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Abstract: In this work, we investigate invariance analysis, conservation laws, and exact power series
solutions of time fractional generalized Drinfeld–Sokolov systems (GDSS) using Lie group analysis.
Using Lie point symmetries and the Erdelyi–Kober (EK) fractional differential operator, the time
fractional GDSS equation is reduced to a nonlinear ordinary differential equation (ODE) of fractional
order. Moreover, we have constructed conservation laws for time fractional GDSS and obtained
explicit power series solutions of the reduced nonlinear ODEs that converge. Lastly, some figures are
presented for explicit solutions.

Keywords: conservation laws; Lie symmetry analysis; generalized Drinfeld–Sokolov systems;
symmetry reduction; Erdelyi–Kober operators

1. Introduction

Because of the great importance of nonlinear fractional partial differential equations
(NFPDEs) in physics, mechanics, hydrology, viscoelasticity, image processing, electromagnet-
ics, and other fields, researchers have long been aware of the solutions and applications of
fractional partial differential equations [1–12]. In recent years, parallel to the increase in mathe-
matical techniques and the use of computer programs, many authors have an increased desire
to work on fractional analysis. Therefore, many methods are used to solve the NFPDEs—for
example, the finite-difference method [13], the multiple exp-function method [14], the ho-
motopy perturbation method [15,16], the variational-iteration method, the exp method [17],
the fractional sub-equation method [18], and the Lie invariance method [19–21]. When we
look through the literature, we realize Sophus Lie firstly put forward a methodology about
symmetry analysis at the end of the nineteenth century [22]. After that, some impressive
Lie group methods were considered in order to obtain symmetries, symmetry groups, and
symmetry reduction. These are the classical and nonclasical Lie group approaches [23,24] and
the Clarkson and Kruksal direct methods [25,26]. The main role of Lie symmetry methods is
to construct invariance properties having partial equations as invariant forms. With the aid of
these properties, we can reduce an NFPDE into a nonlinear ODE of fractional order with the
help of the Riemann-Liouville (RL) derivative.

The link between Lie symmetry analysis and conservation laws of differential equa-
tions was revealed by Noether [27]. A generalized Noether theorem was used in [28] to
construct conservation laws of NFPDEs with fractional Lagrangians. However, some differ-
ential equations do not arise from Lagrangians. To overcome this problem, İbragimov [29]
put forward a new method without Lagrangians. Lukashchuk [30] showed important
results towards obtaining conservation laws of NFPDEs.
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In this study, we deal with exact solutions of the time fractional GDSS by using Lie
symmetry analysis and conservation laws. The time fractional GDSS that models 1D
nonlinear wave processes in two-component media has the form

Dα
t u + a1uux + b1uxxx + c(vq)x = 0,

Dα
t v + a2uvx + b2vxxx = 0,

(1)

where a1, a2, b1, b2, c, and q are arbitrary constants, and Dα
t is the RL fractional derivative

defined in (2). We could not take b1 = b2 = 0, because the time fractional GDSS may develop
finite time singularities [31–33]. According to our research, Lie symmetry methods have
not been applied to the time fractional GDSS until now. With some special choices of a1,
a2, b1, b2, c, and q, the equation can be reduced to the time fractional Drinfeld-Sokolov-
Satsuma-Hirota equations discussed in [34].

The RL fractional partial derivative [35] is defined by

Dα
t u =


∂mu
∂t , α = m ∈ N,

1
Γ(m−α)

∂m

∂tm

∫ t
0

u(z,x)
(t−z)(α+1−m) dz, m− 1 < α < m, m ∈ N,

(2)

where Γ(z) is a Gamma function defined by

Γ(z) =
∫ ∞

0
e−ttz−1dt,

which converges in the complex plane when Re(z) > 0.

2. Preliminaries for Symmetry Analysis

In this chapter, we give the basic idea of the Lie symmetry method. Consider a
system of time fractional partial differential equations with independent variables x and t
as follows:

Dα
t u(x, t) = F1(x, t, u, ut, ux, uxx, v, vt, vx, vxx,...), (3)

