ remains constant

a∗c∗ = a∗inc∗in , (22)



Symmetry 2021, 13, 1020 7 of 37

where the quantities on the r.h.s. are the ones in circulating blood, hence the values at the
capillary inlet. Note that a∗in is deducible from (7) putting φ = φin. Hence, considering
c∗in as reference protein concentration, and introducing c = c∗/c∗in, (22) rewrites as (in [5],
where the term b is neglected, c(φ) = (1− φo)φ[(1− φ)φo]−1)

c(φ) =
a∗in
a

=

H
1− φin

φin
− b
(
1− h2

RBC
)

H
1− φ

φ
− b
(
1− h2

RBC

) . (23)

Combining (19) and (20) yields

∂u∗

∂x∗
= −K∗[p∗ − p∗e −Π∗(c∗)]. (24)

Equation (19) is readily written in dimensionless form

∂φ

∂t
+

∂(uφ)

∂x
= 0. (25)

In order to reduce (24) to a dimensionless form too, we define the dimensionless constants

K = K∗G∗L∗t∗0 , Aj =
A∗j c∗j

in

G∗L∗
, j = 1, 2, 3. (26)

Recalling (16) and (21), Equation (24) can be rewritten as

− 1
K

∂u
∂x

= p−
3

∑
j=1

Aj(c(φ))
j, (27)

with c(φ) given by (23). Thus, the model consists of solving the differential system (18),
(25) and (27), for the determination of the unknowns φ, u and p.

The main physiological application refers to the steady flows. Eliminating time depen-
dence is a great simplification. First, Equation (25) implies

uφ = uinφin , (28)

where uin = u∗/u∗0 , is the dimensionless blood velocity at the capillary inlet. Assuming
uin = 1, then u can be seen as a function of φ

u(x) =
φin

φ(x)
, (29)

and so (27) rewrites as (here, and in the sequel, we have set (•)′ = d(•)/ d x).

1
φinK

φ′= φ2

[
p−

3

∑
j=1

Aj(c(φ))
j

]
.

Next, plugging (18) in (29) we obtain

1
Λφin

p′ = −λ(φ)

φ
[εa(φ) + b].
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Hence, φ(x) and p(x) are obtained solving this Cauchy for x ∈ (0, 1)

φ′= φinK φ2
[

p−∑3
j=1 Aj(c(φ))

j
]
,

p′ = −Λφin
λ(φ)

φ
[εa(φ) + b],

φ(0) = φin, p(0) = pin,

(30)

where c(φ), λ(φ) and a(φ) are given by (7), (10) and (23), respectively, and where, recalling (16),

pin =
p∗in − p∗e

L∗G∗
, (31)

p∗in − p∗e , being the characteristic transmembrane pressure. In particular, following [8,9],
we introduce the osmotic number

Os =
A∗1c∗in

p∗in − p∗e
, (32)

and, recalling (26), we rewrite (31) as

pin =
A1

Os
. (33)

Figure 4 shows φ(x), when Os = 0.1, and φin = 0.45. In Figure 5 we report the
corresponding u(x), given by (29).

0.0 0.2 0.4 0.6 0.8 1.0

0.45

0.50

0.55

0.60

x

ϕ

Figure 4. Behaviour of φ(x) for ε = 0.5 and K = 0.15, when Os = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0

1.3

1.4

1.5

1.6

1.7

x

u [mm/s]

Figure 5. Behaviour of u(x) given by (29) for ε = 0.5 and K = 0.15, Os = 0.1.
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In [5], the steady-flow model (30) has been applied to the capillaries in the renal
glomerulus obtaining the physiological value of the renal filtration rate. For more references
and details, also on historical aspects, see [1].

Modeling the Flow through Fenestrated Capillaries: Conclusions

We have reviewed a model for blood flow in fenestrated capillaries based on an
approach outside the standard fluid dynamical context. Indeed, the model considers the
motion of plasma-RBC elements imposing the balance between the driving force produced
by the hydraulic pressure gradient and the drag caused by friction at the vessel wall.
The latter takes place in the thin plasma layer confined by the RBC portion facing the
capillary wall (see Figure 1) and in a layer of the plasma segment between two consecutive
RBCs in the flowing sequence. Plasma loss through fenestrations, altering the system
configuration, is particularly intense in the highly fenestrated capillaries making the renal
glomeruli, and is driven by the pressure across the vessel wall, which includes the effect of
osmosis. Osmosis plays a fundamental role, since proteins (mainly albumin) in blood are
not allowed to leave the capillary, whose wall behaves as a semi-permeable membrane. The
progressive plasma loss increases the albumin concentration thus enhancing osmosis. The
model has been applied in [5] to compute the glomerural filtration rate (i.e., the amount
of the plasma filtrated by kidneys in one minute). The physiological value has been
successfully retrieved.

3. Modeling Vasomotion

Rhythmic contractions of blood vessels equipped with smooth muscle are normally in-
dependent on heart pulsation or respiratory rhythm. This phenomenon, called vasomotion,
is easily observed in the veins in the bat’s wing and was first noticed by T.W. Jones [10]
in 1852. The biological mechanisms driving the onset of persisting oscillations have been
studied in a number of papers, [11–20]. Vasomotion ordinary values for frequency and
amplitude are 10 cpm and 25% of mean diameter, though values of 25 cpm and 100% are
possible [21].

Literature on vasomotion physiology is rather numerous since one of the main concern
is about its benefit to microcirculation. Indeed, vasomotion is particularly active at the level
of microcirculation where vessels resistance becomes large. Jones, in their paper [10], con-
jectured that vasomotion reduces the vessel resistance thus favoring blood flow. However,
vasomotion appears reduced during pregnancy [22]. On the other hand, unexpectedly, it is
upregulated in hypertensive states like preeclampsia (pregnancy induced severe hyper-
tension), while a decrease in vessels resistance is believed to be advantageous in pregnant
mammals. Clearly, this does not help to clarify the role of this phenomenon.

The paper [23] takes a shortcut to show that vasomotion enhances flow in arteries,
but their argument was pointed out to be incorrect in [24]. Experiments with bat wings
(see [25]) suggest that venules vasomotion acts as a reciprocating pump, increasing blood
flow rate, due to to valves preventing backflow. Indeed the phenomenon presents very
different features in arterioles and in venules. The interaction flow-vasomotion is much
more complicated in venules, because of the action of valves. The experiments illustrated
in [25] show that pressure exhibits large peaks during the vessel contraction, which is
compatible with the presence of an inlet and an outlet valve.

The whole matter of blood dynamics in the presence of vasomotion has been recently
reconsidered in [24,26,27] (see [1] for a review). In [24] the authors make a clear distinction
between the flow in the venules and in arterioles, while in [26,27] the effect of the presence
of valves was investigated on the basis of a mathematical model with the aim of clarifying
their real influence on blood flow. Comparing the model results with the experimental data
by Dongaonkar et al. [25], it was concluded that in valves equipped venules, oscillations
are converted in blood propulsion. On the contrary, in the valveless vessels (i.e., arterioles),
vasomotion has little effect, and actually increases the hydraulic resistance thus reducing
the flow rate, contrary to what was stated in [23].



Symmetry 2021, 13, 1020 10 of 37

In the paper [28] the case of vessels with distributed valves was considered, resulting
in a model with a free boundary (the moving location of the engaged valve). The existence
of distributed microvalves in venules has been reported in [29], where a condition of
pressure continuity forces that value to remain between the imposed inlet and outlet
values.

In this paper, we review the mathematical models for incompressible Newtonian
flows in oscillating arterioles and venules. In our derivation we exploit the smallness of
the ratio (we recall that the symbol “ ∗ ” denotes dimensional quantities).

ε =
R∗o
L∗
� 1. (34)

where R∗o is the maximum vessel radius and L∗ is the vessel length.
Concerning arterioles, which are characterized by the absence of valves, in Section 3.1

we investigate the influence of vasomotion on the flow. Concerning venules, Section 3.2,
the model requires to impose very peculiar boundary conditions (unilateral, or Signorini,
boundary conditions), that take the valves action into account. We thus formulate a mathe-
matical model for a peristaltic wave travelling along the vessel. In particular, denoting by
λ∗ the wavelength of the peristaltic oscillation, we investigate the flow analyzing two cases:

• λ∗ � L∗, referred to as synchronous oscillation.
• λ∗ ≈ L∗, referred to as non synchronous oscillation.

