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Abstract: The redefined vacuum approach, which is frequently employed in the many-body per-
turbation theory, proved to be a powerful tool for formula derivation. Here, we elaborate this
approach within the bound-state QED perturbation theory. In addition to general formulation, we
consider the particular example of a single particle (electron or vacancy) excitation with respect to the
redefined vacuum. Starting with simple one-electron QED diagrams, we deduce first- and second-
order many-electron contributions: screened self-energy, screened vacuum polarization, one-photon
exchange, and two-photon exchange. The redefined vacuum approach provides a straightforward
and streamlined derivation and facilitates its application to any electronic configuration. Moreover,
based on the gauge invariance of the one-electron diagrams, we can identify various gauge-invariant
subsets within derived many-electron QED contributions.

Keywords: bound-state QED; lamb shift; relativistic atomic theory; vacuum redefinition; ground
state redefinition; gauge invariance

1. Introduction

Highly charged ions are considered as one of the best available natural laboratories to
access strong field effects at the moment; highlighting the need to go beyond the perturba-
tive regime since for high Z, the αZ expansion parameter is comparable to one (where Z
is the nuclear charge number and α is the fine-structure constant). Hence, calculations to
all orders in αZ are sought, which requires special methods of the bound-state quantum
electrodynamics (QED) to be developed within the corresponding framework, known as
the Furry picture [1]. Moreover, by pushing QED, in the presence of the binding nuclear
field, to its limits is a great way to earn in-depth knowledge about the theory and to probe
potential new physics [2]. Evaluation of the dynamical properties and the structure of
highly relativistic, tightly bound electrons in highly charged ions with utmost accuracy
represents one of the most important and demanding problems in modern theoretical
atomic physics. Although many approximate methods have access to higher-order correc-
tions within the Breit approximation, such as relativistic many-body perturbation theory
(RMBPT), relativistic configuration–interaction (CI) method, or multi-configuration Dirac–
Fock (MCDF) method, the increasing precision in modern spectroscopy enforces accurate
ab initio description of few- to many-electron systems within the bound-state QED.

In general, QED can be applied to any many-electron atoms even though it is most
deeply developed for hydrogen and helium [3], and hydrogen-like ions [4], where the
accuracy of the calculations has reached a remarkably high level. In the case of hydro-
gen, highly accurate theoretical calculations being combined with experimental transition
energies allowed one not only to probe QED but also to determine the Rydberg constant
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and the proton charge radius [5]. However, the independent measurement of the 2s–2p3/2
transition in muonic hydrogen [6,7] reported a different value of the proton charge radius,
which evoked the so-called “proton radius puzzle”. For the current status of this problem
we refer the reader to [8]. The recent theoretical [9–11] and experimental [12,13] progress in
the helium spectroscopy pushes forward the idea of the independent determination of the
fine structure constant from low-Z QED [14,15]. In the case of highly charged ions, the com-
parison of the experimental value of the 1s Lamb shift, 460.2± 4.6 eV [16], allows one to test
the first-order QED effects on a level of 1.7% [17]. However, the probe of the second-order
QED effects, which contribute −1.26(33) eV [18], is limited by the experimental accuracy,
where improvements represent a rather challenging task [19]. A way to reach a better
comparison is to investigate the transition energies in many-electron ions, which spread
from soft x-ray to ultraviolet and, therefore, are accessible by laser spectroscopy techniques
over a wide range of Z values [20]. The question arises: can we perform ab initio QED calcu-
lations for many-electron systems? The second-order contributions in α are evaluated only
within the state-of-the-art QED calculations for helium-like [21–26], lithium-like [27–30],
beryllium-like [31–33], boron-like [34–36], and sodium-like [37] ions. The computations
are so far limited to such selected, relatively simple systems not only due to the complexity
of numerical calculations but also because of difficulties in deriving formal expressions.

The concept of a vacuum redefinition naturally arose in quantum field theory due
to the notion of the fully occupied negative-energy continuum of fermion states, the so-
called Dirac sea. The vacuum redefinition technique is widely accepted and demonstrated
within the relativistic many-body perturbation theory (RMBPT) formalism [38–41]. Since
rigorous bound-state QED calculations for many-electron systems are not up-to-date, the
corresponding application examples of this concept are difficult to source. In Reference [42],
the authors considered the case of one electron over the closed shells in the context of the
two-time Green’s function method developed in that work. In Reference [37], the problem
of the rigorous QED formulation for many-electron systems within the S-matrix approach
was considered and the usefulness of the vacuum redefinition by analogy with RMBPT
was emphasized. In this work, we further elaborate the redefined vacuum approach within
the QED perturbation theory. The essential notion in introducing a redefined vacuum is
to separate the electron dynamics into the “core” and “valence” parts. The first part is
relegated to the reference vacuum energy and can be neglected, e.g., when the transition
energy is considered. This is formulated via a new Fermi level EF

α , which lies above all
core electron states. The many-electron contributions are extracted as the difference of two
integrals over altering integration contours, each in link with its respective vacuum state.
In this way, the interaction of the reference particle (electron or hole) with core electrons
is taken into account within the QED framework. The great advantage of the method is
that instead of the all-electron states one deals with the few-valence-electron states, which
represent a much smaller Hilbert space.

Furthermore, as we demonstrate, the method allows us to identify various gauge-
invariant subsets of diagrams, which provides an efficient control on derived formulas and
their numerical implementation.

Following the motivation outlined above, in our recent paper [43], we have derived
the two-photon-exchange contribution within the redefined vacuum QED approach for
the case of an atom with a single electron above closed shells. The current work aims to
formulate the redefined vacuum approach within the rigorous bound-state QED framework
for an arbitrary state. Final expressions for one- and two-particle states are presented. In
order to illustrate the developed method, the first- (one-photon exchange) and second-
order (screened QED and two-photon exchange) many-electron QED diagrams are derived
for the case of single-vacancy atoms. Such an example is chosen due to the fact that two-
photon-exchange correction is still uncalculated for fluorine-like ions [44–46] as well as
due to recent experimental efforts for such systems [47,48].

The paper is organized as follows. Section 2 introduces the working framework,
the concept of vacuum redefinition, and the summary of necessary tools. Based on the
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two-time Green’s function approach [42,49], the QED perturbation theory is formulated
in Section 3. In particular, the general expressions are derived for one- and two-particle
states on top of the redefined vacuum. In Section 4, applications of the formalism are
delivered for first- and second-order QED diagrams. Section 5 includes the discussion of
the obtained results and the conclusion. Moreover, in Appendices A and B, the complete
sets of formulas are provided for the screened QED and two-photon exchange diagrams,
respectively. A comparison between QED and RMBPT results for the two-photon exchange
is included in Appendix C.

Natural units (h̄ = c = me = 1) are used throughout this paper, the fine structure
constant is defined as α = e2/(4π), e < 0. The metric tensor is taken to be ηµν = ηµν =
diag(1,−1,−1,−1). Unless explicitly stated, all integrals are meant to be on the interval
(−∞, ∞).

2. General Formulation and Method

The one-particle states of the electron–positron field in the presence of external poten-
tial V(x) are described by the Dirac equation

hD(x)φj(x) = [−iα ·∇+ β + V(x)]φj(x) = εjφj(x) , (1)

where φj is the static solution and j uniquely characterizes the solution, i.e., stands for
all quantum numbers. The corresponding time-dependent solution is φj multiplied by
exp (−iεjx0) phase. αk and β are Dirac matrices. The Furry picture [1] allows one to
consider the eigenstates as the solutions of the Dirac equation in presence of an external
classical field. In the original Furry picture, the potential considered is the Coulomb
potential VC(x) of the nucleus V(x) = VC(x). The extended Furry picture incorporates
some screening potential U(x) in addition to the Coulomb one, i.e., V(x) = VC(x) + U(x).
The unperturbed normal-ordered Hamiltonian is given by [50]

H0 =
∫

d3x : ψ(0)†(x)hD(x)ψ(0)(x) : , (2)

where the fermion field operator is expanded in terms of creation and annihilation operators

ψ(0)(x) = ∑
εj>EF

ajφj(x) exp (−iεjx0) + ∑
εj<EF

b†
j φj(x) exp (−iεjx0) , (3)

where aj (bj) is the electron (positron) annihilation operator for an electron (positron) in the
state j and a†

j (b†
j ) is the electron (positron) creation operator for an electron (positron) in

the state j, fulfilling the usual anti-commutations relations. The Fermi level EF is usually
set to EF = 0 separating the Dirac sea from the rest of the spectrum. Here and in what
follows the RMBPT notations of Lindgren and Morisson [38] and Johnson [41] are used: v
and h designate the valence electron and the hole state, respectively, a, b, . . . stand for core
orbitals, and i, j, k, l correspond to any arbitrary states.