Dα
t v(x, t) = F2(x, t, u, ut, ux, uxx, v, vt, vx, vxx,...), (4)

where the subscripts denote partial derivatives. Equations (3) and (4) are invariant under a
one-parameter Lie group of point transformations given as follows:

t̄ = t + ετ(t, x, u, v) + O(ε2), x̄ = x + εζ(t, x, u, v) + O(ε2),

ū = u + εµ(t, x, u, v) + O(ε2), v̄ = v + ερ(t, x, u, v) + O(ε2),
∂αū
∂t̄α

=
∂αu
∂tα

+ εµ0
α(t, x, u, v) + O(ε2),

∂αv̄
∂t̄α

=
∂αv
∂tα

+ ερ0
α(t, x, u, v) + O(ε2),

∂ū
∂x̄

=
∂u
∂x

+ εµx(t, x, u, v) + O(ε2),
∂2ū
∂x̄2 =

∂2u
∂x2 + εµxx(t, x, u, v) + O(ε2),

∂3ū
∂x̄3 =

∂3u
∂x3 + εµxxx(t, x, u, v) + O(ε2),

∂v̄
∂x̄

=
∂v
∂x

+ ερx(t, x, u, v) + O(ε2),

∂2v̄
∂x̄2

=
∂2v
∂x2 + ερxx(t, x, u, v) + O(ε2),

∂3v̄
∂x̄3 =

∂3v
∂x3 + ερxxx(t, x, u, v) + O(ε2),

(5)



Symmetry 2021, 13, 874 3 of 14

where

µx = Dx(µ)− uxDx(ζ)− utDx(τ),

µxx = Dx(µ
x)− uxxDx(ζ)− uxtDx(τ),

µxxx = Dx(µ
xx)− uxxxDx(ζ)− uxxtDx(τ),

ρx = Dx(ρ)− vxDx(ζ)− vtDx(τ),

ρxx = Dx(ρ
x)− vxxDx(ζ)− vxtDx(τ),

ρxxx = Dx(ρ
xx)− vxxxDx(ζ)− vxxtDx(τ),

µ0
α = Dα

t (µ) + ζDα
t (ux)− Dα

t (ζux) + Dα
t (u(Dtρ))− Dα+1

t (ρu) + ρDα+1
t (u),

ρ0
α = Dα

t (ρ) + ζDα
t (vx)− Dα

t (ζvx) + Dα
t (v(Dtρ))− Dα+1

t (ρv) + ρDα+1
t (v),

(6)

wherein Dx and Dt are total differential operators given as follows:

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ vx

∂

∂v
+ vxx

∂

∂vx
+ ...,

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ vt

∂

∂v
+ vtt

∂

∂vt
+ ....

(7)

The infinitesimal generator of Equations (3) and (4) consists of a set of vector fields
given by

X = ζ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
+ ρ

∂

∂v
. (8)

One can prove that the infinitesimal generators defined above must satisfy the follow-
ing invariance criterion for Equations (3) and (4):

PrnX(∆1)|∆1=0 = 0 and PrnX(∆2)|∆2=0 = 0, n = 1, 2, .., (9)

where
∆1 := Dα

t u(x, t)− F1(x, t, u, ut, ux, uxx, v, vt, vx, vxx,...),

and
∆2 := Dα

t v(x, t)− F2(x, t, u, ut, ux, uxx, v, vt, vx, vxx,...).

As the lower limit of integral in (1) is fixed, it is going to be invariant under the
transformations given in (5), so the corresponding invariance condition becomes

τ(t, x, u, v) = 0. (10)

Under the condition (9), the α-th infinitesimal related to RL fractional time deriva-
tive [36] is given by

µ0
α =

∂αµ

∂tα
+ (µu − αDt(τ))

∂αu
∂tα
− u

∂αµu

∂tα
− v

∂αµv

∂tα
+ µv

∂αv
∂tα
−

∞

∑
n=1

(
α

n

)
Dn

t (ζ)Dα−n
t (ux)

+
∞

∑
n=1

[(
α

n

)
∂nµu

∂tn −
(

α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (u) +
∞

∑
n=1

(
α

n

)
∂nµv

∂tn Dα−n
t (v) + λ,

ρ0
α =

∂αρ

∂tα
+ (ρv − αDt(τ))

∂αv
∂tα
− u

∂αρu

∂tα
− v

∂αρv

∂tα
+ ρu

∂αu
∂tα
−

∞

∑
n=1

(
α

n

)
Dn

t (ζ)Dα−n
t (vx)

+
∞

∑
n=1

[(
α

n

)
∂nρv

∂tn −
(

α

n + 1

)
Dn+1

t (τ)

]
Dα−n

t (v) +
∞

∑
n=1

(
α

n

)
∂nρu

∂tn Dα−n
t (u) + β,
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where

λ =
∞

∑
n=2

n

∑
m1+m2=2

m1

∑
k1=0

k1

∑
r1=0

m2

∑
k2=0

k2

∑
r2=0

(
α

n

)(
n

m1

)(
n−m1

m2

)(
k1

r1

)(
k2

r2

)
1

k1!k2!
tn−α

Γ(n + 1− α)

× (−u)r1(−v)r2
∂m1 uk1−r1

tm1

∂m2 vk2−r2

tm2

∂n−m1−m2+k1+k2 µ

∂n−m1−m2 ∂uk1 ∂vk2
,

and

β =
∞

∑
n=2

n

∑
m1+m2=2

m1

∑
k1=0

k1

∑
r1=0

m2

∑
k2=0

k2

∑
r2=0

(
α

n

)(
n

m1

)(
n−m1

m2

)(
k1

r1

)(
k2

r2

)
1

k1!k2!
tn−α

Γ(n + 1− α)

× (−u)r1(−v)r2
∂m1 uk1−r1

tm1

∂m2 vk2−r2

tm2

∂n−m1−m2+k1+k2 ρ

∂n−m1−m2 ∂uk1 ∂vk2
.