The former consists of a uniform oscillation of the vessel walls, while in the second
case a wave profile travels along the vessel.

The first case (synchronous oscillation) can, indeed, be recovered from the second
one in the limit of “long” wavelengths, which guarantees the physical consistency of the
model. In Section 3.8 we show numerical solutions that match the experimentally detected
pressure behavior displayed in [25]. Since we are interested in the average flow, in the
following we will systematically ignore pressure pulses by heartbeats, just considering the
average hydraulic pressure gradient present in the studied vessels.

3.1. Vasomotion in Arterioles

We start considering vasomotion in arterioles, where usually ε ranges around 10−2,
and model these vessels as cylindrical tubes. We denote by x∗, and r∗ the longitudinal and
radial coordinates and assume azimuthal symmetry so that the angular coordinate never
appears and the velocity field is

v∗ = v∗1ex + v∗2er.

We note that the muscle fibers surrounding the vessel can only contract and not dilate,
so that the vessel radius is maximal in the rest configuration. Consequently the oscillation
of the vessel wall causes a lumen narrowing. Hence we model the vessel oscillations as

R(t∗) = R∗o [1− δ(1− cos(ω∗t∗))],

where R∗o is the radius of the rest (undeformed) state, δ ∈ (0, 1/2), and ω∗ is the oscillations
pulsation. Denoting by 〈 · 〉 the time average over the period T∗, we find 〈R∗〉 = R∗o (1− δ).
The periodic oscillations thus cause an average a reduction of the vessel lumen by δR∗o .

Dealing with arterioles, where the flow is dominated by hydraulic pressure imposed
by the heart, a natural scale for the longitudinal flow is

v∗1,ref =
R∗ 2

o
µ∗

∆p∗c
L∗

, (35)

where ∆p∗c , denotes the typical pressure drop and µ∗ is the blood viscosity (typically
µ∗ ≈ 3 mPa s). If we take as approximate values ∆p∗ ≈ 18 mmHg = 2.4× 103 Pa, and
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L∗ ≈ 3 mm, R∗o ≈ 20 µm, it turns out that the formula above captures the correct magnitude
order v∗1,ref ≈ 10 cm/s. In particular, exploiting (35) we can estimate the transit time as

t∗tr = L∗/v∗1,ref = ε−2
(

µ∗

∆p∗c

)
,

getting t∗tr ≈ 2.5× 10−2s. Hence, if the period of the walls oscillations is T∗ = 6s (which
roughly corresponds to ≈ 10 cpm, i.e., ω∗ ≈ 1 s−1), we have

T∗

t∗tr
≈ ε−1.

Concerning the characteristic radial velocity, we set

v∗2,ref = δR∗o ω∗ = 2πδ
R∗o
T∗

, (36)

Taking δ = 0.25, and a frequency of ≈ 10 cpm, we have v∗2,ref ≈ 5× 10−4 cm/s, so that

v∗1,ref

v∗2,ref
=

L∗

R∗
T∗

t∗tr
≈ ε−2. (37)

Defining

x =
x∗

L∗
, r =

r∗

R∗o
, t =

t∗

T∗
, (38)

v1 =
v∗1

v∗1,ref
, v2 =

v∗2
v∗2,ref

, p =
p∗

∆p∗c

and recalling (35) and (36), the dimensionless version of the Navier–Stokes and continuity
equations is 

∂v1

∂x
+ ε3 1

r
∂(rv2)

∂r
= 0,

ρ∗R∗ 2
o

T∗µ∗

[
∂v1

∂t
+ 2πδ

(
ε−1v1

∂v1

∂x
+ v2

∂v1

∂r

)]
= −∂p

∂x
+

1
r

∂

∂r

(
r

∂v1

∂r

)
+ ε2 ∂2v1

∂x2 ,

ρ∗R∗ 2
o

T∗µ∗
ε−3
[

∂v2

∂t
+ ε−1

(
v1

∂v2

∂x
+ v2

∂v2

∂r

)]
= −ε−5 ∂p

∂r
+ ε−2 1

r
∂

∂r

(
r

∂v2

∂r

)
+

∂2v2

∂x2 ,

(39)

(40)

(41)

where

ρ∗R∗ 2
o

T∗µ∗
≈ ε3.

We remark that the Reynolds number of the flow is rather small (less than 10), so that
chaotic turbulence never occurs. At the leading order (40) reduces, as expected, to the
classical Hagen–Poiseuille equation

−∂p
∂x

+
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0.
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Equation (41) implies that p is independent of r. while the continuity Equation (39)
shows that v1 is independent of x, so that p is linear in x. This fact fully justifies the shortcut
adopted in [23] where the quasi steady Poiseuille discharge through the vessel is averaged
over a period.

Denoting by Q∗ the discharge

Q∗ = 2π
∫ R∗

0
v∗1r∗ d r∗,

we find, after a little algebra, that the average discharge is

〈Q ∗〉 = 1
T∗

∫ T∗

0
Q∗ d t∗ = Q∗0(1 + f (δ)), (42)

where

Q∗0 =
πR∗ 4

o
8µ∗

∆p∗

L∗
,

is the discharge corresponding to the radius at the rest state (in [23] the authors obtained
a similar formula, but they compared the average flow rate with the one corresponding
to the average vessel radius, which is not the rest state radius. Hence they erroneously
concluded that vasomotion is advantageous for any amplitude), i.e., the undeformed
configuration, and

f (δ) =
35
8

δ4 − 10δ3 + 9δ2 − 4δ. (43)

In particular, since −1 < f (δ) < 0 for δ ∈ (0, 1), and f (δ) = 0 when δ = 0, we remark
that 〈Q ∗〉 is maximum for when δ = 0. For any δ ∈ (0, 1] we have 〈Q ∗〉 < Q∗0 , so that
vascular contractions due to vasomotor activity are disadvantageous for flow, at least in
this simple framework. Indeed, the arteriole smooth muscle cells contract from a rest state
corresponding to the maximum vessel size R∗o , and the lumen reduction can only hinder
the flow. Thus, the question of the possible benefit of vasomotion in arterioles is left open
and should be investigated in a scenario different from the one of a simple Newtonian flow
in a vessel with synchronous oscillations.

The above analysis is correct within the O(ε) order. Higher order approximations
provide corrections not exceeding 1% and are neglected.

3.2. Vasomotion in Venules

Because of the presence of valves which prevent backflow, vasomotion in venules
produces a completely different effect. Indeed the pumping action generated by vasomotion
on the flow is definitely comparable to the one due to the available pressure gradient.

Valves in the major veins had been observed since the early times of anatomy (see [1]
at p. 60). On the contrary, the presence of valves in small veins has been underestimated or
even ignored. An historical review on this subject is due to Caggiati et al. [29]. In particular,
microscopic valves has been observed in venules as small as 25 µm diameter, where they
may be arranged in series (see [30,31]).

3.3. The Mathematical Model

We illustrate a model for venules equipped with just two valves placed at the inlet
and outlet, corresponding to x∗ = 0 and x∗ = L∗. We attack the problem from a more
general point of view, supposing that the vessel radius R∗ evolves as a travelling wave
with wavelength λ∗, i.e.,

R∗(x∗, t∗) = R∗o R(x∗, t∗) R(x∗, t∗) = 1 + δΦ
(

x∗

λ∗
− t∗

T∗

)
, (44)

where:
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A.1 Φ(η) is a periodic function (with period 1) such that max Φ = 0, min Φ = −1.
Moreover we suppose that Φ is decreasing in a fraction of the period (contraction
phase) and increasing in the remaining fraction (expansion phase). Therefore, as
in Section 3.1, the vessel radius in the natural undeformed state is R∗o (maximum
cylinder lumen).

A.2 0 < δ < 1, is a dimensionless parameter, so that R∗o δ, gives the oscillation amplitude
(producing a lumen reduction with respect to the rest state).