The concept of vacuum redefinition is exacerbated when the interest is focused on
the transitions with a significant many-electron background remaining unchanged. The
key feature is that the contributions, arising from the interaction between core electrons
are canceled in the difference between the excited and the ground state energies, are not
considered from the very beginning. Thus, a new vacuum state is chosen such that all core
orbitals are occupied and the remaining ones are free [38]. Let us denote it by |α〉,

|α〉 = a†
a a†

b . . . |0〉 . (4)

The corresponding Fermi level EF
α precise location is determined by the redefined

vacuum state |α〉: EF
α lies slightly above the highest occupied orbital of the new ground
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state |α〉. The meaning of creation and annihilation operators is changed for the core shell
electrons (aa → b†

a , a†
a → ba) and the fermion field operator reads

ψ
(0)
α (x) = ∑

εj>EF
α

ajφj(x) exp (−iεjx0) + ∑
εj<EF

α

b†
j φj(x) exp (−iεjx0) . (5)

Moreover, annihilation operators obey their usual rules but accordingly to their re-
spective energy εi compared to Fermi level EF

α , see Equation (5),

bj |α〉 = 0 , aj |α〉 = 0 . (6)

Attributing a multitude of one-electron states to the redefined vacuum, we are inter-
ested in describing the dynamics of N-particle (electrons and holes) state A on top of the
redefined vacuum, which is defined by the expression

|A〉 = a†
v1

a†
v2

. . . b†
hN−1

b†
hN
|α〉 . (7)

The zeroth-order energy E(0)
A is thus given by the state average of the zeroth-order

Hamiltonian,
E(0)

A = 〈A|H0 |A〉 = ∑
v=v1,v2,...

εv − ∑
h=...,hN−1,hN

εh . (8)

Here, one sums up the one-electron energies of the electrons and subtracts the one-
electron energies of the holes.

Before we proceed with the formulation of the QED perturbation theory, let us briefly
focus on the electron propagator in the redefined vacuum formalism. The electron prop-
agator is defined as the vacuum expectation value of the time-ordered product of two
electron–positron field operators. The expression presented below is suitable for both the
redefined vacuum and the standard vacuum, with the replacement EF

α → EF = 0,

〈α| T [ψ
(0)
α (x)ψ(0)†

α (y) ] |α〉 = i
2π

∫
dω ∑

j

φj(x)φ†
j (y) exp [−i(x0 − y0)ω]

ω− εj + iε(εj − EF
α )

, (9)

with ε > 0 implies the limit to zero. The core orbitals are now the discrete part of the nega-
tive energy spectrum (Dirac sea) due to the change in the poles circumvention prescription.
The difference between the propagators for the redefined and standard vacua corresponds
to a cut of the electron line on the diagram. The application of Sokhotski–Plemelj theo-
rem is introduced as a tool to simplify this difference and to make the cut explicit. The
following equality is meant to be understood while integrating in the complex ω plane.
For p = 1, 2, . . . we have,

∑
j

φj(x)φ†
j (y)

(ω− εj + iε(εj − EF
α ))

p − ∑
j

φj(x)φ†
j (y)

(ω− εj + iε(εj − EF))p

=
2πi(−1)p

(p− 1)!
d(p−1)

dω(p−1) ∑
a

δ(ω− εa)φa(x)φ†
a (y) . (10)

Thus we have introduced all necessary notations and are ready to proceed with the
QED perturbation theory with the redefined vacuum.

3. Perturbation Theory

The interaction with the quantized electromagnetic field Aµ and the counterpotential
are encapsulated in the interaction term

hint(x) = eαµ Aµ(x)−U(x) , (11)
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with the corresponding normal-ordered interaction Hamiltonian

Hint =
∫

d3x : ψ
(0)†
α (x)hint(x)ψ(0)

α (x) : . (12)

The bound-state energy corrections due to this interaction Hamiltonian are usually
accounted for via the bound-state QED perturbation theory. Here, special care is required
in the treatment of the contributions where an intermediate-state energy coincides with
the reference-state energy, so-called reducible contributions. To date there are several
methods employed within the bound-state QED perturbation theory: the adiabatic S-
matrix approach [50], the two-time Green’s function (TTGF) method [42,49], the covariant-
evolution-operator method [51], and the line profile approach [52]. Here, we employ the
TTGF method, where the key instrument is the Green function for N-particle system, which
is defined as follows:

Gα(E) =
∫

d3x1 . . . d3xNd3y1 . . . d3yN : ψ
(0)†
α (0, x1) . . . ψ

(0)†
α (0, xN)gα(E, x1, . . . , xN , y1, . . . , yN)

× ψ
(0)
α (0, y1) . . . ψ

(0)
α (0, yN) : , (13)

with gα(E, x1, . . . , xN , y1, . . . , yN) being the Fourier transformation of the two-time Green
function,

gα(E, x1, . . . , xN , y1, . . . , yN)δ(E− E′) =
1

2πi
1

N!

∫
dx0dx

′0 exp (iEx0 − iE′x
′0)

× 〈α| T [ψα(x0, x1) . . . ψα(x0, xN)ψ
†
α(x

′0, y1) . . . ψ†
α(x

′0, yN) ] |α〉 . (14)

The two-time Green function is expressed via the standard definition,

〈α| T [ψα(x0, x1) . . . ψα(x0, xN)ψ
†
α(x

′0, y1) . . . ψ†
α(x

′0, yN) ] |α〉

=
〈α| T [ψ

(0)
α (x0, x1) . . . ψ

(0)
α (x0, xN)ψ

(0)†
α (x

′0, y1) . . . ψ
(0)†
α (x

′0, yN) exp (−i
∫

dtHint) ] |α〉
〈α| T [exp (−i

∫
dtHint) ] |α〉

. (15)

Replacing the exponents in Equation (15) by the Taylor series one obtains the perturba-
tion expansion, which is based on the fine structure constant α as an expansion parameter.
As a result, we find also for the Green function Gα(E):

∆Gα(E) = Gα(E)− G(0)
α (E) = ∆G(1)

α (E) + ∆G(2)
α (E) + . . . . (16)

In order to extract the energy shift, one has to consider the pole structure of the Green
function (13). For this purpose, let us rewrite Equation (13) in term of the creation and
annihilation operators:

Gα(E) = ∑
εi1

,...,εiN
>EF

α

∑
εj1

,...,εjN
>EF

α

a†
i1 . . . a†

iN
aj1 . . . ajN gα,i1 ...iN j1 ...jN (E)

+ (−1)N ∑
εi1

,...,εiN
<EF

α

∑
εj1

,...,εjN
<EF

α

b†
i1 . . . b†

iN
bj1 . . . bjN gα,i1 ...iN j1 ...jN (E) , (17)

with

gα,i1 ...iN j1 ...jN (E) =
∫

d3x1 . . . d3xNd3y1 . . . d3yNφ†
i1(x1) . . . φ†

iN
(xN)

× gα(E, x1, . . . , xN , y1, . . . , yN)φj1(y1) . . . φjN (yN) . (18)
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Analyzing the pole structure of gα,i1 ...iN j1 ...jN (E) similarly to Reference [42], we find

gα,i1 ...iN j1 ...jN (E) = ∑
N

Ai1 ...iN j1 ...jN
E− EN + iε

− (−1)N ∑
N

Bi1 ...iN j1 ...jN
E + EN − iε

, (19)

with

Ai1 ...iN j1 ...jN =
1

N!

