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Abstract: The present study numerically investigated the deformation of the free-surface of two-
phase fluid flow in a tank which is considered as a simplified blast furnace hearth. Actually, the fluids
existing in a blast furnace hearth are gas, slag and hot metal from top to bottom. However, the present
study considered only gas and cold molten iron in the tank. The porosity is considered as a substitute
for void volume formed by the packed bed of the particles such as cokes. The single-phase flow and
two-phase fluids flow without the porosity are analyzed for comparison. The porosity contributed
the free surface to forming a viscous finger near the taphole. The axi-symmetry nature of the interface
of two-phase fluids flow in the cylindrical tank is broken by viscous finger as the interface instability
by the gas entrainment into taphole, which has been identified by the visualization of the free surface
formation. The acceleration of the free surface falling velocity and the outflow near the taphole are
associated by the viscous finger by the gas entrainment. The dimensionless gas break-through time
is linear with respect to the porosity magnitude.

Keywords: free surface; two-phase fluid flow; viscous finger; porosity; taphole

1. Introduction

Iron-making furnaces contain multiphase materials such as gas, slag, molten iron,
and cokes. This volume covers the inherent complex characteristics which involve the
multiphase structure, high temperature, coupled heat and mass transfer, chemical reactions.
Therefore, multiphase phenomena in the blast furnace have been widely studied in terms
of the chemical reaction between different phases [1–5], the effect of porous medium [4–6],
heat and mass transfer of multiphase flow [7–17], and optimized conditions to operate
efficiently [18,19].

The performance characteristics of blast furnaces are largely dependent on multiphase
transport phenomena. For these reasons, Yagi [20] comprehensively reviewed the flow
phenomena of multi-phase fluids which are composed of single-phase or multi-phase flows
of gas, fine particles, liquid, and packed particles in the blast furnace. Later, Dong et al. [21]
expanded on related studies that involved computational methods, numerical methods,
and modelling. Successively, several studies have investigated transport phenomena in
blast furnaces based on multi-phase flow [22–24]. In multiphase flows, the prediction of
the void fraction is important in both stages of the preprocess and post-process of the
experiments, resulting in different techniques [25–28] used for measuring the void fraction
in multiphase flows being proposed.

During the transport phenomena in a hearth that has a taphole, an unexpected exit
of blast gas occasionally occurs in the tapping process, causing severe fume emissions
and splashing. This situation derives the various negative effects on the ironmaking
process [29,30].

In order to identify the reason for the unexpected splashy, He et al. [31] conducted an
experiment on the internal flow in a blast furnace. They considered water instead of the hot
metal to simulate and analyze the splash induced by the interaction of the air and water
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based on the principle of similarity. Their results show that the onset, evolution, and size
of the splash are linked with the gas entrainment rather than wall roughness of the taphole,
the cast rate, taphole blockage, or other factors. Especially, they reported that splashes are
mainly linked to the inflow time and flow rate of air.

He et al. [31] pointed out that there are quite different characteristics of splashes
between two blast furnaces, even though they considered the same chemistries of slag
and molten iron. He et al. [32] extended the research of He et al. [31], and found that
unexpected splashy taphole stream occurred, which results from blast gas entrainment
into the taphole in the early stage of casting. They deduced that blast gas entrainment is
strongly associated with the “viscous finger” resulting from the instability of the gas–liquid
interface. Therefore, He et al. [32] focused on the relationship between blast gas and the
viscous finger.

The viscous finger, which was considered to be the major source of the unexpected
splash by He et al. [32], may form when a high-viscosity fluid is displaced by one with low
viscosity in a porous medium. Instability of the interface between the fluids is developed,
resulting in the finger-like patterns [33]. The viscous finger has received much attention in
the steel industry, as well as other fields, due to its interesting flow features and practical
importance. Hill et al. [34] studied the viscous finger which occurs in cylindrical cisterns
during the refining of raw sugar. Additionally, the phenomenon in rock with a porous
medium has been studied by Tabeling et al. [35].

He et al. [30] carried out an experiment to increase understanding of the mechanisms
underpinning the phenomenon of the early release of blast gas in blast furnace tapping
operations. Particularly, they focused on determining the likelihood that viscous fingering
is the main reason for this event. In their experiment, the blast furnace model was packed
with glass beads and the fluids used in the experiment were considered as air, mineral
oil and ZnCl2, instead of gas, slag, and iron. Their experiment showed viscous fingering,
which induced the premature release of gas. Additionally, they reported that the early
release of blast gas occurs with increasing a draining rate and the condition of packed
bed heterogeneity.

