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Abstract: This paper considers the Schrödinger–Newton (SN) equation with a Yukawa potential,
introducing the effect of locality. We also include the interaction of the self-gravitating quantum
matter with a radiation background, describing the effects due to the environment. Matter and
radiation are coupled by photon scattering processes and radiation pressure. We apply this extended
SN model to the study of Jeans instability and gravitational collapse. We show that the instability
thresholds and growth rates are modified by the presence of an environment. The Yukawa scale
length is more relevant for large-scale density perturbations, while the quantum effects become
more relevant at small scales. Furthermore, coupling with the radiation environment modifies the
character of the instability and leads to the appearance of two distinct instability regimes: one, where
both matter and radiation collapse together, and others where regions of larger radiation intensity
coincide with regions of lower matter density. This could explain the formation of radiation bubbles
and voids of matter. The present work extends the SN model in new directions and could be relevant
to astrophysical and cosmological phenomena, as well as to laboratory experiments simulating
quantum gravity.

Keywords: quantum matter; gravitation; Yukawa potential; radiation background; Jeans instability;
photon bubbles

1. Introduction

The Schrödinger–Newton (SN) equation, sometimes also called Schrödinger–Poisson,
was promoted by [1,2] and explored by many researchers [3–9] as a simple model to
introduce quantum effects in gravitational problems. It is a nonlinear version of the
Schrödinger equation, where nonlinearity is associated with a Newtonian potential, as
determined by Poisson’s equation. The SN equation therefore describes quantum self-
gravitating matter and contains elements of two apparently irreducible theories, quantum
mechanics and gravitation. The same equation also applies to a variety of different systems,
such as atomic gases in interaction with laser beams [10–12] and quantum plasmas [13–15].
A bridge with Bose–Einstein condensates can also be established [16,17]. These similarities
open the way for studies of laboratory analogues of gravity [18–20].

The main interest of the SN equation is that it introduces a kind of wavefunction
collapse, due to gravity, which is independent of any measurement process. This could
have possible implications to the interpretation of quantum mechanics [21], a problem
that we avoid here. However, it does not solve the main contradictions between quantum
mechanics and gravitation, namely the problem of non-locality. It is true that a gravi-
tational collapse reveals some appearance of locality, but the SN equation ignores the
limits imposed by the speed of light, because the Newton potential acts instantaneously at
infinite distances. Therefore, the SN equation is completely non-local. Even if it is able to
describe a spontaneous reduction of the wavefunction, due to gravitational collapse, it still
ignores locality.

Here, we extend the SN model in two different directions. First, we incorporat non-
standard gravity, replacing the usual Newton potential by a Yukawa potential. Such
potentials naturally occur in plasma theory and have also been explored in gravitational
models [22–25]. They introduce a characteristic scale length to the gravitational interactions,
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therefore reducing the potential interactions to finite distances. Gravitational field sources
have been introduced into the SN equation [26], which has some resemblance to our present
Yukawa model.

Second, we include a background medium, coupled with the self-gravitating matter.
For this purpose, the SN equation is completed with a radiation transport equation de-
scribing the background. Our inspiration for introducing a background was the universal
presence of the cosmic background radiation and its possible effect on the gravitational
collapse. However, our model could equally describe a background of weakly coupled
dark matter. Another, less obvious, but also possible, background could be due to quantum
gravitational fluctuations, such as that of the Brownian particle model proposed to test
quantum gravity [27–29]. In the present work, the SN equation includes an external poten-
tial depending on the radiation intensity, and the radiation transport equation contains a
diffusion coefficient due to photon scattering, therefore coupling matter with radiation.

As shown here, coupling with a background changes the conditions for gravitational
collapse, by modifying the Jeans criterion. It also leads to the occurrence of a new type of
instability, associated with the possible formation of voids. A classical description of such
instabilities is possible and can be found in a recent paper concerning photon transport in
astrophysical dust clouds [30,31]. Apart from the use of a Yukawa potential, the present
work can be seen as the quantum version of this previous classical model. Quantum effects
modify the gravitational collapse, by introducing changes to the instability criterion, leading
to collapse. The quantum corrections are mainly visible on small length scales, while the
Yukawa potential introduces changes on large scales, as expected. More interestingly, new
types of instability can occur, which look different and in a certain sense opposite collapse,
and lead to the formation of photon bubbles and voids of matter. This can be relevant
to understand the structure of dust nebula and on a much larger scale of cosmological
voids. In this case, the photon bubbles considered here should eventually be replaced by
bubbles of dark matter [32,33]. Photon bubbles have been proposed in astrophysics and
advocated in various areas as an important process of radiation transport, from massive
stars to binary pulsars and accretion disks [34–36]. More recently, a possible observation in
the laboratory was proposed, using laser-cooled atomic gases [37], which seems now to be
confirmed by experiments [38]. The present work could therefore inspire future laboratory
experiments, exploring possible analogues of weak quantum gravity [39].