A.3 λ∗ is the wavelength and T∗ is the wave period, which are linked to the wave velocity
c∗ by

c∗ =
λ∗

T∗
. (45)

We denote by u ∗ the radial surface velocity. From (44)

u ∗ =
∂R∗

∂t∗
er = −Ṙ∗refΦ

′
(

x∗

λ∗
− t∗

T∗

)
er, (46)

where Φ′(η) = dΦ/dη and where

Ṙ∗ref =
R∗o δ

T∗
, (47)

represents the average contraction velocity, so that we replace (36) with v∗2,ref = Ṙ∗ref. In
vasomotion Ṙ∗ref is available from experiments. Recalling the scaling (38), we introduce
λ = λ∗/L∗. We will focus on the following cases:

1. λ∗ much larger than L∗ (more precisely λ−1 ≤ ε), meaning that at the leading order
the vessel undergoes spatially synchronous oscillations.

2. λ∗ comparable with L∗, i.e., λ = O(1).
We do not consider the case λ∗ � L∗, since in [32] we proved that in this case the

peristalsis has basically no effect on the flow.
Considering (38) and setting λ = λ∗/L∗, Equation (44) becomes

R(x, t) = 1 + δΦ
( x

λ
− t
)

, (48)

so that
λ

∂R
∂x

+
∂R
∂t

= 0.

Differently from the case of arterioles, the pressure gradient in venules is low (few
mmHg/mm) and we may assume that the flow is dominated by peristalsis. Therefore we
choose the longitudinal reference velocity v∗ref as follows

v∗ref =
1
ε

Ṙ∗ref =
1
ε

R∗o δ

T∗
, (49)

and set

v1 =
v∗1
v∗ref

, v2 =
v∗2

Ṙ∗ref
=

v∗2
εv∗ref

,

so that v = v1ex + εv2 er. The reference pressure gradient is defined as

∆p∗ref
L∗

=
µ∗

R∗ 2
o

v∗ref .

The quantity ∆p∗ref represents the order of magnitude of the “effective pressure drop”
caused by the oscillations of the vessel (inspired to Poiseuille’s formula). The known
imposed pressure difference is ∆p∗ = p∗(0, t∗)− p∗(L∗, t∗), and we consider
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∆p =
∆p∗

∆p∗ref
= O(1).

When ∆p� 1, the flow is essentially dominated by the externally imposed pressure
gradient and the effects due to the wall oscillations are hardly observable (which is exactly
the case occurring in arterioles). We also introduce the dimensionless pressure

p =
p∗(x∗, t∗)− p∗(L∗, t∗)

∆p∗ref
, (50)

so that
p|inlet = ∆p, p|outlet = 0. (51)

We finally rescale the radial velocity of the vessel walls u∗ by Ṙ∗ref, namely, by
using (48),

u∗ = Ṙ∗ref u er, with u = −Φ′
( x

λ
− t
)
= −λ

δ

∂R
∂x

=
1
δ

∂R
∂t

. (52)

3.4. Flow Equations

On the tube surface we set v∗|r∗=R∗ = u∗ so that, from (46) and (52),

v1|r=R = 0, (53)

v2|r=R = u = −Φ′
( x

λ
− t
)
=

∂Φ
∂t

= − 1
λ

∂Φ
∂x

. (54)

The line r = 0 is a symmetry axis so that

v2|r=0 = 0, and
∂v1

∂r

∣∣∣∣
r=0

= 0. (55)

The fluid mechanical incompressibility yields

∂v1

∂x
+

1
r

∂(rv2)

∂r
= 0, (56)

and the motion equation reduces to Stokes equation

−∇∗p∗ + µ∗∆∗v∗ = 0, (57)

since the Reynolds number characterizing the flow is small (referring, for instance, to the
data of [25] we have Re ≈ 10−2). So (57) yields

− ∂p
∂x

+ ε2 ∂2v1

∂x2 +
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0, (58)

− 1
ε2

∂p
∂r

+ ε2 ∂2v2

∂x2 +
1
r

∂

∂r

(
r

∂v2

∂r

)
− v2

r2 = 0, (59)

which, at the leading order imply p = p(x, t), and

− ∂p
∂x

+
1
r

∂

∂r

(
r

∂v1

∂r

)
= 0. (60)

Recalling boundary conditions (53) and (55), we find

v1(x, r, t) = −1
4

∂p
∂x

(
R2 − r2

)
, (61)
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with R(x, t) given by (48). We now insert (56) in (61), getting

4
∂

∂r
(r v2) =

∂2 p
∂x2 r

(
R2 − r2

)
+ 2r

∂p
∂x

R
∂R
∂x

.

Integrating between 0 and R and exploiting (54) we obtain

∂

∂x

(
R4

4
∂p
∂x

)
= 4Ru, (62)

with u given by (52). The average longitudinal velocity is

〈v1〉 =
2

R2

∫ R

0

(
−1

4
∂p
∂x

)(
R2 − r2

)
r d r = −1

8
∂p
∂x

R2.

The local dimensionless discharge at time t (within an O(ε) approximation) is

Q(x, t) = πR2〈v1〉 = −π
R4

8
∂p
∂x

, (63)

corresponding to the physical quantity

Q∗(x∗, t∗) =
(

L∗δ
T∗

R∗
2

o

)
πR2〈v1〉. (64)

3.5. Boundary Conditions at the Vessel Ends

The valves are placed at the vessels ends, and act to prevent backflow. Valves are
considered as massless devices with a simple dynamics: when pressure exceeds the inlet
one, the inlet valve closes; when pressure falls below the outlet one, the outlet valve
closes. Let us express the corresponding boundary conditions. At x = 0, inlet valve, two
conditions have to be fulfilled

Q(0, t) ≥ 0, ⇔ ∂p
∂x

∣∣∣∣
x=0
≤ 0, (65)

p(0, t) ≥ ∆p. (66)

The first condition simply states that backflow cannot occur (pressure is allowed to
grow beyond ∆p when the valve is closed), while the second one guarantees that p(0, t)
can never drop below the imposed pressure. Evidently, at least one of such conditions must
be verified as an equality. As a consequence, the inlet boundary conditions summarize
as follows 

∂p
∂x

∣∣∣∣
x=0

(p(0, t)− ∆p) = 0

∂p
∂x

∣∣∣∣
x=0
≤ 0,

p(0, t) ≥ ∆p.

(67)

This is a typical unilateral boundary condition (also known as Signorini type condition)
which is frequently encountered in continuum mechanics (see, for instance, [33]). Similarly,
the boundary conditions at x = 1 are
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∂p
∂x

∣∣∣∣
x=1

p(1, t) = 0,

∂p
∂x

∣∣∣∣
x=1
≤ 0,

p(1, t) ≤ 0.

(68)

These conditions (graphically represented by the step functions, i.e., solid lines, in
Figure 6) allow, as we shall see, to find an explicit formula for pressure and discharge. In
this way the valves are modeled as massless devices which open/close instantaneously as
the pressure in the vessel becomes larger/smaller than the one outside. Such an approach,
though providing a significant agreement with the experiments reported in [25], have
been improved in [27] where the valves inertia, which induces a delay in their action, has
been considered.

Boundary condition at x = 0

∆p
p|x=0

∂p
∂x

∣∣∣∣
x=0

∂p
∂x

∣∣∣∣
x=1

p|x=1

Boundary condition at x = 1

Figure 6. Signorini type boundary conditions at x = 0 and x = 1 (pressure gradient vs. pressure).

3.6. Synchronous Oscillation: λ−1 ≤ ε

This case essentially corresponds to a spatially uniform contraction/expansion of the
vessel, i.e., R = R(t). In particular, using the same notation of Formula (44), we take

R = R(t) = 1 + δΦ(t), (69)

with Φ periodic function of period 1, and, recalling A.1 of Section 3.3, Φ ≤ 0. Next, because
of (52)

u =
1
δ

·
R(t) = Φ̇(t). (70)

Formula (62) can be rewritten as

∂2 p
∂x2 =

16
δ

·
R
R3 ,

yielding 
p(x, t) =

8
δ

·
R(t)
R3(t)

x2 + A(t)x + B(t),

∂p(x, t)
∂x

=
16
δ

·
R(t)
R3(t)

x + A(t).