∫
d3x1 . . . d3xNd3y1 . . . d3yNφ†

i1(x1) . . . φ†
iN
(xN)

× 〈α|ψα(0, x1) . . . ψα(0, xN) |N 〉 〈N |ψ†
α(0, y1) . . . ψ†

α(0, yN) |α〉 φj1(y1) . . . φjN (yN) (20)

and

Bi1 ...iN j1 ...jN =
1

N!

∫
d3x1 . . . d3xNd3y1 . . . d3yNφ†

i1(x1) . . . φ†
iN
(xN)

× 〈N |ψα(0, x1) . . . ψα(0, xN) |α〉 〈α|ψ†
α(0, y1) . . . ψ†

α(0, yN) |N 〉 φj1(y1) . . . φjN (yN) . (21)

As one can see from Equations (20) and (21), the first summation overN in Equation (19)
runs exclusively over the electron excitations from the redefined vacuum, while the second
term corresponds to the states with vacancies only. Thus, the pole positions for the electron
and hole states are essentially different and in what follows, we distinguish among these
two cases.

3.1. Electron States

Applying the contour integral formalism, as it was performed in Reference [42], we
express the energy shift ∆EAv = EAv − E(0)

Av
for the electron state A ≡ Av as follows:

∆EAv =

1
2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆Gα(E) |Av〉

1 +
1

2πi

∮
ΓAv

dE 〈Av|∆Gα(E) |Av〉
, (22)

where ΓAv is the contour surrounding only the pole E = E(0)
Av

. Here, we should note that in
contrast to the expression given in Reference [42], the matrix elements in Equation (22) are
understood as the matrix elements in the Fock space. Substituting now Equation (16) into
Equation (22) and separating out the individual orders in Hint, one gets the corresponding
expansion series for the energy shift,

∆EAv = ∆E(1)
Av

+ ∆E(2)
Av

+ . . . , (23)

where the first order is given by

∆E(1)
Av

=
1

2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(1)
α (E) |Av〉 , (24)

and the second order reads

∆E(2)
Av

=
1

2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(2)
α (E) |Av〉

− 1
2πi

∮
ΓAv

dE(E− E(0)
Av

) 〈Av|∆G(1)
α (E) |Av〉

1
2πi

∮
ΓAv

dE′ 〈Av|∆G(1)
α (E′) |Av〉 . (25)

Thus, we have expressed the energy correction in terms of the matrix elements of
the Green function Gα(E) in the occupation number space. In the following we consider
particular examples of state Av.
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The first illustrative example is the well-known single-valence-electron state. Consider
an electronic configuration, which has one valence electron above the closed shells. After
assignment of the closed shells to the redefined vacuum |α〉, the one-valence-electron state
is described by

|v〉 = a†
v |α〉 . (26)

Expressing the Green function by Equation (17), it is now easy to evaluate the Fock-
space matrix elements 〈Av|∆Gα(E) |Av〉 with Av = v, which enters the expression for the
determination of the energy shift (22). The expectation value of the one-particle Green
function (N = 1) in Equation (17) with respect to the one-valence-electron state is evaluated
and the matrix element is just

〈v|∆Gα(E) |v〉 = ∆gα,vv(E) , (27)

where ∆gα,ij(E) is given by Equation (18). Substituting this expression into Equation (22)
one easily gets,

∆Ev =

1
2πi

∮
Γv

dE(E− εv)∆gα,vv(E)

1 +
1

2πi

∮
Γv

dE∆gα,vv(E)
, (28)

where Γv surrounds only the pole E = εv. This expression coincides with the one-valence-
electron result of Reference [42].

The second example discussed is the two-valence-electron state formed by the one-
electron orbitals v1 and v2. In this case, the first issue to consider is the construction of
a coupled two-electron state. Employing the jj-coupling scheme we build the state with
the total angular momentum J and its projection M. Thus, the two-valence-electron state
under consideration is given by

|(v1v2)JM〉 = η ∑
mv1 mv2

〈jv1 mv1 jv2 mv2 |JM〉 a†
v1

a†
v2
|α〉 ≡ Fv1v2 a†

v1
a†

v2
|α〉 , (29)

where jvi and mvi are the one-electron total angular momentum and its projection, 〈jv1 mv1 jv2 mv2 |JM〉
is the Clebsch–Gordan coefficient, and η is the normalization factor, which depends on the
degeneracy of the orbitals forming the jj-coupled state [41],

η =

{
1 if εv1 6= εv2

1/
√

2 if εv1 = εv2

. (30)

Then the expectation value of the two-particle Green function (Equation (17), N = 2)
with the state (29) reads,

〈(v1v2)JM|∆Gα(E) |(v1v2)JM〉 = 2Fv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)] . (31)

Substituting this expression into Equation (22) one easily obtains,

∆Ev1v2 =

1
πi

∮
Γv1v2

dE(E− εv1 − εv2)Fv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)]

1 +
1

πi

∮
Γv1v2

dEFv1v2 Fv1v2 [∆gα,v1v2v1v2(E)− ∆gα,v1v2v2v1(E)]
, (32)

where Γv1v2 surrounds only the pole E = εv1 + εv2 . As one can see from the above formulas
(28) and (32), the energy shifts are expressed in terms of the one- and two-electron matrix
elements ∆gα,ij(E) and ∆gα,ijkl(E), for which one can use the Feynman rules formulated in
Reference [42]. The only difference one has to keep in mind is that the electron propagator
has to be replaced by the new one defined by Equation (9). Consequences of the employment
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of the redefined propagator will become clear in the next section. A generalization to three and
more valence-electron states is straightforward in terms of N-particle Green function (17) and
the energy shift (22).

3.2. Hole States

To extract the energy shift for the hole states, we have to consider the second sum in
Equation (19). Performing now the contour integration over E around −EN and keeping
all other singularities outside the contour, we arrive at the following expression for the
energy shift ∆EAh = EAh − E(0)

Ah
of the hole state A ≡ Ah:

∆EAh = −

1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆Gα(E) |Ah〉

1 +
1

2πi

∮
ΓAh

dE 〈Ah| (−1)N∆Gα(E) |Ah〉
, (33)

where ΓAh is the contour surrounding only the pole E = −E(0)
Ah

. As previously, substituting

Equation (16) in Equation (33) and separating the individual orders ∆EAh = ∆E(1)
Ah

+

∆E(2)
Ah

+ . . . we find the first-order and second-order corrections,

∆E(1)
Ah

= − 1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(1)
α (E) |Ah〉 , (34)

∆E(2)
Ah

= − 1
2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(2)
α (E) |Ah〉

+
1

2πi

∮
ΓAh

dE(E + E(0)
Ah

) 〈Ah| (−1)N∆G(1)
α (E) |Ah〉

× 1
2πi

∮
ΓAh

dE′ 〈Ah| (−1)N∆G(1)
α (E′) |Ah〉 . (35)

Let us now consider some examples. First case is the mirror image of the one-valence-
electron configuration, termed as the one-hole state: the closed shells with a single vacancy.
In this case, symmetrical to the one-valence-electron state considered above, the Fock state
is defined as follows [38]:

|h〉 = (−1)jh−mh b†
h |α〉 , (36)

with the phase factor introduced in order to restore the rotational invariance of the matrix
elements, where jh and mh are the hole’s total angular momentum and its projection. The
zeroth-order energy E(0)

h , given by Equation (8), for one-hole state reads

E(0)
h = 〈Ah|H0 |Ah〉 = −εh . (37)

Obviously, E(0)
h is negative since the hole dynamics occurs below the zero-point energy

assigned to the vacuum state |α〉. Evaluating now the matrix elements,

〈h| (−1)∆Gα(E) |h〉 = ∆gα,hh(E) , (38)

one obtains for the energy shift of the one-hole state:

∆Eh = −

1
2πi

∮
Γh

dE(E− εh)∆gα,hh(E)

1 +
1

2πi

∮
Γh

dE∆gα,hh(E)
, (39)
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where Γh surrounds only the pole E = εh.
The second example considered is the two-hole state. Similar to the case of the two-

valence-electron state, we couple the two hole’s angular momenta via the jj-coupling
scheme, which leads to the following two-hole state,

|(h1h2)JM〉 = η ∑
mh1

mh2

(−1)jh1
+jh2

−mh1
−mh2 〈jh1 −mh1 jh2 −mh2 |JM〉 b†

h1
b†

h2
|α〉

≡ Fh1h2 b†
h1

b†
h2
|α〉 , (40)

where jhi
and mhi

are the one-hole total angular momentum and its projection, and the
normalization factor η is defined by Equation (30). Then the matrix element of the Green
function (17) is evaluated with the two-hole state (40) with the result,

〈(h1h2)JM|∆Gα(E) |(h1h2)JM〉 = 2Fh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

]
. (41)

Substituting this expression into Equation (33) and using E(0)
h1h2

= −εh1 − εh2 one easily
obtains

∆Eh1h2 = −

1
πi

∮
Γh1h2

dE(E− εh1 − εh2)Fh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

]
1 +

1
πi

∮
Γh1h2

dEFh1h2 Fh1h2

[
∆gα,h1h2h1h2(E)− ∆gα,h1h2h2h1(E)

] , (42)

where Γh1h2 surrounds only the pole E = εh1 + εh2 . As one can see from above equations,
we express the energy shift of the hole state in terms of the matrix element of the Green
function ∆gα(E). These matrix elements can be evaluated according to the same Feynman
rules as in the electron-state case.