As described above, the appearance of viscous fingers at the interface of fluids in a blast
furnace is important for the iron-making operations. Thus, the present paper numerically
simulates two-phase fluids flow in a tank as a simplified blast furnace hearth. In addition,
the porosity has been considered as the packed bed of the particles, including cokes.
Generally, the porous medium is used to replace the particle bed, which reflects the two
effects of porosity and the exerting forces on the fluids in the blast furnace simultaneously.
However, as the initial stage of the research for the complex multi-phase fluid flow in the
blast furnace, first, the present study focused on the porosity effect on the interface of
two-phase fluid flow in a tank.

The main purpose of the present study was to investigate the effects of gas entrainment
into the taphole and the porosity on the deformation of the gas–liquid interface. Based on
the authors’ literature survey, it was hard to find that studies using a numerical approach,
especially, considering the gas and liquid in a tank with a taphole to investigate the net
effect of gas entrainment into the taphole on the deformation of the gas–liquid interface.
Thus, to clearly identify the net effect of the gas on interface formations, such as viscous
fingers, the present study considered only gas and liquid in a tank with a taphole. In
addition, the present study originally explored the effect of porosity on the deformation of
the interface of the two-phase fluids and gas entrainment into the taphole by considering
the wide range of porosity.

In order to systematically analyze the effects of the porosity and the two-phase fluids
on the formation of the interface of two-phase fluid flow near the taphole, the present study
additionally simulated single-phase flow to compare the two-phase flow. Additionally,
two-phase flow without porosity has been simulated to find the effect of porosity on the
interface of two-phase fluids. The interface formation will be visualized to investigate
the effect of gas and porosity on the interface instability, such as a symmetry breaking.
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Especially, the appearance of the taphole in the tank plays a key role on the interface of
two-phase fluid flow. Therefore, the contribution of the taphole has been evaluated in
terms of the viscous finger and the dimensionless gas break-through time.

2. Governing Equations and Mathematical Formulation
2.1. Governing Equations of Fluid Flow

The STAR-CCM+ [36] computational fluid dynamics (CFD) package was adopted for
the present numerical simulations. The continuity equation, the Navier–Stokes equations,
and the volume of fraction (VOF) equation govern the three-dimensional two-phase flow
as the present problem. The Reynolds-averaged Navier–Stokes equations can be written in
Cartesian tensor form as

∂εui
∂xi

= 0 (1)

∂

∂t
(ερui) +

∂

∂xj
(ερuiuj) = −

∂εp
∂xi

+
∂

∂xj

[
εµ

(
∂ui
∂xj

+
∂uj

∂xi

)]
+

∂

∂xj
(−ερu′ iu′ j) + ερgi (2)

where xi are Cartesian coordinates, ε is porosity, ui are the corresponding velocity compo-
nents, p is pressure, ρ is fluid density, µ is fluid viscosity, and g is the gravity. Additionally,
−ρu′ iu′ j is the Reynolds stress term which has been closed using the realizable k–ε turbu-
lence model [37].

The resistance of the porous media can be realized by adding the source term in the
momentum equation. If the porous region is assumed to be homogeneous and isotropic,
isotropic resistance can be determined using the Ergun equation [38]. In the porous region,
the theoretical pressure drop per unit length was determined using the Forchheimer
equation [39], expressed as Equation (3).

− ∆P
L

=
(

Piu2
o + Pvuo

)
(3)

The Ergun equation [38] is popularly utilized in porous media flow. A semi-empirical
correlation can be applied over a wide Reynolds number range for various packing types.

− ∆P
L

=
150µ(1− ε)2uo

ε3d2
p

+
1.75ρ(1− ε)u2

o
ε3dp

(4)

where uo is the superficial velocity through the porous region, dp is the coke particle
diameter (m) and Pi,Pv are coefficient defining the porous resistance, known as the inertial
resistance and viscous resistance, respectively.

Generally, the porous medium is used to replace the particle bed, which simultane-
ously reflects the two effects of porosity and exerting forces on the fluids in a blast furnace.
However, the present study focused on the porosity effect on the interface of two-phase
fluid flow near the taphole in a tank. Thus, the porous resistances were neglected.

The free surface of two-phase flow is tracked by using the VOF method, which is
used by most commercial codes. The distribution of two-phase fluids in the computational
domain is governed by the following transport equation.