(71)
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Functions A(t), and B(t) are unknown and have to be determined. Condition (67)
rewrites as 

A(t)(B(t)− ∆p) = 0,

A(t) ≤ 0,

B(t)− ∆p ≥ 0,

(72)

while (68) takes the form

8
δ

·
R(t)
R3(t)

+ A(t) + B(t)

16
δ

·
R(t)
R3(t)

+ A(t)

 = 0,

16
δ

·
R(t)
R3(t)

+ A(t) ≤ 0,

8
δ

·
R(t)
R3(t)

+ A(t) + B(t) ≤ 0.

(73)

We now assume the entrance valve engaged, that is A = 0, and consider the compres-

sion phase
·
R < 0. From the first of (73)

B(t) = −8
δ

·
R
R3 ,

which, exploiting (71), gives p(1, t) = 0. Of course the third condition of (72) has to be
fulfilled so that

8
δ

∣∣Ṙ∣∣
R3 ≥ ∆p. (74)

On the other hand if
8
δ

∣∣Ṙ∣∣
R3 < ∆p, (75)

the entrance valve is open and the solution is

B(t) = ∆p and A(t) = −

8
δ

·
R(t)
R3(t)

+ ∆p

.

Hence, during the compression phase, i.e.,
·
R < 0, we have

p(x, t) =


8
δ

·
R
R3

(
x2 − 1

)
, if

8
δ

∣∣Ṙ∣∣
R3 ≥ ∆p,

8
δ

·
R
R3

(
x2 − x

)
− ∆p(x− 1), if

8
δ

∣∣Ṙ∣∣
R3 < ∆p.

(76)

In the expansion phase
·
R > 0, we first consider

A = −16
δ

·
R
R3 ,

i.e., the exit valve is closed. The conclusion is that B(t) = ∆p (the inlet dimensionless
pressure). Then, recalling the third condition in (73), we notice that the compatibility
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condition (74) must once again be fulfilled. On the contrary, when condition (75) is fulfilled
the exit valve is open and the condition p(1, t) = 0 yields

A(t) = −

8
δ

·
R(t)
R3(t)

+ ∆p

 and B(t) = ∆p.

Summarizing, during the expansion phase, i.e.,
·
R > 0, the pressure is

p(x, t) =


∆p +

8
δ

·
R
R3

(
x2 − 2x

)
, if

8
δ

·
R
R3 ≥ ∆p,

8
δ

·
R
R3

(
x2 − x

)
− ∆p(x− 1), if

8
δ

·
R
R3 < ∆p,

(77)

We remark that when
·
R = 0 Equations (76) and (77) provide the classical linear profile

p(x, t) = ∆p (1− x).

We also observe that the flux has no interruption. Indeed, when a valve at one
end is closed the one at the opposite end is open. Formula (63) allows to estimate the
dimensionless discharge, which depends on the abscissa x along the vessel. In particular,
when ∆p = 0, we have (the case ∆p 6= 0, has been extensively analyzed in [26]).

Q(x, t) = 2π
R
δ


∣∣Ṙ∣∣x, when

·
R < 0,

·
R(1− x), when

·
R > 0.

(78)

Therefore, during compression phase, i.e., when
·
R < 0, the inlet discharge vanishes,

while in the expansion phase we have Q(1, t) = 0, and the inlet flow rate becomes maxi-
mum. It is trivial to verify that the total inlet discharge equals the total output discharge.
Moreover, the average flow in a period is not zero (as it would occur in absence of valves).
Indeed, if a single oscillation over the period is considered, namely

Ṙ < 0, for 0 ≤ t < α,

Ṙ = 0, for t = α,

Ṙ > 0, for α < t < 1,

the total volume (dimensionless) coming out of the vessel in a period (and which therefore
enters the tube during the subsequent expansion phase) is

Vout =
∫ 1

0
Q(1, t)d t = −π

δ

∫ α

0

d R2

d t
d t =

π

δ

[
R2(0)− R2(α)

]
= π(2− δ),

since, R(0) = 1 and R(α) = min R(t) = 1− δ. Hence, recalling (64), we have

V∗out = πR∗2o

(
2δ− δ2

)
L∗ = πL∗

(
R∗2o −min R∗ 2

)
,

that is the volume by which the cylinder is reduced during an oscillation.
The typical behavior of the outflux and influx, i.e., Q(1, t) and Q(0, t), is displayed in

Figure 7. The top panel shows the radius oscillation during a period (in this case δ = 0.3),
while in the bottom panel Q(1, t) and Q(0, t), given by (78). We remark that, during the
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compression phase, Q(0, t) vanishes and Q(1, t) 6= 0 since the outlet valve is open. During
the expansion phase, Ṙ > 0, exactly the opposite occurs since the inlet valve is open.

0.0 0.2 0.4 0.6 0.8 1.0
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R(t)
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Qout
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20

25

t

Q(t)

Figure 7. Typical behaviour of R(t), Q(0, t) and Q(1, t).

3.7. Non-Synchronous Oscillation: λ = O(1)
The case in which λ = O(1), i.e., non-synchronous oscillations, has been analyzed in

detail in [26]. Here we recall briefly the main steps, considering, for the sake of simplicity,
∆p = 0. Recalling (52) and (62), we write

∂

∂x

(
R4

8
∂p
∂x

)
= −λ

δ

∂R2

∂x
, (79)

which gives

p(x, t) = B(t)− 8λ

δ

∫ x

0

d x′

R2 +A(t)
∫ x

0

d x′

R4 ,

where A(t) and B(t) are unknown at this stage.
We introduce

Rin(t) = R(0, t), Rout(t) = R(1, t), Sin(t) = πR2
in(t), Sout(t) = πR2

out(t),

and define

I2(t) =
∫ 1

0

d x
R2(x, t)

, I4(t) =
∫ 1

0

d x
R4(x, t)

.

Proceeding as in Section 3.6, we consider two cases:

(a) Sin(t) < Sout(t) ⇔ Rin(t) < Rout(t),

(b) Sin(t) ≥ Sout(t) ⇔ Rin(t) ≥ Rout(t).

Case (a). The boundary conditions (67)and (68) yield

A(t) = 8λ

δ
R2

in(t),



Symmetry 2021, 13, 1020 20 of 37

and
B(t) = 8λ

δ

[
I2(t)− R2

in(t)I4(t)
]
,

provided [
I2(t)− R2

in(t)I4(t)
]
≥ 0 (80)

If (80) is violated, i.e., [
I2(t)− R2

in(t)I4(t)
]
< 0, (81)

we take

B(t) = 0, and A(t) = 8λ

δ

I2(t)
I4(t)

, (82)

Since conditions the third of both (67) and (68) are fulfilled, we need to prove only
the second of (67) from which the second of (68) automatically follows because R2

in < R2
out.

Rewriting the second of (67) as

A ≤ 8λ

δ
R2

in

and using (82), we immediately obtain (81).
Case (b). We now have

B = 0,

and

A(t) = 8λ

δ
R2

out(t), if
[
I2(t)− R2

out(t)I4(t)
]
≥ 0,

orA given by (82) in case
[
I2(t)− R2

out(t)I4(t)
]
< 0. Hence, recalling (63) and introducing

Tin(t) = I2(t)− R2
in(t)I4(t), Tout(t) = I2(t)− R2

out(t)I4(t),

we have

if Sin(t) < Sout(t), Q(x, t) = −π
λ

δ


R2

in(t)−R2(x, t), if Tin(t) ≥ 0,

I2(t)
I4(t)

− R2(x, t), if Tin(t) < 0,

if Sin(t) ≥ Sout(t), Q(x, t) = −π
λ

δ


R2

out(t)− R2(x, t), if Tout(t) ≥ 0,

I2(t)
I4(t)

− R2(x, t), if Tout(t) < 0.