Theorem 1. u = ν1(x, t) and v = ν2(x, t) are invariant solutions of Equations (3) and (4) if and
only if

(i) u = ν1(x, t) and v = ν2(x, t) satisfy the following expressions:

Xν1 = 0⇔
(

ζ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
+ ρ

∂

∂v

)
ν1 = 0,

and

Xν2 = 0⇔
(

ζ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
+ ρ

∂

∂v

)
ν2 = 0.

(ii) u=ν1(x, t) and v = ν2(x, t) are also solutions of (3) and (4), respectively.

3. Lie Symmetry Analysis and Reduction of Time Fractional GDSS

In this part of the work, we acquire an infinitesimal generator of the Generalized
Drinfeld–Sokolov systems by applying Lie point symmetries. Assume that Equation (1)
are invariant under one parameter transformations (5). We then have that

ūα
t̄ + a1ūūx̄ + b1ūx̄x̄x̄ + c(v̄q)x̄ = 0,

v̄α
t̄ + a2ūv̄x̄ + b2v̄x̄x̄x̄ = 0.

(11)

Applying the second prolongation Pr2 transformation to Equation (1), then using
transformation (6), we obtain invariant equations as follows:

µ0
α + a1uxµ + a1uµx + b1µxxx + cq(q− 1)vq−2ρvx = 0,

ρ0
α + a2vxµ + a2uρx + cρxxxx = 0.

(12)

Putting the values of ρ0
α, µ0

α,ρ,µ µx, µxxx, ρx, and ρxxx from Equation (6) into
Equation (12) and then isolating the coefficients in partial derivatives with respect to
u and v, we obtain a determined system of linear equations stated as
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µuu = ρvv = ζu = τu = τt = τx = ζu = τv = τx = µv = τxu = ρuuu = ... = µxvu = 0,

ατt + 3µx = 0,

− a1uτv + αcqvq−1τu − 3b1τxxv = 0,

αa1uτt + cvq−1qρu − a1uζx = 0,

− a2uζx + a2µ− b2ζxxx + 3b2ρxxv + ατt = 0,(
α

n

)(
∂nρv

∂tn

)
Dtα−n v− 1

n + 1

(
α

n

)[
Dtα−n vDt1+n ατ − Dtα−n vDt1+n nτ

+ Dtα−n vxDtn nζ + Dtα−n vxDtn ζ

]
= 0. n = 3, 4, ....

Solving all these determination equations, we obtain an explicit form of infinitesimal
symmetry for Equation (1) as

ζ = −c1αqx + c2, τ = −3tqc1, µ = 2uqc1α, ρ = 4vαc1,

where c1 and c2 are arbitrary constants. Thus, we can construct corresponding vector fields:

X = (−c1αqx + c2)
∂

∂x
− 3tqc1

∂

∂t
+ 2uqαc1

∂

∂u
+ 4vαc1

∂

∂v
. (13)

It is stated that there are two vector fields spanning Equation (1):

X1 =
∂

∂x
, X2 = −αqx

∂

∂x
− 3tq

∂

∂t
+ 2uqα

∂

∂u
+ 4vα

∂

∂v
. (14)

Case 1. For the symmetry X1, we can write characteristics equations as follows:

dx
1

=
dt
0

=
du
0

=
dv
0

.

Solving these characteristic equations, we can easily obtain a trivial solution.

Case 2. Lastly we focus on symmetry X2, so we can write characteristic equations as

dx
−αqx

=
dt
−3qt

=
du

2qαu
=

dv
4vα

.

Solving these characteristic equations, we get both the similarity variable and the similarity
transformation as follows:

ξ = xt
−α
3 , u = t

−2α
3 f (ξ), v = t

−4α
3q g(ξ), (15)

where f and g are arbitrary functions of ξ.