In this paper, we use the wave-kinetic formulation of the SN equation. This formula-
tion is particularly useful to study unstable regimes. The wave-kinetic equation describes
the evolution of a Wigner function and is derived from the SN equation using the standard
Moyal procedure [40–43]. This procedure was introduced to transform the Schrödinger
equation into a Liouville-type equation and is able to describe the quantum state of a
system in classical phase-space. We recently showed that this approach can be used to
bridge many different physical phenomena, including laser-cooled atoms, Bose–Einstein
condensates, turbulent quasi-particles, and quantum plasmas [17]. It is also well adapted to
bridge classical, relativistic, and quantum physics. Our present version of the wave-kinetic
equation includes an external potential associated with the background radiation.

The structure of this paper is as follows. In Section 2, we establish the SN equation
and derive the corresponding wave-kinetic equation. This includes the replacement of the
Newtonian by the Yukawa potential, with a characteristic length scale. Section 3 is devoted
to the gravitational collapse of a self-gravitating gas of identical particles, ignoring the in-
fluence of the background. Section 4 introduces the background radiation and the coupling
between a more general wave-kinetic equation and the radiation transport equation. In
Section 5, we consider the modified Jeans instability describing the gravitational collapse
in the presence of radiation. This includes quantum effects, as well as thermal effects
and radiation pressure. In Section 6, we deal with the new instability regimes, leading
to the formation of matter voids and photon bubbles in a quantum gas, and discuss the
symmetric role played by gravity and radiation pressure. This discussion leads to the
formulation of a more global concept, that of a quantum Jeans-bubble instability, which
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includes both collapse and bubbles, as equally important phenomena. Finally, in Section 7,
we state some conclusions.

2. Extended SN Equation

The basic SN equation results from the inclusion of a gravitational potential on the
Schrödinger equation. We assume that the system of a large number of identical self-
gravitating particles with mass M creates a gravitational potential VG and, under certain
conditions, can be described by a single wavefunction, valid in the mean-field approxima-
tion [7]. We then have:

ih̄
∂ψ

∂t
=

[
− h̄2

2M
∇2 + V0 + MVG

]
ψ , (1)

where V0 is an external potential to be specified. If VG is a Newtonian potential, it can be
determined by Poisson’s equation:

∇2VG = 4πMG|ψ|2 , (2)

where G is the gravitational constant. These two equations are equivalent to the integro-
differential equation:

ih̄
∂ψ

∂t
=

[
− h̄2

2M
∇2 + V0 + g

∫
U(r− r′)|ψ(r′, t)|2dr′

]
ψ . (3)

The coupling parameter g and the interaction potential function U are defined as:

g = −M2G , U(r− r′) =
1

|r− r′| . (4)

This form of the SN equation is interesting because it stays valid for a number of
other physical systems, which helps in the discussion of possible laboratory simulations
of gravitational processes, as shown in [17]. Our formulation is valid for a flat space-time
described by the Minkowski metric tensor ηαβ = diag.(1,−1,−1,−1). Let us consider a
Friedman–Robertson–Walker (FRW) metric defined by the elementary interval:

ds2 = gαβdxαdxβ = dt2 − a2(t)dr2 , (5)

where the function a(t) scales the flat metric dr2 = dx2 + dy2 + dz2 at different times.
Introducing the conformal time τ, we obtain:

ds2 = a2(τ)(dτ2 − dr2) , τ =
∫ t dt

a(t)
. (6)

This is a flat space-time, where the metric tensor is now defined by:

gαβ = a2(t)ηαβ =
1

a2(t)
ηαβ . (7)

In this conformal space-time, the above Poisson’s equation can be conveniently re-
placed by a post-Newtonian equation of the type:

∇2VG = 4πMG|ψ|2 + ΛVG . (8)

The parameter Λ can be associated with curvature, using [44]:

Λ =
1

a2c2 (2H′ + H2) , H′ =
a′

a
≡ 1

a
da
dτ

, (9)
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where H is the Hubble constant. A term containing the time derivative of the wavefunction
ψ is sometimes added to Equation (8) [45]. For simplicity, this was ignored, but could be
included in the present model, at the cost of a more complicated formalism. For the same
reason, we assume that Λ is a positive constant, therefore reducing the potential VG to a
pure Yukawa potential. This kind of potential has also been used to promote alternative
theories of gravitation. Lower limits on the value of Λ can be found from astronomical
observations [46]. If we replace the Newtonian potential of Equation (2) with the Yukawa
potential of Equation (8), the SN Equation (3) stays valid, but with Equation (4) replaced by:

g = −M2G , U(r− r′) =
1

|r− r′| exp
[
−(r− r′)Λ1/2

]
. (10)

Let us now consider the wave-kinetic version of the SN equation. For that purpose,
we define the Wigner function associated with the wavefunction ψ as:

W(r, q, t) =
∫

ψ∗(r− s/2, t)ψ(r + s/2, t) exp(iq · s)ds . (11)

This quantity is just the spatial Fourier transform of the wavefunction auto-correlation
and is sometimes called a quasi-probability, because it can take negative values, but
tends to the usual probability in the classical limit. Following the well-known Moyal
procedure [41,42], we can transform the SN equation (3) into an evolution equation of the
Wigner function W, of the form [17]:

ih̄
(

∂

∂t
+ vq · ∇

)
W = g

∫
U(k)n(k, t)∆Weik·r dk

(2π)3 , (12)

where vq = h̄q/M represents the particle velocity field and q is the particle linear mo-
mentum. The quantity n(k, t) is the spatial Fourier transform of the probability density,
defined as:

n(r, t) = |ψ(r, t)|2 =
∫

W(r, q, t)
dq

(2π)3 . (13)

To simplify the formalism, we also introduced the auxiliary quantity:

∆W =
[
W− −W+

]
, W± = W(r, q± k/2, t) , (14)

and defined the function:
U(k) =

4π

k2 + Λ
. (15)

This clearly shows that the quantity 1/Λ1/2 sets a scale, the Yukawa length scale, which
determines the range of locality for the quantum gravitational interaction. When it goes to
infinity, Λ→ 0, the locality vanishes, and it is reduced to the usual Newtonian potential.

3. Gravitational Collapse

In order to understand how the above wave-kinetic formulation of the SN equation is
able to describe a gravitational collapse, which can be identified with some kind of wave-
function collapse, we consider elementary perturbations of the Wigner quasi-probability,
defined as W̃k = W −W0, where W0 is the equilibrium state, evolving with wavevector k
and frequency ω, as W̃k ∝ exp(ik · r− iωt). Linearizing Equation (12) with respect to the
perturbed quantities W̃k and ñk, we obtain:

W̃k = gU(k)
∆W0

h̄(ω− k · vq)
ñk . (16)

Integrating this expression over the entire particle momentum spectrum q and using
the definition of the particle density in Equation (13), we arrive at the dispersion relation:
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1 + χG(ω, k) = 0 , (17)

with the gravitational susceptibility defined as:

χG(ω, k) = −gU(k)
∫ ∆W0

h̄(ω− k · vq)

dq
(2π)3 . (18)

In order to understand the meaning of this result, we consider the simplest case
of a cold gas of self-gravitating particles. This can be described by the distribution
W0(q = (2π)3n0δ(q− q0), where n0 is the equilibrium density of the gas. In the gas
rest frame, we can take its equilibrium momentum equal to zero, q0 = 0. Solving the above
integral, we obtain from Equation (17) an explicit dispersion relation, of the form:

ω2 = −ω2
J

k2

(k2 + Λ)
+

(
h̄k2

2M

)2

. (19)

Here, we introduced the well-known Jeans frequency ωJ, defined by ω2
J = 4πGMn0. In

the limit of a Newtonian potential, Λ→ 0, we recover the previously known quantum Jeans
dispersion [17,47]. This is just an extension to the Yukawa potential. Other, more relevant
extensions are discussed later. For the moment, we just need to state the Jeans instability
criterion for a quantum gas in a gravitating Yukawa potential. From Equation (19), we can
see that purely growing modes with ω2 ≤ 0, corresponding to a gravitational collapse, will
occur if the gas density exceeds some critical value, as determined by the condition:

n0 ≥
h̄2k4

16πM3G

(
1 +

Λ
k2

)
. (20)

This instability criterion indicates that the gravitational collapse depends on the length
scale of the perturbation. For a cloud of size L, the critical density for collapse varies with
L−2. However, if the locality range is much smaller than this length and Λ � 1/L, this
critical density will only depend on Λ. In the cold matter approximation used here, the
threshold is a purely quantum effect. Thermal effects and radiation however give additional
contributions, as shown later.