In order to highlight the difference between the two cases, we consider Φ(η) =
−
[
1− cos2(πη)

]
, which fulfils A.1, so that

R(x, t) = 1− δ
[
1− cos2

(
π
( x

λ
− t
))]

. (83)

Figure 8 displays the in influx, Qin = Q(0, t) and the outflux Qout = Q(0, t), when
R(x, t) is given by (83) with δ = 0.3, and λ = 3/4. In Figure 9 we still report Qin and
Qout but in case of synchronous oscillations, i.e., when R(t) = 1− δ

[
1− cos2(πt)

]
, with

the same δ. The differences between the profiles reported in Figures 8 and 9 are evident
even if the flow rates peaks are the same. In case of synchronous oscillations, Figure 9,
the two valves are never open at the same time and the inlet and outlet flow rates are
symmetrical (because of to the peculiar behavior of R(t)). In case of non-synchronous
oscillations, i.e., Figure 8, there exists a time interval in which both valves are open. This is
evidently attributable to the fact that the vessel contraction occurs as a traveling wave.
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Figure 8. Inlet and outlet discharge when R(x, t) is given by (83), with δ = 0.3 and λ = 3/4.
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Figure 9. Inlet and outlet discharge when R(t) = 1− δ
[
1− cos2(πt)

]
with δ = 0.3.

3.8. Model Validation

The comparison between the model and the experimental data by Dongaonkar et al. [25]
has been discussed in details in [26,27].

We consider the experimental data reported in Figure 3 of [25], which represents the
diameter oscillations of a bat wing venule. In particular, we select (recall that δ denotes the
oscillation amplitude)

R(t) = at3(1− t3)3 + (1− δ). (84)

where we set R∗o ≈ 70 µm, T∗ ≈ 6 s, δ = 0.25, and a ≈ 2.37.
The comparison between the experimental data of [25] (Figure 5, luminal pressure)

and the pressure profile predicted by the model is shown in Figure 10. Considering
the simplicity of the model (only two valves, inertia neglected, Newtonian context), the
agreement appears rather satisfactory.

In the left panel of Figure 11 we show P(x, t) when R(t) is given by (84), and ∆p = 1.
The right panel shows P(x, t) when R(t) is given by (84), and ∆p = 50. We remark that in
the latter case the effect on the pressure caused by the vessel contraction is comparable
with the driving pressure difference.
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Figure 10. Pressure pulse at x = 0 when R(t) is given by (84) and the experimental data extracted
from Figure 5 of [25].

Δp=1

Δp=50

Figure 11. The pressure P(x, t) given by (76) and (77), and R(t) given by (84). In the left panel
∆p = 1; in right one , the two surfaces correspond to ∆p = 1 and ∆p = 50, respectively.

3.9. Modeling Vasomotion: Conclusions

Periodic contraction-expansion of blood vessels have been recorded since 1852. Such
phenomenon, usually referred to as vasomotion, concerns small (but not too small) ves-
sels (arterioles and venules). The basic laws of fluid dynamics and the smallness of the
radius/length ratio have been exploited to formulate a mathematical model which appears
to be rather accurate.

First we have focused on arterioles, where the blood flow is essentially driven by
hydraulic pressure gradient imposed by heart, concluding that the vessel resistance is in-
creased by vasomotion. This is due to the lumen reduction caused by the vessel contraction
(generated by the smooth muscle cells surrounding the arterioles) which actually hinders
the flow. Actually such a result agrees with [22]: the resistance in a vessel with vasomotion
is larger than the one of a static vessel with relaxed radius.

We then analyzed vasomotion in venules provided with just two compliant valves
(one at the inlet and one at the outlet). We considered first the case of synchronous vessel
oscillation. This can be seen as the limit of the peristaltic motion when the wavelength is
much larger than the vessel length. The model has been tested versus the experimental mea-
sures by Dongaonkar et al. [25] performed on bat wing venules, which are characterized by
periodic pressure pulses. Regardless of the simplicity of the model, the agreement obtained
is remarkable. In particular, the model discussed in [27] which accounts effectively for
valve inertia, reproduces the recorded pressure pulse almost perfectly. This suggests that
the scheme with two valves provides a quite reasonable description of the phenomenon.
On the contrary, the many valves model discussed in [28] produces a different qualitative
behavior which is not compatible with the experimental measures of [25].
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We have confined our analysis to the propulsive effect. In larger veins, valves exert a
modulation effect that enhances the centripetal blood flow [34]. We finally emphasize that
the two-valve model may be applicable to lymphagiones, the valves equipped elements
making a lymphatic vessel.

4. The Fåhræus–Lindqvist Effect

The Fåhræus–Lindqvist (FL) effect is a phenomenon that occurs in blood vessels with
diameter in the range ≈ 30–300 µm and is named after the two Swedish scientists Robin
Fåhræus and Johann Torsten Lindqvist [35]. It consists in a progressive reduction of the
apparent blood viscosity as the blood vessel radius decreases. The FL effect is clearly related
to the rheological properties of blood. Indeed, despite the blood composite nature, in tubes
like veins and arteries above the size specified above and at relatively high shear rate
(≥100 s−1), this fluid shows the characteristic Newtonian behaviour of an incompressible
liquid. At a smaller scale this is no longer true since inhomogeneity effects become highly
significant and must be considered. Notwithstanding the great importance of this topic
in physiology, until the fifties papers on blood rheology were scarce and not properly
connected in textbooks or manuals dealing with blood or the blood circulation. Quoting
Copley [36]

reviews on the viscosity of blood deal largely with data on apparent viscosities. The
relative paucity of rheological treatments of blood is contrasted by the large number of
observations of rheological phenomena of this humor.

Despite all the efforts and hundreds of studies devoted to the FL effect in the last
ninety years, an explanation based on the principles of fluid dynamics has been achieved
only very recently [37].

The physiologist and physicist Jean Poiseuille [38], in 1836, was the first to investigate
the flow of human blood in narrow tubes. Experiments lead them to formulate their famous
law that relates the fluid dynamic viscosity (as previously stated, starred quantities are
dimensional) η∗ to the in-out pressure difference ∆P∗ in the tube, the volumetric flux Q∗,
and the tube length L∗ and radius R∗, namely

η∗ =
πR∗4

8L∗Q∗
∆P∗ (85)

Poiseuille experiments found their theoretical justification some years later, thanks to
Navier and Stokes. Indeed, (85) can be proved to be a direct consequence of the Navier–
Stokes equations of fluid mechanics. If blood is considered a homogeneous Newtonian fluid,
then the stress and shear rate are directly proportional through a constant viscosity η∗,
which depends on temperature. In case of flow in a tube, Navier–Stokes equations can be
solved explicitly for the velocity which shows a parabolic profile along a tube cross-section.
Thus, being

Q∗ = 2π
∫ R∗

0
r∗v∗(r∗)d r∗, (86)

the flow rate can be calculated by integrating v∗(r∗), and (85) is theoretically justified.
What has all this to do with the FL effect? If blood were really Newtonian, its viscosity

should not depend, in particular, on the tube radius. On the contrary Figure 12 shows that
this is not true.

Moreover, viscosity is measured at a given shear rate, an so, in principle, it could
also depend on the latter. For a Newtonian fluid this ratio is a material constant which
shows dependence only on temperature. Otherwise, viscosity is referred to with the name
of “apparent” viscosity and denoted by η∗app. Figure 12 shows that blood turns from a
Newtonian to a non-Newtonian behaviour as soon as the vessel diameter reduces below a
threshold value.
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The FL effect has an important physiological implication: the heart can drive a given
volume of blood through the arterioles at a much lower pressure than would be the case if the blood
were a Newtonian fluid.

The non-Newtonian behaviour of blood in small tubes has received several qualitative
explanations, the most important one being related to the fact that blood is not a simple a
liquid, but rather a non-homogeneous suspension of various particles. Among all these
particles, RBCs contribute by far the highest percentage. In the next section we outline the
Haynes’ conjecture, which was the first tentative to interpret the FL effect as a consequence
of a “smart” response of the RBCs to the narrowing of the vessel diameter.
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Fahreus and Lindquist (1931)

Figure 12. Original data of the Fåhræus–Lindqvist experiment. The measured viscosity is relative to
that of plasma. It should be emphasized that one of the blood samples (series 4) shows higher relative
viscosity values than that the others, since was partially depleted of plasma by centrifugation.

