# Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type

## Abstract

**:**

## 1. Introduction

## 2. Formulation

## 3. Existence Theorem

**Theorem**

**1.**

**Proof**

**of**

**Theorem**

**1.**

**Remark**

**1.**

**Remark**

**2.**

**Proposition**

**1.**

**Proof**

**of**

**Proposition**

**1.**

## 4. Exact Solutions. General Case

## 5. Exact Solutions. Particular Cases

## 6. Discussion

## 7. Conclusions

- The creation of a method for the numerical solution of the considered problems, based on the use of modern computing technologies. This can be, for example, the boundary element method, which the author has been developing in recent years in collaboration with colleagues. In this case, the segments of the constructed series will be used to eliminate the singularity;
- Increasing the dimension of problems; i.e., considering cases when the desired function depends on two ${x}_{1},{x}_{2}$ or three spatial variables ${x}_{1},{x}_{2},{x}_{3}$. Here, the most interesting case is when the diffusion wave front cannot be resolved with respect to one of the coordinates ${x}_{i}$ and is, for example, a cylindrical surface with a closed generatrix;
- The final stage of the research cycle should be the use of the developed model–algorithmic apparatus to solve applied problems related to the modeling of processes that occur in Lake Baikal. The lake is the largest natural reservoir of fresh water and is included in the UNESCO World Heritage List. The author lives and works close to this unique natural object and participates in scientific projects aimed at studying and saving it.