Concluding this section, we notice that despite the arbitrary number of the core
electrons, the energy shift of the electron Av (or hole Ah) state is reduced to the matrix
elements of corresponding valence electrons (or holes).

4. Many-Electron QED

Having derived the formal expressions for the energy shifts, in this section we apply
the formalism for the derivation of the first- and second-order contributions. In view of the
experimental interest, our investigations will be focused on the one-hole state (Ah ≡ h, see
Equation (39)). Special attention will be paid to allocation of the gauge invariant subsets,
which is the key feature of the developed formalism, as was demonstrated previously for
the one-valence-electron case [43]. It provides us with efficient and consistent tool to verify
the results.

4.1. First-Order Contributions

For the present one-hole case, as well as for the one-valence-electron case, within the
redefined vacuum formalism, the first-order contributions are given only by the diagrams
depicted in Figure 1a: self-energy (SE), vacuum-polarization (VP), and counterpotential (CP).
These three diagrams include both the standard radiative one-electron one-loop contribu-
tions (L) and the first-order contributions due to interaction between the hole and the core
electrons (I),

∆E(1)
h = ∆E(1L)

h + ∆E(1I)
h . (43)

In the standard vacuum formulation, the latter contributions correspond to the one-
photon-exchange and counterpotential diagrams, that are displayed in Figure 1b. The
aim of the present subsection is to derive expressions for the interelectronic-interaction
diagrams from the redefined vacuum formulation and demonstrate its equivalence to the
standard one.
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(a) (b)
Figure 1. Feynman diagrams of the first-order contributions to the energy shift of a single hole
state. Wavy lines correspond to the photon propagators. The cross inside a circle represents a
counterpotential term, −U. (a) The first-order one-electron Feynman diagrams in the redefined
vacuum formalism, that correspond (from left to right) to SE, VP, and CP corrections. Single solid
lines display the electron propagators in the redefined vacuum framework. (b) Two-electron one-
photon-exchange and counterpotential Feynman diagrams. Double lines indicate the standard
electron propagators in the external potential.

The starting point is the first-order term of the perturbative expansion of ∆gα,hh(E).
Then the identification of different contributions in Equation (43) is performed to retrieve
the one-photon-exchange correction. The Feynman rules provided in [42] lead to following
Green’s function matrix element

∆g(1)SE
α,hh (E) =

1
(E− εh)2

i
2π

∫
dω ∑

j

Ihjjh(ω)

E−ω− εj + iε(εj − EF
α )

, (44)

for the SE graph, and

∆g(1)VP
α,hh (E) =

−1
(E− εh)2

i
2π

∫
dω ∑

j

Ihjhj(0)
ω− εj + iε(εj − EF

α )
, (45)

for the VP graph. The matrix element shorthand notation is defined as

Iijkl(ω) =
∫

d3xd3yφ†
i (x)φ†

j (y)I(x− y; ω)φk(x)φl(y) , (46)

it satisfies the transposition symmetry property

Iijkl(ω) = Ijilk(ω) . (47)

The interelectronic-interaction operator I(x− y; ω) and its first derivative are defined as

I(x− y; ω) = e2αµανDµν(x− y; ω) ,

I′(x− y; ω) ≡ dI(x− y; ω)

dω
, (48)

where αµ = (1, α) and Dµν(x− y; ω) is the photon propagator. Associated ω-symmetry
properties hold both in the Feynman and Coulomb gauges,

I(x− y; ω) = I(x− y;−ω) ,

I′(x− y; ω) = −I′(x− y;−ω) ,

I′(x− y; 0) = 0 . (49)

According to Equation (34), which allows us to calculate the first-order correction
to the energy shift, expressions (44) and (45) have second-order poles at E = εh. Hence
the contour integrals enclose the first-order poles at E = εh, and the Green functions are
evaluated to
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∆E(1)SE
h =− i

2π

∫
dω ∑

j

Ihjjh(ω)

εh −ω− εj + iε(εj − EF
α )

, (50)

∆E(1)VP
h =

i
2π

∫
dω ∑

j

Ihjhj(0)
ω− εj + iε(εj − EF

α )
. (51)

At the moment, the first-order SE and VP energy corrections are evaluated within
the redefined vacuum framework. Notice that these formulas describe both the one-
photon exchange and the one-electron one-loop corrections. In order to extract the sought
contribution of the one-photon exchange, the SE and VP corrections in the standard
vacuum framework, ∆E(1L)SE

h and ∆E(1L)VP
h , respectively, are to be subtracted. Application

of Equation (10) gives for the SE part,

∆E(1I)SE
h = ∆E(1)SE

h − ∆E(1L)SE
h = − i

2π

∫
dω ∑

j

[
Ihjjh(ω)

εh −ω− εj + iε(εj − EF
α )
−

Ihjjh(ω)

εh −ω− εju

]
= ∑

a
Ihaah(∆ha) , (52)

and for the VP part,

∆E(1I)VP
h = ∆E(1)VP

h − ∆E(1L)VP
h =

i
2π

∫
dω ∑

j

[
Ihjhj(0)

ω− εj + iε(εj − EF
α )
−

Ihjhj(0)
ω− εju

]
= −∑

a
Ihaha(0) , (53)

with ∆ij = εi − εj and u = 1− iε.
The counterpotential graph remains to be evaluated. The corresponding Green func-

tion, with the definition
∫

d3xφ†
i (x)U(x)φj(x) ≡ Uij, is found to be

∆g(1)CP
α,hh (E) =

Uhh
(E− εh)2 . (54)

Similar to the previous derivations, the contour integral evaluation yields

∆E(1I)CP
h = ∆E(1)CP

h = Uhh , (55)

since CP does not contribute to the radiative corrections ∆E(1L)
h . Finally, the first-order

interelectronic-interaction correction ∆E(1I)
h is given by

∆E(1I)
h = −∑

a
[Ihaha(0)− Ihaah(∆ha)] + Uhh , (56)

where the first two terms correspond to the one-photon exchange and the third one is the
counterpotential term, cf. Figure 1b. Here one should notice, that this contribution differs
by the minus sign from the valence-electron case [43]. It comes from the overall minus sign
for the hole states case, see Equation (33). Moreover, since these three terms originate from
individually gauge-invariant graphs, they are also separately gauge invariant.

4.2. Second-Order Contributions

The second-order contributions to the energy shift of the one-hole state in the redefined
vacuum formalism are given only by the one-electron diagrams, depicted in Figure 2.
Similar to the first order, these diagrams in addition to one-electron two-loop radiative
corrections include also the two-electron (screened) one-loop radiative corrections and the
contributions due to interaction between the hole and the closed-shell electrons. Therefore,
we can formally represent the second-order energy correction (35) as follows,
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∆E(2)
h = ∆E(2L)

h + ∆E(2S)
h + ∆E(2I)

h , (57)

where three different terms are present: the one-electron two-loop ∆E(2L)
h , the screened

radiative ∆E(2S)
h , and the two-photon exchange ∆E(2I)

h terms. Similar to the first-order
derivation, we extract the second and third contributions from the general formulas.
First, applying the Feynman rules for each of the diagrams depicted in Figure 2 we write
down the expression for the second-order Green function ∆g(2)α,hh(E). The complete set is
composed of ten two-loop diagrams [SESE, SEVP, VPVP, V(VP)P, V(SE)P, S(VP)E], which
are presented on the left side of Figure 2. In the extended Furry picture, seven additional
counterpotential diagrams [SECP, VPCP, CPCP] depicted on the right side of Figure 2
have to be considered as well. The next step is the identification of the one-electron two-
loop radiative corrections. Details concerning this procedure are rather similar to the
one-valence-electron case, which we considered in Reference [43]. For this reason, we do
not provide here the full-length derivation and restrict ourselves to the presentation of
final formulas.