∂Qδ

∂t
+ ui

∂Qδ

∂xi
= 0 (5)

where Qδ is the volume fraction in cells.
First, each momentum equation corresponding the phase is computed, sharing the

resulting velocity among the phases [40]. The diffusion term is spatially discretized by the
second-order central differencing scheme. The convection term is spatially discretized by
the second-order upwind scheme. For the temporal discretization, the first-order backward
implicit scheme is utilized for the time derivative terms. A SIMPLE-type segregated
algorithm is used the solution procedure.
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2.2. Computational Domain and Boundary Conditions

The unstable interface of two-phase fluids and viscous fingers are expected to take
place in the hearth of the blast furnace. Therefore, the hearth was chosen as the computa-
tional domain, which was formed by a cylindrical shape. The computational domain was
scaled down and assumed to be the hearth part of the blast furnace in the present work.
The aim of the present study was mainly to investigate the deformation of the interface
according to porosity in the vicinity of the taphole; therefore, the scale-down method was
reasonable and is often chosen in other studies [41].

The computational domain and relative boundary conditions are shown in Figure 1a,
where the dimensions of the tank were 1 m in diameter (Dh) and 1.5 m in height (Hh). The
taphole diameter (Dt), height (Ht) and length (Lt) were 0.05, 0.5 and 0.3 m, respectively. The
taphole was tilted at an angle of 5◦ from the bottom. The tank was filled with molten iron
initially and only air was supplied from the inlet. Porosity (ε), which represents the void
fraction by the packed bed, was considered to be from 0.2 to 1.0 to investigate the effects.
The inlet and outlet boundary conditions were imposed as pressure conditions with a gauge
pressure of 450 kPa and atmospheric pressure, respectively. The remaining boundaries
were imposed as a no-slip conditions. The viscosity and density of the fluids were set as
ρmi = 7000 kg/m3, ηmi = 7.15× 10−03 Pa·s, ρair = 1.18 kg/m3, ηair = 1.85× 10−05 Pa·s
where the subscripts of mi and air denote a molten iron and an air. The conditions for
calculation are shown in Table 1.
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Table 1. Conditions for calculation: parameters of the tank and fluid properties.

Variable Value

Hearth diameter, Dh (m) 1
Hearth height, Hh (m) 1.5

Taphole diameter, Dt (m) 0.05
Taphole height, Ht (m) 0.5
Taphole length, Lt (m) 0.3

Tilting angle of taphole, (◦) 5
Molten iron density, ρmi (kg/m3) 7000
Molten iron viscosity, ηmi (Pa·s) 7.15 × 10−3

Air density, ρair (kg/m3) 1.18
Air viscosity, ηair (Pa·s) 1.85 × 10−5

Pressure drop, Pinlet−Poutlet (kPa) 450
Porosity, ε 0.2, 0.3, 0.4, 0.6, 0.8, 1.0

Figure 1b marks the probes and a plane near the taphole, which were later used to
trace the flow quantities.

A grid system for numerical analysis is shown in Figure 2 where the grid was created
by cut-cell grid method in STAR-CCM+ [36]. The grid was denser near the moving interface
of the two-phase fluids to capture the deformation of the free surface. To quantitatively
verify the grid systems, three different grid numbers were considered with 5 × 105 (coarse),
1.8 × 106 (medium), and 2.1 × 106 (fine). According to the results of grid dependency test,
the dependence of the free surface deformation on the grid was almost negligible, and the
velocity and pressure in the vicinity of the taphole had a very small discrepancy of less
than 1% for different grid systems. Therefore, this study used the medium grid system for
the efficiency of computation.

2.3. Validation

As mentioned in the Introduction, it is hard to find studies similar to the present study
which simulate the free surface problem in the blast furnace. Based on a literature survey,
Shao and Saxen [41] studied the transient flow behavior of iron and slag in the taphole
of a blast furnace by applying a VOF-based CFD model. Although their main focus was
not on flow patterns in the hearth but taphole flow patterns during tapping, their study
is quite suitable to validate the present numerical methods handling the interface of the
two-phase flow. Therefore, we followed the conditions of Shao and Saxen [41] for the
validation. The dimensions of the liquid reservoir were 0.8 m in length, 0.1 m in breadth,
and 0.28 m in height. The slag–iron interface was fairly horizontal at some distance from the
taphole. The taphole diameter, length, and height were 0.04, 0.8, and 0.12 m, respectively.
The taphole was located at a small distance above the bottom of the liquid reservoir (i.e.,
height = 0.12 m), because this study focused on the flow conditions near the taphole. Slag
was taken into the liquid reservoir by a mass flow rate of 22.4 kg/s, and atmospheric
pressure was set at the taphole outlet. The total number of grids was more than 250,000.
The grid was densified close to the taphole, where the liquid velocities varied drastically.
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Figure 2. Numerical grids of (a) the blast furnace and (b) the taphole.