4.1. The Haynes’ Conjecture and Its Physiological Implications

According to Haynes [39], in vessels with diameter smaller than 300 µm, RBCs tend
to migrate towards the central part of the vessel, while a less viscous layer of plasma,
named “marginal zone” or “cell-free layer” (CFL), forms close to the walls. The viscosity
in the marginal zone is basically the one of the suspending liquid (plasma), denoted by
η∗p. The viscosity of the RBCs suspension in the central core of the tube is assumed to be
uniform and is denoted by η∗c . Haynes’ leading idea is that the presence of the marginal
zone reduces the apparent viscosity in tubes of small diameter. This reminds Jeffery [40]
who heuristically hypothesized that

the particles will tend to adopt that motion which, of all motions possible under the
approximate equations, corresponds to the least dissipation of energy.

Indeed, since the viscosity of the marginal layer is from 4 to 5 times less than that of the core,
the wall stress is drastically reduced. In the Haynes’ view, the physiological motivation of
the migration of the RBCs toward the center of the tube is to reduce the pumping effort of
the heart. Recently, Ascolese et al. [41] showed that this heuristic explanation is misleading.

Following their approach, we first recall that blood is treated as an inhomogeneous
incompressible linear viscous fluid, whose viscosity depends on the hematocrit φ. If u is
the velocity, the model equations are

∂∗φ

∂t∗
+ u∗ · ∇∗φ = 0,

∇∗ · u∗ = 0,

$

(
∂∗u∗

∂t∗
+ (∇∗u∗)u∗

)
= −∇∗p∗ +∇∗ ·T∗,

(87)

where the differential operators are referred to dimensional variables, $∗ is the blood
density, p∗ the pressure, and T∗ = 2η∗(φ)D∗, with η∗(φ) the hematocrit-dependent blood
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viscosity, and D∗ = (1/2)
(
∇∗u∗ +∇∗u∗T

)
. Concerning η∗(φ), the current literature offers

a variety of empirical laws (see, for example, [42–47]).
Although blood generally shows shear thinning and stress relaxation proprieties [1,48]

these non-Newtonian effects can be neglected for the flow regimes and vessel sizes consid-
ered in [41].

Let us now specialize model (87) to the steady flow in a cylindrical tube whose
diameter is D∗ = 2R∗ and whose length is L∗. If we denote by r∗ the radial coordinate, and
suppose that the flow attains a steady laminar state

u∗ = u∗(r∗) ex, φ = φ(r∗), (88)

where ex is the unit vector parallel to the cylinder axis, the first two equations in (87) are
identically satisfied, and the third reduces to

0 = −∂∗p∗

∂x∗
+

1
r∗

∂

∂r∗

(
r∗η∗(φ)

∂u∗

∂r∗

)
. (89)

Equation (89) can solved for (u∗(r∗), φ(r∗)) under standard (no-slip) boundary conditions:

u∗(r∗) =
∆P∗

2L∗

∫ R∗

r∗

ζ∗

η∗(φ(ζ∗))
d ζ∗, (90)

and

φB

∫ R∗

0

r∗3

η∗(φ(r∗))
d r∗ =

∫ R∗

0

2r∗

η∗(φ(r∗))

(∫ r∗

0
φ(ζ∗)ζ∗ d ζ∗

)
d r∗, (91)

where φB is the inlet hematocrit (usually between 0.35 and 0.5) and ∆P∗ = P∗(0)− P∗(L∗)
the in-out pressure difference.

According to Haynes’ conjecture, in vessels with diameter D∗ less than 0.3 mm, the
RBCs migrate towards the center so that the flow region consists of an outer layer in which
φ = 0 (also referred to as cell-free layer, CFL) and the complementary axisymmetric region
to which all RBCs are segregated, where the hematocrit φc is constant and uniform. The
two regions are separated by an interface with constant but unknown radius s. Therefore,
φ(r∗) is a stepwise function

φ(r∗) =


φc, 0 ≤ r∗ ≤ s∗,

0, s∗ < r∗ ≤ R∗,

(92)

and the flow has the so-called core-annulus structure (CAS). Since Equation (91) has to be
fulfilled, s is not arbitrary. Although other choices of φ(r∗) are possible (see, for example,
Phillips et al. [49]), the advantage of (92) is that it allows to solve the flow problem explicitly.

The continuity of velocity and shear stress at the unknown interface s leads, after
standard calculations, to obtain the velocity profile in the tube and to evaluate, consequently,
the discharge: indeed

u∗(r∗) =



∆P∗

4L∗

(
s∗2 − r∗2

η∗(φc)
+

R∗2 − s∗2

η∗p

)
, 0 ≤ r∗ ≤ s∗

∆P∗

4L∗
R∗2 − r∗2

η∗p
, s∗ ≤ r∗ ≤ R∗,

(93)
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and

Q∗c = 2π
∫ s∗

0
r∗u∗(r∗)d r∗ =

π∆P∗

8L∗

(
s∗4

η∗(φc)
+

2(R∗2 − s∗2)

η∗p

)
(core), (94)

Q∗a = 2π
∫ R∗

s∗
r∗u∗(r∗)d r∗ =

π∆P∗

8L∗η∗p

(
R∗2 − s∗2

)2
(outer layer), (95)

so that the total discharge is

Q∗ =
π∆P∗

8L∗

(
s∗4

η∗(φc)
+

R∗4 − s∗4

η∗p

)
. (96)

Recalling (85), we get

η∗app =
η∗p

1 + σ4
(

η∗p
η∗(φc)

− 1
) , (97)

where σ = s∗/R∗ ∈ (0, 1]. The derivation of sigma will be discussed in Section 4.2.
The total power dissipation by the viscous friction along the tube is

P∗ = 2π
∫ L∗

0
η∗(φ(r∗))

(
d∗

d r∗
u∗(r∗)

)2

r∗ d r∗ d x∗, (98)

while the total flow discharge for a given pressure drop ∆P is

Q∗ = π
∆P∗

L∗

∫ R∗

0
r∗
∫ R∗

r∗

ζ∗

η∗(φ(ζ∗))
d ζ∗ d r∗. (99)

Thus, by using (93), it follows

P∗ = ∆P∗ Q∗. (100)

The key point is that P∗ can be expressed in the form P∗BΨ(σ), where

P∗B =
π

8
(∆P∗)2

L∗
R∗4

η∗B
,

η∗B is the blood viscosity before entering the vessel, and Ψ is a dimensionless strictly
decreasing function of σ whose explicit form depends on the way one chooses to evaluate
η∗B as a function of the hematocrit. Ascolese et al. [41] evaluated Ψ for six different choices
of η∗B(φ) and for four different values of φ (see Figure 6 in the cited paper). In all cases
considered, Ψ′ < 0 for σ ∈ (0, 1) and Ψ→ 1 as σ→ 1. Thus, (100) implies that P increases
as σ decreases, meaning greater dissipation when a CFL is present. At the same time Q
increases above its value before entering the vessel, which in physiological terms means an
increase of the perfusion effect towards the peripheral tissues. This conclusion elucidates,
more than others, the crucial role of the FL effect in physiology.

Formula (97) follows almost directly from the Haynes’ conjecture and from the calculus
of the total (core and plasma layer) discharge. Far from giving a justification of the CFL,
its utility is confined to provide an estimate of σ (difficult to measure) as a function of the
other, experimentally measurable, parameters, provided a reliable η∗(φ) is given. However,
two questions remain still unanswered: is a boundary layer already present also in “large”
vessels? In the affirmative case, why the layer thickness increases when blood flows from a
given vessel to a smaller one? The first question is usually explained in terms of the so-
called size exclusion effect (see, for example [50–52]): RBCs cannot get close to the vessel wall
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for less than half of their minimal thickness (≈ 2–3 µm). Thus, the CFL thickness cannot be
lower than ≈ 1–1.5 µm. The second question has been fully answered by Guadagni and
Farina in [53] by applying the Prandtl boundary layer theory (see, for example, [54]). They
show that the marginal layer, after an “entrance effect”, quickly reaches a steady value. The
main contribution of that paper is to provide an exact relation which links the asymptotic
thickness of the CFL to its initial (minimum) value dictated by the size exclusion effect.
This is the key step towards a rigorous justification of the FL effect. In particular, in [37]
we compared the marginal layer thickness, as predicted by the mathematical model, and
some measured values taken from “in vivo” experiments by Maeda et al. [55] and by
Kim et al. [56]. In all cases we obtained results that, considering the uncertainty due to the
experimental errors, are quite satisfactory.