4. Diffusive Radiation

Let us now introduce the contributions from a radiation background, characterized
by a given radiation intensity I ≡ I(r, t). In this case, we can use the potential V0 in
Equation (1) to describe the interaction of quantum matter with radiation. For this purpose,
we follow the approach used to describe collective radiation forces in atomic clouds [10–12]
and introduce an additional Poisson’s equation, of the form:

∇2V0 = −αI(r, t)|ψ(r, t)|2 . (21)

Here, the quantity α is assumed as a generic parameter, which can be determined
explicitly by the scattering cross-section associated with the interaction between gravita-
tional matter and radiation (see [30,37]). Assuming that radiation is not associated with
any well-defined beam, but is diffusive and nearly isotropic, the evolution of the radiation
intensity I can be described by a diffusion equation of the form [48,49]:

∂I
∂t
−∇ · D∇I = −γI + S , (22)

where D is the diffusion coefficient, γ the photon absorption rate, and S the source term.
In equilibrium, the intensity I0 is such that the source compensates for the losses, and
I0 = S/γ. It is known that the diffusion coefficient depends on the local density of
scattering matter particles and is inversely proportional to some power of the density, as
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D ∝ |ψ|−2s = n−s, where s is an appropriate exponent. As a reference value, we can take
s = 2. If we include the new potential V0, satisfying Equation (21), in the SN Equation (3)
and retain the Yukawa potential, we obtain:

ih̄
∂ψ

∂t
=

[
− h̄2

2M
∇2 + ∑

j=0,1
gj

∫
Uj(r− r′)|ψ(r′, t)|2dr′

]
ψ , (23)

where now we have two coupling coefficients:

g0 =
αI
4π

, g1 = −M2G , (24)

with the corresponding potential functions:

U0(r− r′) =
1

|r− r′| , U1(r− r′) =
1

|r− r′| exp
[
−(r− r′)Λ1/2

]
. (25)

Notice that the coupling constant g0 ≡ g0(I) depends on the radiation intensity, and
the potential function U0 now describes the photon scattering process, while g1 and U1
are related to the gravitational interaction. Repeating the Moyal procedure and using the
above definitions, we can then arrive at a more general wave-kinetic equation, of the form:

ih̄
(

∂

∂t
+ vq · ∇

)
W = ∑

j=0,1

∫
Uj(k)Fj(k, t)∆W eik·r dk

(2π)3 , (26)

The new quantities Fj(k, t) are given by:

F0(k, t) =
α

4π

∫
I(r, t)n(r, t)e−ik·rdr , (27)

and F1(k, t) = g1n(k, t). At this point, it should be noticed that this new wave-kinetic
equation is coupled with the radiation transport Equation (22) in two different ways: first,
through the expression of the force function F0, which depends on the radiation intensity
I(r, t) and, second, through the dependence of the diffusion coefficient D on the density of
matter, or equivalently, on the quasi-probability W.

5. Modified Jeans Instability

We can study the evolution of the SN system, associated with matter coupled with a
background, as described by the wave-kinetic Equation (26) and the radiation transport
Equation (22). We start from a given equilibrium (I0, W0, n0) and consider perturbations
( Ĩk, W̃k, ñk) evolving with frequency ω and wavevector k. Replacing this in Equation (26),
we obtain, after linearization:

W̃k =
∆W0

h̄(ω− k · vq)

[
gk(I0)ñk +

αn0

k2 Ĩk

]
, (28)

with:
gk(I0) =

αI0

k2 + g1U1(k) . (29)

Integrating Equation (28) over the particle momentum q spectrum and using the
definition of the gravitational susceptibility χG(ω, k), as given by Equation (18), we obtain
a relation between the perturbed matter density ñk and the perturbed radiation intensity
Ĩk, of the form:

εG(ω, k) ñk = β∗ Ĩk , (30)
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where we introduced the quantities:

εG(ω, k) = 1 +
[

1 +
αI0

4πg1

(
1 +

Λ
k2

)]
χG(ω, k) , (31)

and:

β∗ = − αn0

4πg1

(
1 +

Λ
k2

)
χG(ω, k) . (32)

We now turn to the perturbative analysis of the radiation transport equation. For that
purpose, we use D = D0 + D̃k, such that D0 ≡ D(n0) and D̃k = (∂D/∂n)0 ñk. We then
obtain from Equation (22), after linearization, a second relation between the perturbed
quantities, as:

εR(ω, k) Ĩk = −ε ñk , (33)

with the new quantities:
εR(ω, k) = −iω + γ0 + D0k2 , (34)

and:

ε = −
(

∂D
∂n

)
0

[
∇2 I0 + i(k · ∇I0)

]
. (35)

At this point, it should be noticed that the diffusion coefficient is proportional to
some exponent of the density, D ∝ n−s. Therefore, this quantity is positive, ε > 0, for the
plausible case of a positive exponent, s > 0. The two Equations (30) and (33) should be
solved as a coupled system, but it is instructive to consider them first separately. In the
absence of coupling, if we take ε = 0, we directly obtain from Equation (33) the dispersion
properties of a radiative diffusion precess, as defined by:

εR(ω, k) = 0 , ω = −i(γ0 + D0k2) . (36)

This simply means that any perturbation of the radiation intensity will just diffuse
away and vanish. Conversely, if we take β∗ = 0 and the matter density is decoupled from
radiation, Equation (30) reduces to:

εG(ω, k) = 0 . (37)

Using Equation (31) and the definition of the gravitational susceptibility χG(ω, k) as
defined by Equation (18), we obtain, in the cold matter limit, the new dispersion relation:

ω2 =
αn0

M
I0 −ω2

J
k2

(k2 + Λ)
+

(
h̄k2

2M

)2

. (38)

Comparing with Equation (19), we can see that, even ignoring the existence of radia-
tion intensity perturbations, the simple existence of an unperturbed radiation background
(I0 6= 0) reduces the range of the gravitational collapse and the growth rate of the Jeans
instability. At this point, it should be noticed that, if thermal effects are introduced, we
need to make the replacement [30]:

ω2
J → ω2

J + 3k2v2
th , vth =

1
n0

∫
v2

q W0(q)
dq

(2π)3 , (39)

where vth can be seen as a thermal velocity. This shows that thermal effects further reduce
the range of the unstable region and add to the radiation pressure, by opposing the
gravitational force. However, we need to go beyond this simplified analysis and study the
coupled matter–radiation process, which exists when both coupling parameters, ε and β∗,
are non-zero. New instabilities are revealed, as shown next.
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6. Jeans-Bubble Regime

Let us return to the coupled Equations (30) and (33). They allow us to write:

εR(ω, k) εG(ω, k) = −β∗ε . (40)

Using the explicit expressions, valid in the cold matter limit, we obtain a new disper-
sion relation of the form:(

−iω + γ0 + D0k2
)(

ω2 −Ω2
J

)
= −βε , (41)

where we now use the parameter:

β = β∗
(

ω2 − h̄2k4

4M2

)
=

αn2
0

M
. (42)

Apart from obvious changes of notation, Equation (41) is formally identical to Equation (23)
of [30], but the frequency ΩJ now includes corrections from the Yukawa parameter Λ and
from quantum dispersion (h̄ 6= 0), as given by the new expression:

Ω2
J = −ω2

J
k2

(k2 + Λ)
+

h̄2k4

4M2 + ω2
p , ω2

p =
αn0

M
I0 , (43)

where ωp is the coupled matter–radiation frequency. The condition for gravitational
collapse, as previously stated in Equation (36), is therefore equivalent to ω2 = Ω2

J ≤ 0.
This is illustrated in Figure 1, where the present results are compared with those for
classical matter in a Newtonian potential. As we can see, the Yukawa corrections associated
with locality are dominant for low values of the wavenumber k, or equivalently, for large
wavelength scales. In contrast, the quantum corrections dominate for large wavenumbers,
or small scales. They both reduce the range of gravitational collapse.

Let us now determine the instability criterion when coupling with radiation is taken
into account. In contrast with the case of Figure 1, where the growth rates increase when
the absolute value of Ω2

J is negative, now, the growth rates become larger near the critical
region where Ω2

J ∼ 0, and instability occurs for both negative and positive values. This can
be shown by using ω = iΓ in the dispersion relation (41). We obtain:

(Γ + γD)(Γ2 + Ω2
J ) = βε , γD = γ0 + D0k2 . (44)

This can easily be solved, and the results are illustrated in Figure 2, for exact resonance
conditions Ω2