Theorem 2. The similarity transformations (15) reduce Equation (1) to a nonlinear ODE with a
fractional order of the form

(
P1− 5α

3 ,α
3
α

f

)
(ξ) + a1 f fξ + b1 fξξξ + cqgq−1gξ = 0,(

P
1−α− 4α

3q ,α
3
α

g

)
(ξ) + a2 f gξ + b2gξξξ = 0,

(16)
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where the Erdelyi–Kober (EK) fractional differential operators [37] are given as(
Pτ,α

β f

)
(ξ) :=

n−1

∏
j=0

(
τ + j− 1

β
ξ

d
dξ

)(
Kτ+α,n−α

β f
)
(ξ), (17)

(
Pτ,α

β g

)
(ξ) :=

n−1

∏
j=0

(
τ + j− 1

β
ξ

d
dξ

)(
Kτ+α,n−α

β g
)
(ξ), (18)

and with the EK Fractional integral operators [38,39] defined as

(
Kτ+α,n−α

β f

)
(ξ) :=

 1
Γ(α)

∫ ∞
1 (u− 1)α−1u−(τ+α) f

(
ξu

1
β

)
du, α > 0,

f (ξ), α = 0,
(19)

(
Kτ+α,n−α

β g

)
(ξ) :=


1

Γ(α)

∫ ∞
1 (u− 1)α−1u−(τ+α)g

(
ξu

1
β

)
du, α > 0,

g(ξ), α = 0,

(20)

and

n =

{
[α] + 1, α ∈ N,
α, α /∈ N.

(21)

Proof. Let n− 1 < α < n, n = 1, 2, 3, .... Using the transformations defined in (15) and the
definition of the RL fractional derivative, we have

Dα
t u(x, t) =

∂n
∂tn

[
1

Γ(n− α)

∫ t

0
(t− s)n−α−1s

−2α
3 f (xs

−α
3 )ds

]
. (22)

Let v = t
s , so ds = −t

v2 dv. Equation (22) becomes

Dα
t u(x, t) =

∂n
∂tn

[
1

Γ(n− α)

∫ ∞

1
tn− 5α

3 (v− 1)n−1−αvn+1− 5α
3 f (ξv

α
3 )dv

]
, (23)

Dα
t u(x, t) =

∂n
∂tn

[
tn− 5α

3

(
K1− 2α

3 ,n−α
3
α

f

)
(ξ)

]
, (24)

Dα
t u(x, t) =

∂n− 1
∂tn−1

[
∂

∂t

(
tn− 5α

3

(
K1− 2α

3 ,n−α
3
α

f

)
(ξ)

)]
, (25)

Dα
t u(x, t) =

∂n− 1
∂tn−1

[
∂

∂t

(
tn−1− 5α

3

(
n− 5α

3
− α

3
ξ

d
dξ

)(
K1− 2α

3 ,n−α
3
α

f

)
(ξ)

)]
. (26)

Applying the above procedure n− 1 times, we obtain

Dα
t u(x, t) = t−

5α
3

(
n−1

∏
j=0

(
1− 5α

3
+ j− α

3
ξ

d
dξ

)(
K1− 2α

3 ,n−α
3
α

f

)
(ξ)

)
. (27)

Now, by using Equation (17), we can immediately write

Dα
t u(x, t) =

∂n
∂tn

[
tn− 5α

3

(
K1− 2α

3 ,n−α
3
α

f

)
(ξ)

]
= t

−5α
3

(
P1− 5α

3 ,α
3
α

f

)
(ξ). (28)
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Consequently, we prove that the first equation defined in (1) reduces to an ODE of a
fractional order: (

P1− 5α
3 ,α

3
α

f

)
(ξ) + a1 f fξ + b1 fξξξ + cqgq−1gξ = 0. (29)

Similarly, using transformations (15) and the definition of the RL fractional derivative,
we easily reduced the second equation of (1) into an ODE:(

P
1−α− 4α

3q ,α
3
α

g

)
(ξ) + a2 f gξ + b2gξξξ = 0. (30)

The proof is completed.

4. Conservation Laws for the Time Fractional GDSS

Before obtaining the conserved vector for the time fractional GDSS, some important
definitions should be given. We can start with the RL right-sided time fractional derivative,
defined as follows:

oDn
t (oIn−α f ), (31)

where Dt is a total differential operator with respect to t, and the oIn−α is the right-sided
time-fractional integral of n− α [40] given by

oIn−α f (x, t) =
1

Γ(n− α)

∫ p

t

f (x, θ)

(θ − t)1−n+α
dθ, (32)

where n = [α] + 1.
All solutions of u(x, t) and v(x, t) provide the following conservation equation:

Dt(Nt) + Dx(Nx) = 0, (33)

where Nt = Nt(x, t, u, ..) and Nx = Nx(x, t, u, ..).
We use the İbragimov method [29] to construct conservation laws of Equation (1). The

formal Langrangian of Equation (1) is defined as the following:

L = φ(x, t)(Dα
t u + a1uux + b1uxxx + cqvq−1vx) + σ(x, t)(Dα

t v + a2uvx + b2vxxx), (34)

where σ and φ define the new dependent variable of x and t.
Now, we express Euler-Langrangian operators [41] as follows:

δ

δu
=

∂

∂u
+ (Dα

t )
∗ ∂

∂Dα
t u
− Dx

∂

∂ux
− D3

x
∂

∂uxxx
, (35)

and
δ

δv
=

∂

∂v
+ (Dα

t )
∗ ∂

∂Dα
t v
− Dx

∂

∂vx
− D3

x
∂

∂vxxx
, (36)

where (Dα
t )
∗ is the adjoint operator of Dα

t .
Using the Euler Lagrange Equations (35) and (36), we can write the following expres-

sion:
δL
δu

= 0, and
δL
δv

= 0. (37)

Thus, we have

X̄ + Dt(τ)I + Dx(ζ)I = W1
δ

δu
+ W2

δ

δv
+ DtNt + Dx Nx, (38)
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where I denotes the identity operator, δ
δu and δ

δv represents the Euler Lagrange operators,
Ct and Cx are the Noether operators, and X̄ is defined as

X̄ = ζ
∂

∂x
+ τ

∂

∂t
+ µ

∂

∂u
+ ρ

∂

∂v
+ µ0

α
∂

∂Dα
t u

+ ρ0
α

∂

∂Dα
t v

+ µx ∂

∂ux

+ µxxx ∂

∂uxxx
+ ρx ∂

∂vx
+ ρxxx ∂

∂vxxx
,

(39)

and we can give Lie characteristics functions W for vector field X2 as

W1 = µ− τut − ζux = 2uqα + 3tqut − αqxux, (40)

and
W2 = ρ− τvt − ζvx = 4vα + 3tqvt − αqxvx. (41)

Using the RL time fractional derivative in Equation (1), we now write components of
conserved vectors [40,41], as follows:

Nt = τI +
n−1

∑
k=0

oDα−1−k
t (W1)Dk

t
∂L

∂oDα
t u
− (−1)n J

(
W1, Dn

t
∂L

∂oDα
t u

)

+
n−1

∑
k=0

oDα−1−k
t (W2)Dk

t
∂L

∂oDα
t v
− (−1)n J

(
W2, Dn

t
∂L

∂oDα
t v

)
,

(42)

where J is defined as follows:

J(r, s) =
1

Γ(n− 1)

∫ t

0

∫ T

t

r(τ, x)s(ν, x)
(ν− τ)α+1−n dνdt, (43)

and the explicit form of Nx for Equation (1) is given as

Nx = ζI + W1

[
∂

∂ux
− Dx

∂

∂uxx
+ DxDx

∂

∂uxxx

]
+ W2

[
∂

∂vx
− Dx

∂

∂vxx
+ DxDx

∂

∂vxxx

]

+ Dx(W1)

[
∂

∂uxx
− Dx

∂

∂uxxx

]
+ Dx(W2)

[
∂

∂vxx
− Dx

∂

∂vxxx

]
+ DxDx

[
∂

∂uxxx

]

+ DxDx

[
∂

∂vxxx

]
.

We can now derive the corresponding conserved vectors respectively as follows:

i: α ∈ (0,1)

Nt
1 = φ0Dα−1

t (2uqα + 3tqut − αqxux) + J((2uqα + 3tqut − αqxux), φt)

+ σ0Dα−1
t (4vα + 3tqut − αqxvx) + J((4vα + 3tqvt − αqxvx), σt),

ii: α ∈ (1,2)

Nt
2 = φ0Dα−1

t (2uqα + 3tqut − αqxux) + J((2uqα + 3tqut − αqxux), φt)

− φtoDα−2
t (2uqα + 3tqut − αqxux)− J((2uqα + 3tqut − αqxux), φtt)

+ σ0Dα−1
t (4vα + 3tqut − αqxvx) + J((4vα + 3tqvt − αqxvx), σt)

− σtoDα−2
t (4vα + 3tqut − αqxvx)− J((4vα + 3tqut − αqxvx), σtt),
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and

Nx
1 = W1(φa1u + b1φxx) + W2(φcqvq−1 + σa2u + b2σxx)− b1φxDx(W1)

− b2σxDx(W2) + b1φD2
x(W1) + b2σD2

x(W2),

where
W1 = 2uqα + 3tqut − αqxux and W2 = 4vα + 3tqvt − αqxvx.