Figure 3a shows the free surface in the tank corresponding to time. The results
represent the free surface tilt down (declination) and tilt up (inclination) in the vicinity of
the taphole. This situation is the feature that occurred in the actual tapping process. In
addition, for the stratified flow in the taphole, the time sequence of the volume fraction
of fluids (iron, slag) is compared in Figure 3b. The time-dependent behavior of the free
surface of the present results was similar to Shao and Saxen [41].

Quantitative comparisons between the present results and those of Shao and Saxen [18]
were carried out for the time histories of mass flow rate for iron and slag. Figure 4 shows
the favorable comparison with Shao and Saxen’s [41] results, even the difference which
appeared in the initial tapping period. Consequently, the present results are reasonably
comparable to the previous results reported by Shao and Saxen [41].
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3. Results and Discussion
3.1. Interface Behavior with and without Porosity

The typical deformation of the free surface for two-phase flows with and without
porosity is shown in Figure 5. The porosity in the computational model was ε = 0.36,
corresponding to a real hearth. Both cases showed the same behavior of the free surface,
which retained the initial flat formation without any deformation before it came close to
the taphole. In particular, in the case of porosity, when the free surface was close to the
taphole, fluids were sucked into the taphole with high velocity, forming relatively lower
pressure in the region near the taphole. Then, the free surface deformed and inclined
into a low-pressure region in the vicinity of the taphole, as shown in Figure 5c,d for the
porosity case. However, at the same time, corresponding to t = 8.0 s, the free surface
without porosity was far from the taphole, which could be more clearly identified by the
free surface descending position and velocity.
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To clearly identify the dependence of the free surface on porosity, the time sequence
of the free surface in the two-dimensional (x–z) plane, which cuts across the center of the
taphole, was examined, as shown in Figure 6.

The free surface under the condition of the two-phase flow without porosity descended
from the initial position, retained an almost-flat formation, and gradually leant toward the
taphole, as shown in Figure 6a–d. As a result, the formation of the free surface followed
a smooth parabolic profile with the defection point at the taphole. The gas- and liquid-
phase fluids flowed into the taphole together, and eventually air occupied the inside of the
taphole duct.

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 6. Comparison of free surface shapes (a–d) with porosity and (e–h) without porosity ac-
cording to location around the taphole. 

The free surface under the condition of the two-phase flow without porosity de-
scended from the initial position, retained an almost-flat formation, and gradually leant 
toward the taphole, as shown in Figure 6a–d. As a result, the formation of the free surface 
followed a smooth parabolic profile with the defection point at the taphole. The gas- and 
liquid-phase fluids flowed into the taphole together, and eventually air occupied the in-
side of the taphole duct. 

In contrast to the case without porosity, the free surface under the condition with 
porosity revealed a discontinuous formation with sharp branches as it approaches the 
taphole, as shown in Figure 6e–h. At the same time, the free surface with porosity de-
scended faster than that without porosity, which could be clarified by the mean position 
of the free surface over time, as shown in Figure 7. Here, the mean position was achieved 
by surface-averaging the free surface. 

Figure 6. Comparison of free surface shapes (a–d) with porosity and (e–h) without porosity according
to location around the taphole.

In contrast to the case without porosity, the free surface under the condition with
porosity revealed a discontinuous formation with sharp branches as it approaches the tap-
hole, as shown in Figure 6e–h. At the same time, the free surface with porosity descended
faster than that without porosity, which could be clarified by the mean position of the
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free surface over time, as shown in Figure 7. Here, the mean position was achieved by
surface-averaging the free surface.
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To clearly observe the deformation of the free surface with porosity, the region contain-
ing the discontinuous formation of the free surface is magnified in Figure 8. As observed
in Figure 6, when the free surface was close to the taphole, it was successively spitted,
which can be observed in Figure 8. This spitted formation of the free surface is compa-
rable to the viscous finger which was previously presented by the experimental results
of He et al. [30]. Saffman and Taylor [33] derived the first theory, Saffman and Taylor
instability, and performed simulated experiments in a Hele-Shaw cell, thereby showing
viscous fingering.
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The operating conditions considered in this study are applicable to the case in the
occurrence of viscous fingering. Namely, in the course of hearth drainage, the liquid
phase is displaced by the less viscous gas phase. Therefore, the present formation of the
unstable free surface between two fluids with porosity in the blast furnace is comparable
to viscous fingering.