4.2. The CAF Evolution Explained as an Entrance Effect

In [53] the Authors, working in planar geometry, study the entrance effect. They show
that the velocity has a transverse component which shifts streamlines towards the channel
center and it is bound to vanish just beyond the entrance region. So the flow reaches very
soon a stratified structure where the particle volume fraction close to the wall significantly
lower than the one in the core. The proof is quite technical and cannot be reported here.

Here we partially extend the argument of [53] to cylindrical geometry. Furthermore,
in this case, as expected, it turns out that flow soon reaches a CAF structure as the one
hypothesised by Haynes [39].

Let us denote by a∗ the minimum size of the outer layer, i.e., a∗ = R∗ − s∗0 , with
s∗o = s∗|x=0. It is reasonable to guess that a∗ is going to depend on the geometrical
properties of the RBCs in the considered sample, thus a quantity whose value cannot be
given a priori with great accuracy, though its range is limited around the RBC average
thickness. We now rewrite system (87) in dimensionless form by introducing the following
new variables

x =
x∗

L∗ , r =
r∗

R∗
, u =

u∗

U∗
, v =

v∗

V∗
, p =

p∗

ρ∗U∗2 , η(φ) = η∗pη∗(φ)

where L∗(< L∗) is the longitudinal length scale, ρ∗ is the constant and uniform suspension
density, U∗ the characteristic inlet velocity, η∗p the plasma viscosity (taken as the reference
one), and V∗/U∗ = R∗/L∗. Then, if Re = ρ∗ U∗R∗/η∗ref is the Reynolds number, we
define R∗/L∗ = 1/

√
Re(< 1), meaning that the choice of Re defines the aspect ratio of the

entrance region. We also denote by ηC and ηA the (dimensionless) core and marginal layer
viscosities, respectively. Clearly, if the marginal layer is just pure plasma, then ηA = 1, but
in Section 4.3 we will allow ηA to deviate slightly away from unity.

Because of symmetry, ∂u/∂r|r=0 = 0, while v|r=0 = 0, and all unknowns are indepen-
dent of the angular coordinate. Next, we assume that ε = 1/

√
Re can be used as a small

parameter. Then, neglecting all terms O(εn), n ≥ 2, system (87) in dimensionless form
rewrites (in both layers)

u
∂φ

∂x
+ v

∂φ

∂r
= 0,

∂(ru)
∂x

+
∂(rv)

∂r
= 0,

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε

r
∂

∂r

(
rη(φ)

∂u
∂r

)
,

∂p
∂r

= 0, (⇒ p = p(x)).

(101)
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where, of course, η is the viscosity of the layer considered. The following inlet conditions
are assumed:

u(0, r) = 1, v(0, r) = 0, φin =


ΦC, 0 ≤ r ≤ 1− δ,

ΦA, 1− δ < r ≤ 1

, (102)

with ΦC, ΦA constant and δ = a/R, where a is the inlet thickness of the marginal layer
(according to the size exclusion effect). The interface between the core and the marginal
layer is denoted by Σ and given by

r = σ(x), with σ(0) ≡ σo = 1− δ.

Since Σ is a (steady) material surface, we have

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0,

and, consequently,

φ(x, r) =


ΦC, 0 ≤ r ≤ σ(x),

ΦA, σ(x) < r ≤ 1

, η(x, r) =


η(ΦC) ≡ ηC, 0 ≤ r ≤ σ(x),

η(ΦA) ≡ ηA, σ(x) < r ≤ 1.

The whole problem consists in solving the following coupled systems of Prandtl equations

∂(ru)
∂x

+
∂(rv)

∂r
= 0, x ≥ 0, 0 ≤ r < σ(x),

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε ηC

r
∂

∂r

(
r

∂u
∂r

)
, x ≥ 0, 0 ≤ r < σ(x),

p = p(x), x ≥ 0,

∂u
∂r

= 0, v = 0, x ≥ 0 r = 0,

u = 1, v = 0, x = 0, 0 ≤ r ≤ 1− δ,

(103)



∂(ru)
∂x

+
∂(rv)

∂r
= 0, x ≥ 0, σ(x) < r ≤ 1,

u
∂u
∂x

+ v
∂u
∂r

= −∂p
∂x

+
ε ηA

r
∂

∂r

(
r

∂u
∂r

)
, x ≥ 0, σ(x) < r ≤ 1,

p = p(x), x ≥ 0,

u = 0, v = 0, x ≥ 0 r = 1

u = 1, v = 0, x = 0, 1− δ < r ≤ 1,

(104)

to which the following free boundary conditions need to be added

−u(x, σ(x))σ′(x) + v(x, σ(x)) = 0,

JuK = Jvs.K = JpK = 0,

ηC
∂u
∂r

∣∣∣∣
r=σ−

= ηA
∂u
∂r

∣∣∣∣
r=σ+

,

(105)
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where J•K denotes the jump through Σ. System (103)–(105) allows an asymptotic solution
of Poiseuille type for x → ∞, namely v∞(r) = 0 and

u∞(r) =
2

(1− σ4
∞)

1
ηA

+
σ4

∞
ηC

×


σ2

∞ − r2

ηC
+

1− σ2
∞

ηA
, 0 ≤ r ≤ σ∞

1− r2

ηA
, σ∞ ≤ r ≤ 1,

(106)

where σ∞ = lim
x→∞

σ(x). Since Σ is a material curve

∫ σo

0
u(0, r) r d r =

∫ σ∞

0
u∞(r) r d r.

Thus, the initial core radius and its asymptotic value are related through

σ2
o =

1

σ4
∞

(
1

ηC
− 1

ηA

)
+

1
ηA

[
σ4

∞

(
1

ηC
− 2

ηA

)
+

2σ2
∞

ηA

]
. (107)

We notice that (107) is a fourth order algebraic equation in the unknown σ∞, with only
one physically significant solution i.e., σ∞ ∈ (0, 1),

σ∞ =
σo√√√√1 +

√
(1− σ2

o )

[
1− σ2

o

(
1− ηA

ηC

)] . (108)

We notice that (108) is independent of Re. The behaviour of σ∞ as a function of σo is
shown in Figure 13. If we can solve system (103)–(105) in the whole region x ≥ 0 and t ≥ 0
and prove that σ(x) decays rapidly to σ∞, then (108) can be used to verify the FL effect
versus the experimental data.
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Figure 13. Function (108) for some values of the ratio ηC/ηA.

4.3. The Fåhræus–Lindqvist Effect Justified through Fluid Mechanics

In [53] Guadagni and Farina use the Langhaar’s approach [57] to solve the bound-
ary layer equation in plane geometry. In the tube geometry a similar argument can be
developed (see, for example, Sparrow et al. [58], Avula [59], Gupta [60] and Campbell and
Slattery [61]).

We confine ourselves to summarize the guidelines of the procedure and report the
evolution of σ(x) for various choices of the relevant parameters.