5. Series Solutions of Equations (29) and (30)

In this section, we examine the power series solution of the system. This method is
more accurate and efficient for obtaining an exact analytical solution. The procedures of
the method are given in [42]. We can construct

f (ξ) =
∞

∑
n=0

rnξn, g(ξ) =
∞

∑
n=0

snξn, (44)

fξ =
∞

∑
n=1

nrnξn−1, fξξξ =
∞

∑
n=3

n(n− 1)(n− 2)rnξn−3, (45)

and

gξ =
∞

∑
n=1

nsnξn−1, gξξξ =
∞

∑
n=3

n(n− 1)(n− 2)snξn−3. (46)

Substituting Equations (44)–(46) into Equations (29) and (30), we have

∞

∑
n=0

Γ(2− 2α
3 + nα

3 )

Γ(2− 5α
3 + nα

3 )
rnξn + a1

∞

∑
n=0

rnξn
∞

∑
n=0

(n + 1)rn+1ξn

+ b1

∞

∑
n=0

(n + 3)(n + 2)(n + 1)rn+3ξn + cq

(
∞

∑
n=0

snξn

)q−1 ∞

∑
n=0

(n + 1)sn+1ξn = 0,

(47)

and

∞

∑
n=0

Γ(2− 4α
3q + nα

3 )

Γ(2− α− 4α
3q + nα

3 )
snξn + a2

∞

∑
n=0

rnξn
∞

∑
n=0

(n + 1)sn+1ξn

+ b2

∞

∑
n=0

(n + 3)(n + 2)(n + 1)sn+3ξn = 0.

(48)

When n = 0 in Equations (47) and (48), we obtain the following coefficients:

r3 =
1

6b1

(
Γ(2− 2α

3 )

Γ(2− 5α
3 )

r0 + a1r0r1 + cqsq−1
1 s0

)
, (49)

and

s3 =
1

6b2

(
Γ(2− 4α

3q )

Γ(2− α− 4α
3q )

s0 + a2r0s1

)
. (50)

When n > 1, we have the following coefficients

rn+3 =
1

b1(n + 3)(n + 2)(n + 1)

(
Γ(2− 2α

3 + nα
3 )

Γ(2− 5α
3 + nα

3 )
rn + a1

n

∑
k=0

(n− k + 1)rn−k+1rk

+ cq
n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

(n− k + 1)sn−k+1sk1−k2 ...skq−2−kq−1skq−1

)
,

(51)
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and

sn+3 =
1

b2(n + 3)(n + 2)(n + 1)

(
Γ(2− 4α

3q + nα
3 )

Γ(2− α− 4α
3q + nα

3 )
sn + a2

n

∑
k=0

(n− k + 1)sn−k+1rk

)
. (52)

Thus, the coefficients rn (n > 1) and sn (n > 1) can be calculated for Equation (44) as arbi-
trary constants. This shows that there are power series solutions to the Equations (29) and (30).
We then acquire the explicit power series solutions of Equation (1) (Figures 1 and 2) as

u(x, t) = r0t
−2α

3 + r1xt−α + r2x2t
−4α

3 +
1

6b1

(
Γ(2− 2α

3 )

Γ(2− 5α
3 )

r0 + a1r0r1 + cqsq−1
0 s1

)
x3t

−5α
3

+
∞

∑
n=1

1
b1(n + 3)(n + 2)(n + 1)

(
Γ(2− 2α

3 + nα
3 )

Γ(2− 5α
3 + nα

3 )
rn + a1

n

∑
k=0

(n− k + 1)rn−k+1rk

+ cq
n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

(n− k + 1)sn−k+1sk1−k2 ...skq−2−kq−1skq−1

)
xn+3t

−α(n+5)
3 ,

(53)

v(x, t) = s0t
−4α
3q + s1xt

−α(q+4)
3q + s2x2t

−α(2q+4)
3q +

1
6b2

(
Γ(2− 4α

3q )

Γ(2− α− 4α
3q )

s0 + a2r0s1

)
x3t

−α(3q+4)
3q

+
∞

∑
n=1

1
b2(n + 3)(n + 2)(n + 1)

(
Γ(2− 4α

3q + nα
3 )

Γ(2− α− 4α
3q + nα

3 )
sn + a2

n

∑
k=0

(n− k + 1)sn−k+1rk

)

× xn+3t
−α(nq+3q+4)

3q .

(54)

Figure 1. 3-D plots of Equations (53) and (54) with r0 = 1, r1 = 2, r2 = 3, s0 = s1 = s2 = 2, b1 = b2 = 1, a1 = a2 = 2, q = 2,
c = 2 and α = 0.5.
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Figure 2. 3-D plots of Equations (53) and (54) with r0 = 2, r1 = 2, r2 = 2, s0 = s1 = s2 = 1, b1 = 1, b2 = 6, a1 = −6,
a2 = −2, q = 1, c = −6 and α = 0.75.