In addition, He et al. [32] considered free surface instability in the blast furnace, show-
ing the appearance of the viscous fingers as the unstable gas–liquid interface. Additionally,
they reported that unexpected gas release is related to the high drainage velocity. Later, He
et al. [7] presented viscous finger formation due to the unstable gas–liquid interface near
the taphole. Consequently, we note that the viscous fingers help increase the free surface
descent and the velocity of the blast gas entrained into the taphole.
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These results are consistent with the findings of the present study, as shown in
Figures 5 and 7, where the free surface with porosity descended faster than in the case
without porosity and showed unstable formation relevant to viscous fingering.

Figure 9 shows the time histories of the plane-averaged velocity for single-phase flow,
and two-phase flows with and without porosity at the center of the cross-sectional plane
A at the taphole marked in Figure 1b. In single-phase flow, the magnitude of the velocity
is about constant, which results in a nearly steady state problem under this condition.
In contrast to the single-phase flow case, both two-phase flows show time-dependent
behavior that contains a rapid increase in the velocity due to gas entrainment, regardless
of porosity, as shown in Figure 9a. However, two cases for the two-phase flow exhibit
different trends along the time. The case without porosity shows that the value of the
velocity monotonically decreases without fluctuation before a sudden increase, as shown in
Figure 9b. Otherwise, velocity under the condition with porosity has an oscillatory period
before the sudden increase, as shown in Figure 9c. It might be explained that this oscillation
of velocity is derived by the viscous fingers, which originated on the unstable free surface.

The oscillation of velocity becomes significant when the gas starts to be entrained
into the taphole. There is some time between the initial entraining and the next entraining.
It can be considered that this duration is derived by the viscous fingers which suddenly
extend downward with the branches. Some branches reach the taphole earlier than others.
Therefore, the case with porosity reveals several impulsive behaviors, with velocity which
is an order of magnitude higher than that of the constant velocity period in Figure 9a. This
result is consistent with results reported by He et al. [9]. This early appearance of the high
entraining velocity with porosity resulted in a faster descent of the free surface than the
case without porosity, as shown in Figure 7.

3.2. Effect of the Porosity Magnitude

To investigate the effect of the porosity magnitude on two-phase fluid flow and the
interface, different magnitudes of porosity in the range of 0.2 ≤ ε ≤ 1 were considered.
Figure 10 exhibits formations of the free surface for different porosity magnitudes at the
same instant when the gas started to drain into the taphole for ε = 0.2, which was the
smallest porosity value considered in this study. In contrast to ε = 0.2, the free surface for
other porosity magnitudes did not reach the taphole. As shown in Figure 10, the distance
between the free surface and the taphole increased as the porosity magnitude increased.

The mean position of the free surface (PMF) over time for different porosity magnitudes
is plotted in Figure 11, where the origin of the position is the bottom of the taphole. Here,
the time history of the mean position of the free surface is considered before the gas is
initially entrained into the taphole. As mentioned in Figure 10, as the porosity magnitude
decreased, the descent of the free surface increased, leading to earlier gas draining. In
general, regardless of the porosity magnitude, the time history of the mean position of the
free surface followed a linear profile.

However, the slope was strongly dependent on porosity magnitude. This slope can be
considered the mean descending velocity of the free surface (VMF) which is presented in
Figure 12. In the range of the small porosity magnitudes for ε = 0.2 ∼ 0.4, the gradient
rapidly augments. As the porosity magnitude continuously increases from ε = 0.4 to 1,
the increasing rate of the gradient becomes smaller. Thus, the mean position of the free
surface can be simply approximated by a function of the porosity magnitude as follows:
PMF ≈ VMF(ε) · t, where VMF(ε) are approximated by VMF(ε) ≈ VMF,ε=1

1
ε . The coefficient

VMF,ε=1 in VMF(ε) corresponds to the mean descending velocity of the free surface for
ε = 1.
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Figure 11. Comparison of time histories of mean position of the free surface for six different
porosities (ε).