Figure 2. One-electron two-loop (left group) and counterpotential (right group) Feynman diagrams representing the
second-order contributions to the energy shift of a single-hole state in the redefined vacuum formalism. Notations for the
diagrams are as follows, left group: SESE (first row); SEVP (second row); VPVP, V(VP)P, V(SE)P, and S(VP)E from left to
right in the last row; right group: SECP (first row); VPCP (second row); CPCP (third row). Other notations are same as in
Figure 1a.

4.2.1. Screened Radiative Corrections

Identifying the screened radiative corrections from the general expression for each
diagram we arrive at,

∆E(2S)
h = ∆E(2S)VPVP

h + ∆E(2S)V(VP)P
h + ∆E(2S)SEVP

h + ∆E(2S)V(SE)P
h + ∆E(2S)S(VP)E

h

+ ∆E(2S)SESE
h + ∆E(2S)VPCP

h + ∆E(2S)SECP
h , (58)

where corresponding terms are explicitly given in Appendix A by Equations (A1)–(A6) and
by Equations (A7) and (A8) for the counterpotential contributions. Such a decomposition
allows us to identify eight gauge-invariant subsets based on the gauge invariance of the one-
electron two-loop diagrams. Here are the subsets with labeling presented in Figure 2 and in
Equation (58): VPVP, V(VP)P, SEVP, V(SE)P, S(VP)E, SESE, VPCP, and SECP. The identified
subsets should be gauge invariant in both redefined and standard vacuum frameworks.
It means that the screened radiative contributions obtained as a difference between the
redefined and the standard vacuum expressions also form the same gauge-invariant subsets.
Explicit proof of this statement has been performed for the two-photon-exchange subsets
in the case of one-valence-electron in Reference [43].
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In what follows, we also rearrange the screened radiative corrections according to its
usual representation by the many-electron diagrams in the ordinary vacuum formalism,
displayed in Figure 3:

∆E(2S)
h = ∆E(2S)SE,ver

h + ∆E(2S)SE,wf
h + ∆E(2S)VP,wf

h + ∆E(2S)VP,int
h + ∆E(2S)CP

h , (59)

where ∆E(2S)SE,ver
h and ∆E(2S)SE,wf

h represent the screened self-energy correction (vertex

and wave-function parts), ∆E(2S)VP,wf
h and ∆E(2S)VP,int

h correspond to the screened vacuum

polarization contribution (wave-function and internal-loop parts), and, finally, ∆E(2S)CP
h is

the counterpotential term. The self-energy vertex part is given by the expression,

∆E(2S)SE,ver
h = − i

2π

∫
dω ∑

a,i,j

[
Ihjih(ω)Iiaja(0)

(εh −ω− εiu)(εh −ω− εju)
+

Iajia(ω)Ihihj(0)
(εa −ω− εiu)(εa −ω− εju)

−
2Iajih(ω)Ihiaj(∆ha)

(εa −ω− εiu)(εh −ω− εju)

]
, (60)

which arises from the fourth sum in Equation (A3), the second one in Equation (A4), and
the third one in Equation (A6). The self-energy wave-function part reads

∆E(2S)SE,wf
h = − i

2π

∫
dω

j 6=h

∑
a,i,j

2Ihiij(ω)
[

Ijaha(0)− Ijaah(∆ha)
]

(εh −ω− εiu)(εh − εj)
− ∑

a,i,h1

Ihiih1(ω)I
′
h1aah(∆ha)

(εh −ω− εiu)

+
j 6=a

∑
a,i,j

2Iaiij(ω)
[

Ihjha(0)− Ihjah(∆ha)
]

(εa −ω− εiu)(εa − εj)
+ ∑

a,i,a1

Iaiia1(ω)I
′
ha1ah(∆ha)

(εa −ω− εiu)

− ∑
a,i,h1

Ihiih1(ω)
[
Ih1aha(0)− Ih1aah(∆ha)

]
(εh −ω− εiu)2

− ∑
a,i,a1

Iaiia1(ω)
[
Iha1ha(0)− Iha1ah(∆ha)

]
(εa −ω− εiu)2

}
, (61)

where the third sum and second term of the fifth sum in Equation (A3), the first and third
sums in Equation (A4), as well as the first, second, fourth, and fifth sums in Equation (A6)
are added together. To keep track of the source of the generated reducible contributions, a
subscript is used with previous notation; for example h1, a1, where εi1 = εi. The vacuum-
polarization wave-function part reads,

∆E(2S)VP,wf
h =

i
2π

∫
dω

{
i 6=h

∑
a,i,j

2[Ihaia(0)− Ihaai(∆ha)]Iijhj(0)
(εh − εi)(ω− εju)

+
i 6=a

∑
a,i,j

2[Ihahi(0)− Ihaih(∆ha)]Iijaj(0)
(εa − εi)(ω− εju)

− ∑
a,h1,j

I
′
haah1

(∆ha)Ih1 jhj(0)

(ω− εju)
+ ∑

a,a1,j

I
′
haa1h(∆ha)Ia1 jaj(0)

(ω− εju)

}
, (62)

which comes from Equation (A1), the first sum in Equation (A2), and the first and second
sums as well as the first term in fifth sum and the sixth sum in Equation (A3). For the
vacuum-polarization internal-loop term we obtain,

∆E(2S)VP,int
h =

i
2π

∫
dω ∑

a,i,j

[
Ihihj(0)Ijaia(0)

(ω− εiu)(ω− εju)
−

Ihjai(∆ha)Iaihj(∆ha)

(ω− εiu)(ω− ∆ha − εju)

]
(63)

by adding the second sum in Equations (A2) and (A5). Finally, the counterpotential term reads,
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∆E(2S)CP
h =

i
2π

∫
dω

{
∑
a,i,j

[
Ihjih(ω)Uij

(εh −ω− εiu)(εh −ω− εju)
−

Ihjhi(0)Uij

(ω− εiu)(ω− εju)

]

+
i 6=h

∑
a,i,j

[
2Uhi Iijjh(ω)

(εh − εi)(εh −ω− εju)
−

2Uhi Iijhj(0)
(εh − εi)(ω− εju)

]
− ∑

a,h1,j

Uhh1 Ih1 jjh(ω)

(εh −ω− εju)2

}
, (64)

found as the sums of Equations (A7) and (A8). The expressions above provide all con-
tributions to the screened self-energy and vacuum polarization. Here, we note that the
screened self-energy formulas perfectly agree with the ones of Reference [45], where they
were obtained by considering the diagrams depicted in Figure 3 directly.

Figure 3. Feynman diagrams representing the screened self-energy and vacuum-polarization correc-
tions to the energy shift. Notations for the diagrams are as follows, SE,ver, SE,wf, VP,wf, and VP,int
(upper raw) and CP (lower raw). Other notations are the same as in Figure 1b.

4.2.2. Two-Photon-Exchange Correction

Now let us proceed with the two-photon-exchange part. Here, we skip the details
of the derivation, since it is rather similar to one presented in Reference [43], and come
straight to the final expression for the total two-photon-exchange correction ∆E(2I)

h ,

∆E(2I)
h = ∆E(2I)SESE,2e

h + ∆E(2I)SESE,3e
h + ∆E(2I)SEVP,3e

h + ∆E(2I)S(VP)E,2e
h + ∆E(2I)S(VP)E,3e

h

+ ∆E(2I)V(SE)P,3e
h + ∆E(2I)VPVP,3e

h + ∆E(2I)V(VP)P,3e
h + ∆E(2I)SECP

h + ∆E(2I)VPCP
h + ∆E(2I)CPCP

h , (65)

which is given by a sum of Equations (A9)–(A26), presented in Appendix B. Each term in
Equation (65) is individually gauge invariant. Generally, this statement is based on the gauge
invariance of the corresponding subsets of one-electron diagrams depicted in Figure 2. More
rigorously it has been proved in our recent paper [43] for the one-valence-electron case.