6. Convergence Analysis of the Power Series Solution

In this part of the work, we will prove that the power series solutions (53) and (54) are
convergent. Considering Equations (51) and (52), we can write

| rn+3 |≤
(
| Γ(2− 2α

3 + nα
3 ) |

| Γ(2− 5α
3 + nα

3 ) |
| rn | +

n

∑
k=0
| rn−k+1 || rk |

+
n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

| sn−k+1 || sk1−k2 | ... | skq−2−kq−1||skq−1
|

)
,

(55)

and

| sn+3 |≤
(
| Γ(2− 4α

3q + nα
3 ) |

| Γ(2− α− 4α
3q + nα

3 ) |
| sn | +

n

∑
k=0
| sn−k+1 || rk |

)
. (56)

Using the properties of Γ, we can easily show that |Γ(2−
2α
3 + nα

3 )|
|Γ(2− 5α

3 + nα
3 )| ≤ 1 and

|Γ(2− 4α
3q +

nα
3 )|

|Γ(2−α− 4α
3q +

nα
3 )|

≤ 1.
Therefore, we can write

| rn+3 |≤ M

(
| rn | +

n

∑
k=0
| rn−k+1 || rk |

+
n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

| sn−k+1 || sk1−k2 | ... | skq−2−kq−1||skq−1
|

)
,

(57)

and

| sn+3 |≤ N

(
| sn | +

n

∑
k=0
| sn−k+1 || rk |

)
, (58)

where M = max
(
| 1

b1
|, | a1

b1
|, | cq

b1
|
)

and N = max
(
| 1

b2
|, | a2

b2
|
)

for an arbitrary n.
We can now define another power series form as

K(ξ) =
∞

∑
n=0

ynξn and L(ξ) =
∞

∑
n=0

znξn, (59)
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and let yi =| ri | and zi =| si |, i = 0, 1, ... . We can then easily obtain

yn+3 ≤ M

(
yn +

n

∑
k=0

yn−k+1yk

+
n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

zn−k+1zk1−k2 ...zkq−2−kq−1zkq−1

)
,

(60)

and

zn+3 ≤ N

(
zn +

n

∑
k=0

zn−k+1yk

)
, (61)

Thus, it is obvious that | yn |≤ rn and | zn |≤ sn for n = 0, 1, 2, .... This also confirms
that the series Equation (59) are the majorant series of Equation (44). We now have to
prove that the series K(ξ) and L(ξ) have positive radius of convergence. By elementary
calculations, we have the following:

K(ξ) = y0 + y1ξ + y2ξ2 + y3ξ3 + M

(
∞

∑
n=0

yn +
∞

∑
n=0

n

∑
k=0

yn−k+1yk

+
∞

∑
n=0

n

∑
k1=0

k1

∑
k2=0

...
kq−2

∑
kq−1=0

zn−k+1zk1−k2 ...zkq−2−kq−1zkq−1

)
ξn+3,

(62)

and

L(ξ) = z0 + z1ξ + z2ξ2 + z3ξ3 + N

(
∞

∑
n=0

zn +
∞

∑
n=0

n

∑
k=0

zn−k+1yk

)
ξn+3. (63)

We can take into account an implicit functional system with respect to the independent
variable ξ as follows:

K(ξ, K) = K− y0 − y1ξ − y2ξ2 − y3ξ3 −M

(
ξ2(K− y0) + ξ2K(K− y0) + ξ2L(L− z0)

q−2

)
, (64)

and

L(ξ, L) = L− z0 − z1ξ − z2ξ2 − z3ξ3 − N

(
ξ2(L− z0) + ξ2L(K− y0)

)
. (65)

It is clear that K and L are analytical in the neighborhood of (0, y0) and (0, z0). There-
fore, K(0, y0) = 0, L(0, z0) = 0, and ∂

∂KK(0, y0) 6= 0, ∂
∂LL(0, z0) 6= 0 According to the

implicit function theorem [43], the convergence is proved.

7. Conclusions

In this paper, we used a Lie point symmetry method in order to reduce a time fractional
generalized coupled Drinfeld-Sokolov system to a time fractional coupled ODE system
with the aid of the Riemann Liouville derivative and the fractional EK differential operator.
By using the İbragimov conservation theorem, we obtained conservation vectors of the
system. We then acquired explicit exact solutions of the reduced time fractional coupled
ODE system by using a power series expansion method and proved that the series solutions
are convergent.

Author Contributions: Methodology, writing—review and editing, S.G.; funding acquisition, S.-
W.Y.; formal analysis, M.I. All authors have read and agreed to the published version of the manuscript.