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Friedman, A. Partial Differential Equations of Parabolic Type; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Ladyzenskaja, O.; Solonnikov, V.; Ural’ceva, N. Linear and Quasi-Linear Equations of Parabolic Type. Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1988; Volume 23. [Google Scholar]
- DiBenedetto, E. Degenerate Parabolic Equations; Springer: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Vazquez, J. The Porous Medium Equation: Mathematical Theory; Clarendon Press: Oxford, UK, 2007. [Google Scholar] [CrossRef]
- Barenblatt, G.; Entov, V.; Ryzhik, V. Theory of Fluid Flows through Natural Rocks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Zeldovich, Y.B.; Raizer, Y.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena; Dover Publications: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Murray, J. Mathematical Biology: I. An Introduction. In Interdisciplinary Applied Mathematics, 3rd ed.; Springer: New York, NY, USA, 2002; Volume 17. [Google Scholar] [CrossRef]
- Samarskii, A.; Galaktionov, V.; Kurdyumov, S.; Mikhailov, A. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyte: Berlin, Germany, 1995. [Google Scholar] [CrossRef]
- Lu, Y.; Klingenbergm, C.; Koley, U.; Lu, X. Decay rate for degenerate convection diffusion equations in both one and several space dimensions. Acta Math. Sci.
**2015**, 35, 281–302. [Google Scholar] [CrossRef] - Polyanin, A.D. Functional separable solutions of nonlinear convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul.
**2019**, 73, 379–390. [Google Scholar] [CrossRef] - Andreev, V.K.; Gaponenko, Y.A.; Goncharova, O.N.; Pukhnachev, V.V. Mathematical Models of Convection; Walter de Gruyte: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Evans, L. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar] [CrossRef][Green Version]
- Friedman, A. Variational Principles and Free Boundary Problems; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Sidorov, A.F. Analytic representations of solutions of nonlinear parabolic equations of time-dependent filtration type. Sov. Math. Dokl.
**1985**, 31, 40–44. [Google Scholar] - Angenent, S. Solutions of the one-dimensional porous medium equation are determined by their free boundary. J. Lond. Math. Soc.
**1990**, 42, 339–353. [Google Scholar] [CrossRef][Green Version] - Filimonov, M.Y.; Korzunin, L.G.; Sidorov, A.F. Approximate methods for solving nonlinear initial boundary-value problems based on special constructions of series. Russ. J. Numer. Anal. Math. Model.
**1993**, 8, 101–125. [Google Scholar] [CrossRef] - Kazakov, A.; Lempert, A. Existence and Uniqueness of the Solution of the Boundary-Value Problem for a Parabolic Equation of Unsteady Filtration. J. Appl. Mech. Tech. Phys.
**2013**, 54, 251–258. [Google Scholar] [CrossRef] - Courant, R.; Hilbert, D. Methods of Mathematical Physics. Vol. II: Partial Differential Equations; Interscience Publishers, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Kazakov, A.; Spevak, L. An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry. Appl. Math. Model.
**2016**, 40, 1333–1343. [Google Scholar] [CrossRef] - Kazakov, A.L.; Kuznetsov, P.A. On One Boundary Value Problem for a Nonlinear Heat Equation in the Case of Two Space Variables. J. Appl. Ind. Math.
**2014**, 8, 255–263. [Google Scholar] [CrossRef] - Kazakov, A.L.; Kuznetsov, P.A. On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates. J. Appl. Ind. Math.
**2018**, 812, 227–235. [Google Scholar] [CrossRef] - Kazakov, A.; Kuznetsov, P.; Lempert, A. Analytical solutions to the singular problem for a system of nonlinear parabolic equations of the reaction-diffusion type. Symmetry
**2020**, 12, 999. [Google Scholar] [CrossRef] - Brebbia, C.A.; Telles, J.C.F.; Wrobel, L.C. Boundary Element Techniques; Springer: Berlin, Germany, 1984. [Google Scholar] [CrossRef]
- Wrobel, L.; Brebbia, C. The dual reciprocity boundary element formulation for nonlinear diffusion problems. Comput. Methods Appl. Mech. Eng.
**1987**, 65, 147–164. [Google Scholar] [CrossRef] - AL-Bayati, S.A.; Wrobel, L.C. A novel dual reciprocity boundary element formulation for two-dimensional transient convection-diffusion-reaction problems with variable velocity. Eng. Anal. Bound. Elem.
**2018**, 94, 60–68. [Google Scholar] [CrossRef] - Kazakov, A.; Spevak, L. Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form. Appl. Math. Model.
**2013**, 37, 6918–6928. [Google Scholar] [CrossRef] - Kazakov, A.; Spevak, L.; Nefedova, O.; Lempert, A. On the analytical and numerical study of a two-dimensional nonlinear heat equation with a source term. Symmetry
**2020**, 12, 921. [Google Scholar] [CrossRef] - Filimonov, M.Y. Application of method of special series for solution of nonlinear partial differential equations. AIP Conf. Proc.
**2014**, 1631, 218. [Google Scholar] [CrossRef] - Fedotov, V.P.; Spevak, L.F. One approach to the derivation of exact integration formulae in the boundary element method. Eng. Anal. Bound. Elem.
**2008**, 32, 883–888. [Google Scholar] [CrossRef] - Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Kazakov, A.L.; Orlov, S.S.; Orlov, S.S. Construction and study of exact solutions to a nonlinear heat equation. Sib. Math. J.
**2018**, 59, 427–441. [Google Scholar] [CrossRef] - Kazakov, A.L. On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation. Sib. Electron. Math. Rep.
**2019**, 16, 1057–1068. [Google Scholar] [CrossRef] - Kazakov, A.L. Construction and Investigation of Exact Solutions with Free Boundary to a Nonlinear Heat Equation with Source. Sib. Adv. Math.
**2020**, 30, 91–105. [Google Scholar] [CrossRef] - Foias, C.; Sell, G.R.; Temam, R. Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ.
**1988**, 73, 309–353. [Google Scholar] [CrossRef][Green Version] - Constantin, P.; Foias, C.; Nicolaenko, B.; Teman, R. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar] [CrossRef]
- Cholewa, J.W.; Dlotko, T. Global Attractors in Abstract Parabolic Problems; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef][Green Version]
- Gal, C.G. On a class of degenerate parabolic equations with dynamic boundary conditions. J. Differ. Equ.
**2012**, 253, 126–166. [Google Scholar] [CrossRef][Green Version] - Lee, J.; Toi, V.M. Attractors for nonclassical diffusion equations with dynamic boundary conditions. Nonlinear Anal.
**2020**, 195, 111737. [Google Scholar] [CrossRef] - Antontsev, S.; Shmarev, S. Evolution PDEs with Nonstandard Growth Conditions. Existence, Uniqueness, Localization, Blow-Up; Atlantis Press: Paris, France, 2015. [Google Scholar] [CrossRef]
- Antontsev, S.; Shmarev, S. Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity. Nonlinear Anal. Theory Methods Appl.
**2020**, 195, 111724. [Google Scholar] [CrossRef] - Kosov, A.A.; Semenov, E.I. Exact solutions of the nonlinear diffusion equation. Sib. Math. J.
**2019**, 60, 93–107. [Google Scholar] [CrossRef] - Stepanova, I.V. Symmetry of heat and mass transfer equations in case of dependence of thermal diffusivity coefficient either on temperature or concentration. Math. Methods Appl. Sci.
**2018**, 41, 3213–3226. [Google Scholar] [CrossRef] - Stepanova, I.V. Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity. Appl. Math. Comput.
**2019**, 343, 57–66. [Google Scholar] [CrossRef] - Olver, P.J. Direct reduction and differential constraints. Proc. R. Soc. Lond.
**1994**, 444, 509–523. [Google Scholar] [CrossRef] - Sinelshchikov, D.I.; Kudryashov, N.A. Integrable Nonautonomous Lienard-Type Equations. Theor. Math. Phys.
**2018**, 196, 1230–1240. [Google Scholar] [CrossRef] - Guha, P.; Ghose-Choudhury, A. Nonlocal transformations of the generalized Lienard type equations and dissipative Ermakov-Milne-Pinney systems. Int. J. Geom. Methods Mod. Phys.
**2019**, 16, 1950107. [Google Scholar] [CrossRef][Green Version] - Kozlov, V.V. Sofya Kovalevskaya: A mathematician and a person. Russ. Math. Surv.
**2000**, 55, 1175–1192. [Google Scholar] [CrossRef] - Leont’ev, N.E. Exact solutions to the problem of deep-bed filtration with retardation of a jump in concentration within the framework of the nonlinear two-velocity model. Fluid Dyn.
**2017**, 52, 165–170. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kazakov, A.
Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type. *Symmetry* **2021**, *13*, 871.
https://doi.org/10.3390/sym13050871

**AMA Style**

Kazakov A.
Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type. *Symmetry*. 2021; 13(5):871.
https://doi.org/10.3390/sym13050871

**Chicago/Turabian Style**

Kazakov, Alexander.
2021. "Solutions to Nonlinear Evolutionary Parabolic Equations of the Diffusion Wave Type" *Symmetry* 13, no. 5: 871.
https://doi.org/10.3390/sym13050871