Similar to the previous consideration of the screened radiative corrections, one can
present the two-photon-exchange contribution according to the many-electron diagrams,
which are displayed in Figure 4.
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Figure 4. Feynman diagrams representing the two-photon-exchange corrections to the energy shift.
Notations for the diagrams are as follows, from left to right: two-electron ladder, two-electron cross,
three-electron, and two counterpotential graphs. Other notations are the same as in Figure 1b.

Consequently, the two-photon-exchange term can be written as follows,

∆E(2I)
h = ∆E(2I)2e,lad

h + ∆E(2I)2e,cr
h + ∆E(2I)3e

h + ∆E(2I)CP
h . (66)

The two-electron ladder contribution is conveniently split into irreducible and reducible parts:

∆E(2I)2e,lad,irr
h = − i

2π

∫
dω

(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)
[

Iijha(ω)− Iijah(∆ha −ω)
]

(εh −ω− εiu)(εa + ω− εju)
(67)

and

∆E(2I)2e,lad,red
h = − i

2π

∫ dω

(ω + iε)2 ∑
a,a1,h1

[
Ihah1a1(ω)Ih1a1ah(∆ha + ω) + Ihaa1h1(∆ha −ω)Ia1h1ah(ω)

− Ihaa1h1(∆ha −ω)Ia1h1ha(∆ha −ω)/2− Ihaa1h1(∆ha + ω)Ia1h1ha(∆ha + ω)/2
]

, (68)

where the irreducible part comes from the second sum in Equations (A9) and (A15), while
the reducible part is originating from the first sum in Equations (A10) and (A16). The
irreducible and reducible parts of the two-electron cross contribution read,

∆E(2I)2e,cr,irr
h = − i

2π

∫
dω

′
∑
a,i,j

{
Ihjia(ω)Iiahj(ω)

(εh −ω− εiu)(εa −ω− εju)
−

Ihjih(ω)Iiaaj(∆ha −ω)

(εh −ω− εiu)(εh −ω− εju)

}
(69)

and

∆E(2I)2e,cr,red
h =

i
2π

∫ dω

(ω + iε)2

{
∑

a,a1,a2

Iha2a1h(∆ha −ω)Ia1aaa2(ω)

+ ∑
a,h1,h2

Ihh2h1h(ω)Ih1aah2(ω + ∆ha)

}
, (70)

which comes from the first sum in Equations (A9) and (A15) (irreducible), and from
the second and third sums in (A10) (reducible). The prime on the sum in Equation (69)
indicates the omission of particular terms, namely, i = h & j = a for the first term in
the curly brackets and (i, j) = {(a, a), (h, h)} for the second one. For the three-electron
irreducible contributions, one ends up with the expression,
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∆E(2I)3e,irr
h = −

i 6=a

∑
a,b,i

2[Iibab(0)− Iibba(∆ab)][Ihahi(0)− Ihaih(∆ha)]

εa − εi

−
i 6=h

∑
a,b,i

[Ihaai(∆ha)− Ihaia(0)][Iibbh(∆hb)− Iibhb(0)]
εh − εi

− ∑
a,b,i

[Iabih(∆hb)− Iabhi(∆ha)]Ihiab(∆ha)

εa + εb − εh − εi

−
(i,b) 6=(h,a)

∑
a,b,i

[Ihabi(∆hb)− Ihaib(∆ba)][Ibiah(∆ba)− Ibiha(∆hb)]

εh + εa − εb − εi
, (71)

by summing up Equations (A11), (A13), (A17), (A19), (A21), and (A22). The three-electron
reducible contribution is found by adding Equations (A12), (A14), (A18), and (A20) into,

∆E(2I)3e,red
h = − ∑

a,b,a1

{
I′ha1ah(∆ha)

[
Iaba1b(0)− Iabba1(∆ab)

]
+ I′abba1

(∆ab)
[
Iha1ah(∆ha)− Iha1ha(0)

]}
− ∑

a,b,h1

I′haah1
(∆ha)

[
Ih1bbh(∆hb)− Ih1bhb(0)

]
− ∑

a,a1,h1

I′haa1h1
(∆ha)

[
Ia1h1ah(0)− Ia1h1ha(∆ha)

]
. (72)

Finally, the expression for the counterpotential term yields

∆E(2I)CP
h = −

i 6=h

∑
a,i

2Uhi[Iiaah(∆ha)− Iiaha(0)]
εh − εi

−
i 6=a

∑
a,i

2Uai[Ihiah(∆ha)− Ihiha(0)]
εa − εi

−
i 6=h

∑
i

UhiUih
εh − εi

+ ∑
a,a1

I′haa1h(∆ha)Ua1a − ∑
a,h1

I′haah1
(∆ha)Uh1h , (73)

as a sum of Equations (A23)–(A26).
The expressions above are derived for the first time and require a critical view. There-

fore, in Appendix C, we apply the Breit approximation to our results and compare the
outcome with the RMBPT expressions of Reference [40]. A complete agreement is found.
Moreover, in Reference [40] it was demonstrated within the RMBPT framework that the
expressions for a single-hole state turn into corresponding formulas for the valence electron
with the replacement of h to v and multiplying on an overall minus sign. Here, we manifest
that such a symmetry also holds within the QED framework.

5. Discussion and Conclusions

In recent years, the accuracy of large-scale correlation calculations of transition ener-
gies in many-electron atoms and ions drastically improved [2,44,53–56]. Various highly
efficient computer codes have been developed for this purpose [57–62]. In view of this
rapid progress, it becomes increasingly important to include the QED effects in these
calculations as well. At present, such an account is mainly based on the approximate
treatment via QED model potentials [63,64]. Even though effective methods provide access
to higher-order contributions, it is usually not clear how one can estimate the accuracy of
the results. In contrast, ab initio calculations are more accurate up to the corresponding
order and allow a good control over uncertainties. However, ab initio QED calculations for
many-electron atoms are a rather difficult problem. The first step towards these challenging
calculations is to develop the framework that simplifies the derivation of the bound-state
QED formulas. In the present paper, we have presented an efficient method, based on the
vacuum redefinition and the two-time Green’s function approach, to derive calculation
expressions within the rigorous QED framework. A redefined vacuum state allows one to
drastically reduce the complexity of the many-electron ab initio QED formulation keeping
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only valence electrons or vacancies under consideration. Contributions to the binding
energy are expressed in terms of Green’s function matrix elements with active particles
(electrons or holes) only. The interaction of these active particles with the core electrons
is included via the consideration of the radiative corrections, self-energy, and vacuum
polarization. It has been explicitly demonstrated for the case of one active particle. We
have shown that the method based on vacuum redefinition in QED is a well-suited tool to
tackle atoms with a complicated electronic structure.