It is well-known that it is not possible to solve Prandtl’s equations explicitly, so that
special approximating techniques are needed. Here, the method consists in linearizing
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the inertia terms in the second of (103) and (104), in order to transform the momentum
equation in the form

ε ηA
r

∂

∂r

(
r

∂u
∂r

)
= εβ2u− κouter(x). (109)

where β(x) and κouter(x) are auxiliary functions still to be specified. Imposing the boundary
condition u(1, x) = 0, the solution to (109) can be expressed as

uouter(r, x) = C(x)

I0

(
rβ
√

ηA

)
− I0

(
β
√

ηA

)Y0

(
− irβ
√

ηA

)
Y0

(
− iβ
√

ηA

)


− κouter

εβ2

1−
Y0

(
− irβ
√

ηA

)
Y0

(
− iβ
√

ηA

)
,

(110)

where Io(r) and Yo(r) are Bessel functions of the first modified and second type, respectively,
and C(x) has to be determined. The same argument applies to the inner layer and, by
imposing the boundary condition u′(0, x) = 0, one obtains

uin(r, x) = D(x)J0

(
irβ
√

ηC

)
− κinner

εβ2 , (111)

where D(x), as well as κinner(x), have to be determined. If we insert (111) and (110) into
the second of (105) and the third of (105), we get an algebraic system that allows to express
κinner and κouter in terms of C and D. Substituting again into (111) and (110), entails

u(r, x) =

C F1,out(r, β) + D F2,out(r, β), σ < r ≤ 1,

C F1,in(r, β) + D F2,in(r, β), 0 ≤ r ≤ σ,
(112)

where

F1,out(σ, β) =

Y1

(
− iσβ
√

ηA

)(
I0

(
σβ
√

ηA

)
− I0

(
β
√

ηA

))
Y1

(
− iσβ
√

ηA

)

− i

(
Y0

(
− iβ
√

ηA

)
−Y0

(
− iσβ
√

ηA

))
I1

(
σβ
√

ηA

)
Y1

(
− iσβ
√

ηA

)
(113)

F2,out(r, β) =

√
ηC

(
Y0

(
− iβ
√

ηA

)
−Y0

(
− iσβ
√

ηA

))
J1

(
iσβ
√

ηC

)
√

ηAY1

(
− iσβ
√

ηA

) (114)
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F1,in(r, β) = I0

(
βσ
√

ηA

)
− I0

(
β
√

ηA

)

−
iβσ

(
Y0

(
− iβ
√

ηA

)
−Y0

(
− iβσ
√

ηA

))
F
(

2;
σ2β2

4ηA

)
2
√

ηAY1

(
− iσβ
√

ηA

)
(115)

F2,in(r, β) = I0

(
σβ
√

ηC

)
− I0

(
βσ
√

ηC

)

+

iβσ

(
Y0

(
− iβ
√

ηA

)
−Y0

(
− iβσ
√

ηA

))
F
(

2;
σ2β2

4ηC

)
2
√

ηAY1

(
− iσβ
√

ηA

) ,

(116)

and

F(b; z) =
∞

∑
k=0

zk

Γ(b + k)k!

is the regularized hyper-geometric function (from now on, we do not report the explicit
expressions of the involved functions (which are, indeed, exceedingly long to be shown)
and focus on the procedure).

To make the solution physically consistent we need to impose both the momentum
balance and mass conservation (which, otherwise, may not be satisfied by the approximate
solution), i.e.,

2
d

d x

∫ 1

0
ru2 d r = −p′ + 2ε ηA

∂u
∂r

∣∣∣∣
r=1

,
d

d x

∫ 1

0
ru(r, x)d r = 0 (117)

Now, by inserting (112) into the second of (117), we determine C(β, σ) and D(β, σ). For
u(x, r) to be consistent with the asymptotic solution (106), β(x) must vanish as x → ∞.
This can be achieved by expanding (112) for x → ∞ (that is for β→ 0) and verifying that
at the zeroth order in β, u(x, r) identifies with u∞(r) given by (106). At this point, the final
step is to obtain two equations for β and σ. The former follows by applying the second
of (117) once again, in which p′ is computed through the second of (103), evaluated at r = 0.
The latter follows by the kinematic condition (105). Finally we have to solve a system of
two ODEs of type 

β′ = B(β, σ),

σ′ = S(β, σ),
(118)

to be coupled with “suitable” initial conditions (in the sense specified in [53]), one of
them being σ(0) = σo. Figures 14–16 show, each for a given Re, the solution σ(x) for
σ(0) = 0.9, 0.8 and for five values of the ratio µ = ηC/ηA.

The longitudinal interval ∆x needed by σ(x) to decrease from σo to its asymptotic
value σ∞ is usually referred to as the “entrance length”. The most evident effect outlined
by Figures 14–16 is that, for fixed µ, the entrance length increases by increasing Re, while
for any given Re, it decreases significantly by increasing µ. It must also be emphasized that
simulations confirm that the asymptotic value σ∞ depends only on µ, not on Re, as it must
be, according to (108). In the next section, we compare the model with the experiments: in
all cases we considered, the entrance length is rather small.
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Figure 14. The evolution of σ(x) for Re = 100, σ(0) = 0.8 (left panel), and 0.9 (right panel), and for
some values of the ratio µ = ηC/ηA.
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Figure 15. The evolution of σ(x) for Re = 500, σ(0) = 0.8 (left panel), and 0.9 (right panel), and for
some values of the ratio µ = ηC/ηA.
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Figure 16. The evolution of σ(x) for Re = 1000, σ(0) = 0.8 (left panel), and 0.9 (right panel), and
some values of the ratio µ = ηC/ηA.

4.4. The Mathematical Model versus the Experimental Data

Now, as in [37], we use formula (108), where

ηA = 1 + α(ηC − 1), (119)

and α = O(10−1) is a fitting parameter. Physically, this means that we consider the
marginal layer not completely free of RBCs. A reasonable explanation may be that the
“marginal exclusion effect” cannot be precisely stated (as it would be if the RBCs were rigid
spheres) and it should be more understood as a statistical concept (see, for example, Ethier
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and Simmons, 2007). Thus, it is acceptable to think that a small percentage of hematocrit
is present in the marginal layer and that this value may have some variability (Kim et al.,
2007 refer to the outer layer also as a “cell–poor” region).

Now we can combine Formulas (108) and (119) with σo = 1− 2a/D, where D = 2R
and a (the minimum outer thickness) is a fitting parameter related to the half thickness
of the RBCs, so with a limited range of variability, i.e., 1–1.5 µm, since the average RBCs
thickness is about 2–3 µm (see [62]). The result is a dimensional formula for the core radius
s as a function of the tube diameter D, namely

s = S(D, ηC; a, α),

where, however, a, α are “tuning” parameters with very little variability.
Figure 17 shows how the mathematical model fits the original data. The fits by means

of two popular empirical formulas are also shown for comparison.
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Figure 17. Comparison between the experimental series 1, 2, 3 and 4 reported in Tables at page
565 of Fåhræus and Lindqvist [35] (dots) and the theoretical model (solid curve). The fitting via the
empirical formulas by Pries [63] and by Secomb [64] are also shown (dashed curves). On the top
of each plot the values of a∗, α, ηC and the hematocrit φ used in the empirical formulas to fit the
Fåhræus and Lindqvist data.

The model has been tested versus other classical experiments like those by Kümin [65]
and by Zilow and Linderkamp [66]. Figures 18 and 19 show that the agreement is at least
as good as the empirical formulas also in these cases.
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Figure 18. Comparison between our model and the experimental data by Kümin [65] (dots). Data
are extracted from Figure 2, at p. 1195 of [39]. The empirical fitting via the empirical formulas by
Pries and by Secomb are also shown (dashed curves).
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Figure 19. Comparison between our mathematical model (solid curve) and data by Zilow and
Linderkamp [66] (dots). These authors considered both adult and infant blood samples at different
values of the hematocrit. The empirical fitting via the empirical formulas by Pries and by Secomb are
also shown (dashed curves).

4.5. The Fåhræus–Lindqvist Effect: Conclusions

Starting form the seminal work of Fåhræus and Lindqvist [35], we recalled the rel-
evance of the Haynes’ conjecture [39] in suggesting the right path to follow for a rig-
orous justification of the FL effect based on fundamental principles of fluid dynamics.
Then we showed that this goal is achieved by relating the two recent contributions by
Ascolese et al. [41] and Guadagni and Farina [53], thus solving a problem remained open
for more than ninety years. To this end, the theory developed in [53] for flows in a plane
symmetry has been here updated to the the case of axisymmetric flows. This relation
contains, as a parameter, only the ratio between the viscosity of outer and inner layers.
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Finally, following [37], we showed how this formula can be used to fit, quite reasonably, not
only the original data by Fåhræus–Lindqvist, but also those of other classical experiments
Zilow and Linderkamp [66], by Kümin [65], and even two well-known empirical formulas
proposed by Pries [63] and Secomb [64].
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