J = 0, where a purely Jeans instability would not occur. In this figure, we
represent the real positive values of Γ and normalize all the quantities to γD. Here, in
contrast, matter interaction with the radiation background allows for the existence of new
unstable regimes, for both positive and negative values of the product βε. Furthermore,
a simple nonlinear analysis [30,37] shows that the saturation values of the density and
radiation intensity perturbations satisfy the condition:

Ĩsat = −
ε

γD
ñsat = −

ΩJ

β
ñsat . (45)
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0.0 0.5 1.0 1.5 2.0

-5

-4

-3

-2

-1

0(w/wJ)2

(k vth/wJ)2

Figure 1. Gravitational collapse, determined by the negative values of ω2 = Ω2
J , for (I0 = 0). The

black curve represents the normalized quantity ω2/ω2
J as a function of the normalized wavenumber

k2v2
th/ω2

J , for quantum matter in a Yukawa potential, with Λ = 0.01, and (h̄/2M)2 = 0.3ω2
J . For

comparison, the red curve represents the same function in the classical Newtonian limit, with Λ = 0
and h̄ = 0.

Assuming that β is always positive, for ε < 0, we have an accumulation of photons
in the collapsed matter regions, and this corresponds to the gravitational collapse of both
matter and radiation. This gives a more complete picture of the Jeans instability. In contrast,
for ε > 0, the matter density decreases where the photon intensity increases, leading to
the formation of matter voids, where matter is pushed away by radiation pressure. This
corresponds to a new instability regime, which can be called the photon-bubble regime.

G/gD

be/gD3
-4 -2 0 2 4

0.0

0.5

1.0

1.5

2.0

Figure 2. Maximum growth rates of the Jeans-bubble instability Γ, for Ω2
J = 0, as a function of

the coupling constant βε. These quantities are normalized to γD. The black curve corresponds to
gravitational collapse and the red curve to matter void regions.

A similar behavior can be observed away from resonance, when Ω2
J 6= 0, as illustrated

in Figure 3, for a fixed value βε. In this case, the Jeans instability regime, where radiation
collapses with matter, occurs for Ω2

J < 0. The photon-bubble regime, where matter voids
are formed due to radiation pressure, occurs for Ω2

J > 0. This shows that the existence of
a radiation background is not only able to modify the gravitational collapse, but also to
introduce new instabilities where matter voids can be formed. Such processes could be
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relevant to astrophysical dust clouds. This would be also true over much larger scales if
the radiation background is replaced by weakly interacting dark matter.

G/gD

WJ
2 /gD

2
-3 -2 -1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

JEANS INSTABILITY REGIME
WJ

2 < 0 
BUBBLE INSTABILITY REGIME

WJ
2 > 0 

Figure 3. Maximum growth rates of the Jeans-bubble instability Γ, as a function of Ω2
J , for fixed

values of the coupling constants: βε = −γ3
D in black, and βε = −γ3

D/0.27 in red.

7. Conclusions

In this paper, we considered self-gravitating quantum matter, interacting with a
radiation background, and introduced a finite range for the gravitational interaction. This
was described by an extended Schrödinger–Newton equation, with an external radiation
potential and a gravitational Yukawa potential. The finite range of this type of gravitational
potentials induces an effect of locality on the quantum matter process.

We described the radiation background with a radiation transport equation, valid
for diffusive radiation, with a diffusion coefficient that describes coupling with matter
due photon scattering. We applied this extended SN model to the study of gravitational
collapse. We showed that both the Jeans criterion for gravitational instabilities and the
growth rates are modified, not only by the existence of quantum effects, but also by
the Yukawa scale length of the gravitational interaction. Furthermore, coupling with
the radiation environment modifies the character of the Jeans instability and introduces
new instability regimes that can explain the formation of photo-bubbles and voids of
matter. Matter–radiation interaction could also be responsible for decoherence effects of the
quantum matter behavior, due to the existence of an environment. This important problem
will be explored in the future.

The present work could have relevance to astrophysical and cosmological phenomena,
as well as to laboratory experiments simulating quantum and gravity effects [18–20]. It
could also stimulate the use of simplified models of quantum gravity, where the irreducible
aspects of quantum mechanisms and gravitational theories, mainly due to the non-locality
of the first and the locality of the second, could eventually be reconciled in the future. The
present model makes a small step in that direction. A natural extension of this model is to
use a more consistent description of curved space-time and to include dark matter. It is
well known that general relativity changes the character of the Jeans instability, replacing
the exponential instability growth of the perturbations by a more modest linear growth.
However, this does not change the intrinsic physical meaning of the process. It would be
interesting to know what happens to the new instability regimes discussed here.
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