As an example, the method is applied to atoms with a single-hole electronic configura-
tion, which occurs in halogen atoms such as fluorine, chlorine, etc. The particular interest
in this system is twofold. First, in References [44–46] it was demonstrated that highly
accurate theoretical predictions are possible in such atoms, and thus accurate tests of the
QED effects become feasible. The reason for this is a drastic reduction of the correlations
due to Layzer quenching effects [65]. Second, recent measurements of the fine-structure
splitting in fluorine-like systems [47,48] emphasize the necessity of improvement in the-
oretical predictions for such systems. The accuracy of experimental results is at least of
the same order as that of the theoretical predictions, while for some ions it is an order of
magnitude better. Furthermore, an improvement in the experimental precision is foreseen
in the near future [47]. Here, we have derived the formulas for the QED contributions
up to the second order in α for the single-hole configuration. The screened radiative and
two-photon-exchange corrections have been carefully extracted from the rigorous formulas
obtained within the redefined vacuum formalism. An important advantage of the em-
ployed formalism consists in the identification of gauge-invariant subsets, which is based
on the corresponding subsets of one-electron diagrams. This feature can be very useful in
future derivations of the higher-order contributions since it provides a robust verification.
Finally, we have checked the results by the comparison of the Breit approximation applied
to the derived expression with the previously obtained RMBPT expressions.
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Appendix A. Gauge-Invariant Subsets of the Screened Radiative Diagrams

The eight different gauge invariant subsets for the screened radiative corrections
previously introduced in the main text, see Equation (58), are presented here. Let us start
with the two terms, which originate from the one-electron diagrams with VP loop only:
VPVP and V(VP)P,

∆E(2S)VPVP
h =

i
2π

∫
dω

i 6=h

∑
a,i,j

2Ihaia(0)Iijhj(0)
(εh − εi)(ω− εju)

(A1)

and

∆E(2S)V(VP)P
h =

i
2π

∫
dω

[
i 6=a

∑
a,i,j

2Ihahi(0)Iijaj(0)
(εa − εi)(ω− εju)

+ ∑
a,i,j

Ihihj(0)Ijaia(0)
(ω− εiu)(ω− εju)

]
, (A2)
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respectively. The next three subsets displayed come from the diagrams with both SE and VP
loops. We begin with the SEVP term, where the disconnected SEVP contribution (second
term in Equation (35)) is included,

∆E(2S)SEVP
h = − i

2π

∫
dω

{
i 6=h

∑
a,i,j

2Ihaai(∆ha)Iijhj(0)
(εh − εi)(ω− εju)

+
i 6=a

∑
a,i,j

2Ihaih(∆ha)Iijaj(0)
(εa − εi)(ω− εju)

+
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaha(0)
(εh −ω− εiu)(εh − εj)

+ ∑
a,i,j

Ihjih(ω)Iiaja(0)
(εh −ω− εiu)(εh −ω− εju)

+ ∑
a,i,h1

[
I
′
haah1

(∆ha)Ih1ihi(0)

(ω− εiu)
−

Ihiih1(ω)Ih1aha(0)
(εh −ω− εiu)2

]
− ∑

a,i,a1

I
′
haa1h(∆ha)Ia1iai(0)

(ω− εiu)

}
. (A3)

The second subset that falls into this category is the V(SE)P one,

∆E(2S)V(SE)P
h = − i

2π

∫
dω

[
j 6=a

∑
a,i,j

2Iaiij(ω)Ihjha(0)
(εa −ω− εiu)(εa − εj)

+ ∑
a,i,j

Iajia(ω)Ihihj(0)
(εa −ω− εiu)(εa −ω− εju)

− ∑
a,i,a1

Iaiia1(ω)Iha1ha(0)
(εa −ω− εiu)2

]
, (A4)

and finally the S(VP)E term yields

∆E(2S)S(VP)E
h = − i

2π

∫
dω ∑

a,i,j

Ihjai(∆ha)Iaihj(∆ha)

(ω− εiu)(ω− ∆ha − εju)
. (A5)

Finally, the SESE subset comes from the diagrams with only self-energy loops. It
includes also the SESE disconnected contribution (second term in Equation (35)), and leads
to the following expression,

∆E(2S)SESE
h =

i
2π

∫
dω

{
j 6=h

∑
a,i,j

2Ihiij(ω)Ijaah(∆ha)

(εh −ω− εiu)(εh − εj)
+

j 6=a

∑
a,i,j

2Iaiij(ω)Ihjah(∆ha)

(εa −ω− εiu)(εa − εj)

+ ∑
a,i,j

2Iajih(ω)Ihiaj(∆ha)

(εa −ω− εiu)(εh −ω− εju)
+ ∑

a,i,h1

[
Ihiih1(ω)I

′
h1aah(∆ha)

(εh −ω− εiu)

−
Ihiih1(ω)Ih1aah(∆ha)

(εh −ω− εiu)2

]
− ∑

i,a,a1

[
Iaiia1(ω)I

′
ha1ah(∆ha)

(εa −ω− εiu)
+

Iha1ah(∆ha)Iaiia1(ω)

(εa −ω− εiu)2

]}
. (A6)

Furthermore, in the extended Furry picture, two counterpotential subsets emerge. The
first one, VPCP, is associated with a vacuum-polarization loop,

∆E(2S)VPCP
h = − i

2π

∫
dω

[
∑
a,i,j

Ihjhi(0)Uij

(ω− εiu)(ω− εju)
+

i 6=h

∑
a,i,j

2Uhi Iijhj(0)
(εh − εi)(ω− εju)

]
, (A7)

while the second, SECP, arises from the diagram with a self-energy loop and the discon-
nected SECP part (second term in Equation (35)),

∆E(2S)SECP
h =

i
2π

∫
dω

[
∑
a,i,j

Ihjih(ω)Uij

(εh −ω− εiu)(εh −ω− εju)
+

i 6=h

∑
a,i,j

2Uhi Iijjh(ω)

(εh − εi)(εh −ω− εju)

− ∑
a,i,h1

Uhh1 Ih1iih(ω)

(εh −ω− εiu)2

]
. (A8)
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Appendix B. Gauge-Invariant Subsets of the Two-Photon-Exchange Diagrams

The eleven different gauge invariant subsets of the two-photon-exchange contributions
previously introduced in the main text (see Equation (65)) are presented here. Let us start
with the two subsets originating from the diagrams with self-energy loops only. We present
the two- and three-electron contributions separately. The two-electron irreducible and
reducible SESE terms are

∆E(2I)SESE,2e,irr
h =

i
2π

∫
dω

[
′

∑
a,i,j

Ihjih(ω)Iiaaj(∆ha −ω)

(εh −ω− εiu)(εh −ω− εju)

+
(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)Iijah(∆ha −ω)

(εh −ω− εiu)(εa + ω− εju)

]
(A9)

and

∆E(2I)SESE,2e,red
h = − i

2π

∫ dω

(ω + iε)2

{
∑

a,a1,h1

[
Ihah1a1(ω)Ih1a1ah(∆ha + ω)

+ Ihaa1h1(∆ha −ω)Ia1h1ah(ω)
]
− ∑

a,h1,h2

Ihh2h1h(ω)Ih1aah2(∆ha + ω)

− ∑
a,a1,a2

Iha2a1h(∆ha −ω)Ia1aaa2(ω)

}
, (A10)

where the prime on the sum means that the terms (i, j) = {(a, a), (h, h)} are excluded from
the summation. The three-electron SESE subset consists of the irreducible part,

∆E(2I)SESE,3e,irr
h = −

i 6=b

∑
a,b,i

2Ihbih(∆hb)Iiaab(∆ab)

εb − εi
−

i 6=h

∑
a,b,i

Ihaai(∆ha)Iibbh(∆hb)

εh − εi

−
(i,b) 6=(h,a)

∑
a,b,i

2Ihabi(∆hb)Ibiah(∆ba)

εh + εa − εb − εi
− ∑

a,b,i

Ihiab(∆ha)Iabih(∆hb)

εa + εb − εh − εi
, (A11)

and the reducible part,

∆E(2I)SESE,3e,red
h = − ∑

a,b,a1

[
Iha1ah(∆ha)I′abba1

(∆ab)− I′ha1ah(∆ha)Iabba1(∆ab)
]

− ∑
a,b,h1

I′haah1
(∆ha)Ih1bbh(∆hb)− ∑

a,a1,h1

I′haa1h1
(∆ha)Ia1h1ah(0) . (A12)

Now we focus on the four subsets with mixed SE and VP loops. The SEVP subset has
only three-electron contribution, the irreducible part of which is given by

∆E(2I)SEVP,3e,irr
h =

i 6=h

∑
a,b,i

2Ihaai(∆ha)Iibhb(0)
εh − εi

+
i 6=a

∑
a,b,i

2Ihaih(∆ha)Iibab(0)
εa − εi

. (A13)

The corresponding reducible part merged with the disconnected SEVP contribution yields,

∆E(2I)SEVP,3e,red
h = ∑

a,b,h1

I′haah1
(∆ha)Ih1bhb(0)− ∑

a,b,a1

I′ha1ah(∆ha)Iaba1b(0) . (A14)
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The next two subsets are S(VP)E and V(SE)P. The two-electron S(VP)E contributions
are