Figure 13 shows time histories of the mass flow rates for different porosity magnitudes.
All cases showed the same time-dependent behavior of the mass flow rate. As time passes,
the mass flow rate slightly decreased and then suddenly diminished. The slow reduction
in the mass flow rate was induced by the decrease in the liquid head, which corresponded
to pressure due to the liquid’s weight.
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Figure 13. Time histories of mass flow rate for six different porosities (ε).

The sudden drop in the mass flow rate was initiated by the initial inflow of the gas into
the taphole. The mass flow rate is defined by the product of the density, the surface area,
and the velocity normal to the surface. Thus, this mass flow rate is comparable to velocity
at the probes shown in Figure 14, and the densities of the gas and the liquid metal. The
density of gas is much lower than that of liquid metal, by about four orders of magnitude.
However, the velocity of gas for the drain is two orders of magnitude larger than that of
the liquid metal, as shown in Figure 14. Eventually, when the gas flows into the taphole,
the mass flow rate is about two orders of magnitude smaller than that of the liquid metal.
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Due to the drain into the taphole near this region where viscous effect is predominant
to the flow, the free surface did not maintain a flat plane; rather, it inclined to the taphole.
Regarding the sudden drop of the mass flow rate, the time interval between nearby porosity
magnitudes was almost a constant ‘value’, because this time interval strongly depends
on the net volume of the liquid metal initially filled in the tank. The net volume of the
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liquid metal was confined by the porosity magnitude. Therefore, the dimensional gas break
breakthrough time was linear with respect to the porosity magnitude.

He et al. [7] used the dimensionless gas breakthrough time, τ , to apply the results to a
real system, which is defined as follows:

τ =
t

tave
=

4Qt
πD2H

(6)

where t is the dimensional gas breakthrough time which is nondimensionalized by the
averaged time tavg and is the time taken to completely drain the oil at the average draining
rate Q. In addition, the flow-out coefficient, FL, is used for the dimensionless parameter
as follows:

FL = 180
(1− ε)2

ε3
1

φ2d2
µ

ρg
V0

(
D
H

)1.4
(7)

where ε is packed-bed porosity, φ is the shape factor of particle (φ = 1 for a sphere), d is the
particle diameter, µ is oil viscosity, ρ is the oil density, g is the gravitational acceleration,
and V0 is a superficial velocity.

Figure 15 shows the dimensionless gas breakthrough time according to the porosity
magnitude. The value of τ monotonically increases with increasing the porosity magni-
tude, resulting in a linear relationship with respect to porosity magnitude. This result is
consistent with the mean position of the free surface, as shown in Figure 11. Therefore,
the dimensionless gas breakthrough time is strongly dependent on the net volume of the
liquid initially filled in the tank.
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The dimensionless gas breakthrough time according to the flow-out coefficient is
presented in Figure 16, which is expected to provide similarities between the laboratory
scale and the real scale. The significant variation of τ occurred for the very small values of
FL, limited to approximately less than 0.1. In this narrow range of FL, the dimensionless
gas breakthrough time rapidly decreased with increasing FL. Beyond this region, τ varied
very slightly.
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4. Conclusions

The numerical simulations for the two-phase fluids flow in a tank have been performed
to understand the effects of gas entrainment into the taphole and the porosity on the
deformation of the gas–liquid interface.

The viscous finger formation of the free surface was appeared near the taphole of
the tank with porosity. The gas entrainment into taphole disturbed the axi-symmetric
formation of the free surface, forming a viscous finger due to interface instability. The
viscous finger by the gas entrainment was associated with acceleration of the free surface
falling velocity and the outflow near the taphole.

The free surface descended faster with the decreasing porosity magnitude, which
helped the gas to drain more rapidly. The sudden drop of the mass flow rate was governed
by the gas entrainment into the taphole at the gas break-through time. This dimensionless
gas break-through time is linear with respect to the porosity magnitude.

The dimensionless gas break-through time according to the flow-out coefficient is
presented to use the similarity between the laboratory scale and the real scale. The signif-
icant variation of the dimensionless gas break-through time for the very small values of
the flow-out coefficient is limited to less than about 0.1. In this narrow range of flow-out
coefficient, the dimensionless gas break-through time rapidly decreases with increasing the
flow-out coefficient. Beyond this region, the flow-out coefficient varies only slightly.
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