Symmetry 2021, 13, 874 13 of 14

Funding: The National Natural Science Foundation of China (No. 71601072), the Key Scientific
Research Project of Higher Education Institutions in Henan Province of China (No. 20B110006), and
the Fundamental Research Funds for the Universities of Henan Province.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010.
2. Miller, K.S.; Ross, B. An Introduction To the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993.
3. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
4. Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974.
5. Guy, J. Lagrange characteristic method for solving a class of nonlinear partial differential equations of fractional order. Appl.

Math. Lett. 2006, 19, 873–880. [CrossRef]
6. El-Sayed, A.; Gaber, M. The Adomian decomposition method for solving partial differential equations of fractal order in finite

domains. Phys. Lett. A 2006, 359, 175–182. [CrossRef]
7. Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Institute of Space Sciences Lie symmetry analysis, exact solutions and conservation

laws for the time fractional modified Zakharov–Kuznetsov equation. Nonlinear Anal. Model. Control. 2017, 22, 861–876. [CrossRef]
8. Jumarie, G. Cauchy’s integral formula via the modified Riemann–Liouville derivative for analytic functions of fractional order.

Appl. Math. Lett. 2010, 23, 1444–1450. [CrossRef]
9. Sardar, A.; Husnine, S.M.; Rizvi, S.T.R.; Younis, M.; Ali, K. Multiple travelling wave solutions for electrical transmission line

model. Nonlinear Dyn. 2015, 82, 1317–1324. [CrossRef]
10. Ali, S.; Rizvi, S.T.R.; Younis, M. Traveling wave solutions for nonlinear dispersive water-wave systems with time-dependent

coefficients. Nonlinear Dyn. 2015, 82, 1755–1762. [CrossRef]
11. Cheemaa, N.; Younis, M. New and more exact traveling wave solutions to integrable (2 + 1)-dimensional Maccari system.

Nonlinear Dyn. 2016, 83, 1395–1401. [CrossRef]
12. Cheemaa, N.; Younis, M. New and more general traveling wave solutions for nonlinear Schrodinger equation. Waves Random

Complex Media 2016, 26, 84–91. [CrossRef]
13. Deng, W. Finite Element Method for the Space and Time Fractional Fokker–Planck Equation. SIAM J. Numer. Anal. 2009, 47,

204–226. [CrossRef]
14. Zhang, S. Application of Exp-function method to a KdV equation with variable coefficients. Phys. Lett. A 2007, 365, 448–453.

[CrossRef]
15. Zhang, X.; Zhao, J.; Liu, J.; Tang, B. Homotopy perturbation method for two dimensional time-fractional wave equation. Appl.

Math. Model. 2014, 38, 5545–5552. [CrossRef]
16. Fadravi, H.H.; Nik, H.S.; Buzhabadi, R. Homotopy Analysis Method for Solving Foam Drainage Equation with Space- and

Time-Fractional Derivatives. Int. J. Differ. Equ. 2011, 2011, 1–12. [CrossRef]
17. Gurefe, Y.; Sonmezoglu, A.; Misirli, E. Application of the trial equation method for solving some nonlinear evolution equations

arising in mathematical physics. Pramana 2011, 77, 1023–1029. [CrossRef]
18. Zheng, B.; Wen, C. Exact solutions for fractional partial differential equations by a new fractional sub-equation method. Adv.

Differ. Equ. 2013, 2013, 199. [CrossRef]
19. Kumar, S.; Kour, B.; Yao, S.-W.; Inc, M.; Osman, M. Invariance Analysis, Exact Solution and Conservation Laws of (2 + 1) Dim

Fractional Kadomtsev-Petviashvili (KP) System. Symmetry 2021, 13, 477. [CrossRef]
20. Kour, B.; Kumar, S. Space time fractional Drinfel’d-Sokolov-Wilson system with time-dependent variable coefficients: Symmetry

analysis, power series solutions and conservation laws. Eur. Phys. J. Plus 2019, 134, 1–15. [CrossRef]
21. Lukashchuk, S.Y. Symmetry reduction and invariant solutions for nonlinear fractional diffusion equation with a source term.

Ufim. Mat. Zhurnal 2016, 8, 111–122. [CrossRef]
22. Lie, S. Theorie der Transformationsgruppen II; Written with the help of Friedrich Engel; BG Teubner: Leipzig, Germany, 1890.
23. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer Science and Business Media: Berlin, Germany, 2013;

Volume 81.
24. Ibragimov, N.K. Elementary Lie Group Analysis and Ordinary Differential Equations; Wiley: New York, NY, USA, 1999; Volume 197.
25. Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [CrossRef]
26. Clarkson, P.A. New similarity solutions for the modified Boussinesq equation. J. Phys. A Math. Gen. 1989, 22, 2355–2367.

[CrossRef]
27. Noether, E. Invariant variation problems. Transp. Theory Stat. Phys. 1971, 1, 186–207. [CrossRef]
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