∆E(2I)S(VP)E,2e,irr
h = − i

2π

∫
dω

[
′

∑
a,i,j

Ihjia(ω)Iiahj(ω)

(εh −ω− εiu)(εa −ω− εju)

+
(i,j) 6=(a,h)

∑
a,i,j

Ihaij(ω)Iijha(ω)

(εh −ω− εiu)(εa + ω− εju)

]
(A15)

and

∆E(2I)S(VP)E,2e,red
h =

i
4π

∫
dω ∑

a,a1,h1

Ihaa1h1(∆ha −ω)Ia1h1ha(∆ha −ω)

[
1

(ω + iε)2 +
1

(ω− iε)2

]
, (A16)

where the prime on the sum means that the term i = h & j = a is excluded from the
summation. The irreducible contribution of the three-electron S(VP)E subset yields

∆E(2I)S(VP)E,3e,irr
h =

(i,b) 6=(h,a)

∑
a,b,i

Ihabi(∆hb)Ibiha(∆hb) + Ihaib(∆ba)Iibha(∆ba)

εh + εa − εb − εi
+ ∑

a,b,i

Ihiba(∆hb)Ibahi(∆hb)

εa + εb − εh − εi
(A17)

and the reducible one reads

∆E(2I)S(VP)E,3e,red
h = ∑

a,a1,h1

Ihaa1h1(∆ha)I′a1h1ha(∆ha) . (A18)

The last subset in this category is V(SE)P, which comprises only the three-electron
contributions: irreducible,

∆E(2I)V(SE)P,3e,irr
h =

i 6=b

∑
a,b,i

2Ihbhi(0)Iaiba(∆ba)

εb − εi
, (A19)

and reducible,
∆E(2I)V(SE)P,3e,red

h = ∑
a,b,a1

Ihaha1(0)I′ba1ab(∆ab) . (A20)

Finally, the two subsets originating from the diagrams with vacuum-polarization
loops only are the VPVP subset,

∆E(2I)VPVP,3e
h = −

i 6=h

∑
a,b,i

Ihaia(0)Iibhb(0)
εh − εi

, (A21)

and the V(VP)P subset,

∆E(2I)V(VP)P,3e
h = −

i 6=a

∑
a,b,i

2Ihahi(0)Iibab(0)
εa − εi

. (A22)

Both of them have only three-electron parts.
Within the extended Furry picture, three extra counterpotential subsets emerge. The

first one, SECP, is related to the self-energy loop, the irreducible contribution of which is

∆E(2I)SECP,irr
h = −

i 6=h

∑
a,i

2Uhi Iiaah(∆ha)

εh − εi
−

i 6=a

∑
a,i

2Ihaih(∆ha)Uia
εa − εi

. (A23)
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The corresponding reducible part encapsulating the disconnected SECP contribution
can be written as

∆E(2I)SECP,red
h = −∑

a,h1

I′haah1
(∆ha)Uh1h + ∑

a,a1

I′haa1h(∆ha)Ua1a . (A24)

The second one, VPCP, is expressed by

∆E(2I)VPCP
h =

i 6=h

∑
a,i

2Ihaia(0)Uih
εh − εi

+
i 6=a

∑
a,i

2Ihahi(0)Uia
εa − εi

. (A25)

Finally, the last subset, CPCP, reads

∆E(2I)CPCP
h = −

i 6=h

∑
i

UhiUih
εh − εi

. (A26)

Appendix C. Two-Photon Exchange: Comparison between QED and RMBPT

To achieve the sought matching between QED and RMBPT, we apply the Breit approx-
imation to the expressions presented in Section 4.2.2. To this end, let us first introduce the
interelectronic-interaction operator in the Breit approximation:

IB = IC(0) , (A27)

where “C” means the Coulomb gauge. Since IB is ω-independent, the reducible contri-
butions, which contain derivatives of I, vanish within this approximation. The second
implication of the Breit approximation is to consider only the positive-energy states in
summations, i.e.,

∑
i
= ∑

m
+∑

a
, (A28)

where now i (and later j) means only positive-energy state, m (and later n) is an excited state,
εm > EF

α > 0, and a (and b) denotes one of the core states, 0 < εa < EF
α . We first apply the

Breit approximation to the three-electron contributions given by Equations (71) and (72) and
to the counterpotential term, Equation (73), which are transformed as follows,

∆E(2I)3e,B
h = − ∑

a,b,m

2
[
IB
mbab − IB

mbba
][

IB
hahm − IB

hamh
]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia
][

IB
ibbh − IB

ibhb
]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm
]
IB
hmab

εa + εb − εh − εm
− ∑

a,b,m

[
IB
habm − IB

hamb
][

IB
bmah − IB

bmha
]

εh + εa − εb − εm
(A29)

and

∆E(2I)CP,B
h = −

i 6=h

∑
a,i

2Uhi
[
IB
iaah − IB

iaha
]

εh − εi
−∑

a,m

2Uam
[
IB
hmah − IB

hmha
]

εa − εm
−

i 6=h

∑
i

UhiUih
εh − εi

. (A30)

The summations were rewritten using Equation (A28). Notice that the core electrons
contributions vanish altogether upon relabeling the indices and applying the symmetry
properties (47). Furthermore, sums involving εh in the denominators are kept intact since
the hole energy lies in the positive-energy spectrum, and the replacement also allows one
to remove the restrictions in all the other sums.

It is left to evaluate the two-electron contributions. Recall that the integration path
closes in the upper half of the complex plane to consider only positive intermediate energy
states and that no reducible contributions are present. Let us divide the expressions in
Equations (67) and (69) into direct and exchange parts, namely, the first term in each is
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the direct contribution and the second is the exchange one. We start by showing that
both cross contributions vanish due to their pole structure. The cross-exchange poles are
ω = εh − εi,j + iε and the cross-direct poles are ω = εh − εi + iε and ω = εa − εj + iε, for
εi, εj > EF

α . It leads to the corresponding residue integration

∆E(2I)cr,B
h =

i
2π

∫
dω ∑

a,i,j

{
IB
hjih IB

iaaj

(εh −ω− εiu)(εh −ω− εju)
−

IB
hjia IB

iahj

(εh −ω− εiu)(εa −ω− εju)

}
= 0 . (A31)

Next, we inspect the ladder poles, which are found to be in ω = εh − εi + iε and ω =
εj − εa − iε, same for both direct and exchange parts. Performing the Cauchy integration,
one finds

∆E(2I)lad,B
h =

i
2π

∫
dω

(i,j) 6=(a,h)

∑
a,i,j

{
IB
haij I

B
ijah − IB

haij I
B
ijha

(εh −ω− εiu)(εa + ω− εju)

}

=
(i,j) 6=(a,h)

∑
a,i,j

IB
haij I

B
ijah − IB

haij I
B
ijha

εh + εa − εi − εj

= ∑
a,m,n

IB
hamn(IB

mnah − IB
mnha)

εh + εa − εm − εn
− ∑

a,b,m

(IB
hamb − IB

habm)(IB
mbha − IB

mbah)

εh + εa − εb − εm
, (A32)

where the first term in the last line is the one we are looking for, while the second one
compensates the fourth sum in Equation (A29). Thus, the final expression for the two-
photon exchange within the Breit approximation yields

∆E(2I)B
h = − ∑

a,b,m

2
[
IB
mbab − IB

mbba
][

IB
hahm − IB

hamh
]

εa − εm
−

i 6=h

∑
a,b,i

[
IB
haai − IB

haia
][

IB
ibbh − IB

ibhb
]

εh − εi

− ∑
a,b,m

[
IB
abmh − IB

abhm
]
IB
hmab

εa + εb − εh − εm
− ∑

a,m,n

IB
hamn(IB

mnha − IB
mnah)

εh + εa − εm − εn

−
i 6=h

∑
a,i

2Uhi
[
IB
iaah − IB

iaha
]

εh − εi
−∑

a,m

2Uam
[
IB
hmah − IB

hmha
]

εa − εm
−

i 6=h

∑
i

UhiUih
εh − εi

, (A33)

which is in full agreement with the RMBPT result of Reference [40].
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