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Abstract: The aim of the present paper is to provide oscillation conditions for fourth-order damped
differential equations with advanced term. By using the Riccati technique, some new oscillation
criteria, which ensure that every solution oscillates, are established. In fact, the obtained results
extend, unify and correlate many of the existing results in the literature. Furthermore, two examples
with specific parameter values are provided to confirm our results.
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1. Introduction

Fourth-order advanced differential equations have an enormous potential for appli-
cations in engineering, medicine, aviation and physics, etc. The oscillation of differential
equations contributes to many applications in science and technology and self-excited
oscillation phenomena which occur in bridges and in the oscillatory muscle movement
model; see [1,2].

In this article, we study some oscillation properties of the solutions to fourth-order
advanced differential equations{(

j(z)Φp[ζ ′′′(z)]
)′
+ a(z) f (ζ ′′′(z)) + q(z)g(ζ(c(z))) = 0,

j(z) > 0, j′(z) + a(z) ≥ 0, z ≥ z0 > 0,
(1)

where 1 < p < ∞ and p is an even number. Throughout this work, we assume that

L1: Φp[s] = |s|p−2s,
L2: j, a, c, q ∈ C([z0, ∞), [0, ∞)), q > 0, c(z) ≥ z, limz→∞ c(z) = ∞ and under condition

∫ ∞

z0

[
1

j(s)
exp

(
−
∫ s

z0

a(y)
j(y)

dy
)]1/p−1

ds < ∞. (2)

L3: f , g ∈ C(R,R) such that f (w)/|w|p−2w ≥ k f > 0, g(w)/|w|p−2w ≥ kg > 0, for
w 6= 0 , k f ≥ 1, kg are constants.

Definition 1. When a solution of (1) has arbitrarily large zeros on [zζ , ∞), then it is termed
oscillatory; otherwise, it is termed as non-oscillatory.

Definition 2. When all the solutions of the equation in (1) are oscillatory, the equation is
called oscillatory.
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Definition 3. If condition c(z) ≥ z hold, then the Equation (1) is called an advanced differen-
tial equation.

Asymptotic behavior of solutions of differential equations have been the objective
of many authors. Oscillation and asymptotic theory, however, has gained particular at-
tention due to its widespread applications in clinical applications, earthquake structures,
which involve symmetrical properties; see [3–8]. Nowadays, there has been an increasing
interest in studying the asymptotic behavior of differential equations, see [9–21].

Park et al. [22] studied some oscillation properties of the solutions of differential
equations with advanced term, by employing the comparison technique. Agarwal
et al. [23,24] established the properties of oscillation for advanced equations using
integral averaging technique.

Bazighifan et al. [25,26] considered fourth-order differential equations with advanced term
(

j(z)
∣∣∣ζ(m−1)(z)

∣∣∣p−2
ζ(m−1)(z)

)′
+ ∑

j
i=1 qi(z)g(ζ(ηi(z))) = 0,

j ≥ 1, z ≥ z0 > 0,

where m is even and p > 1.
The authors in [4], obtained some oscillation conditions for equation

(
j(z)Φp

(
ζ(m−1)(z)

))′
+ a(z)Φp

(
ζ(m−1)(z)

)
+ q(z)Φp(ζ(g(z))) = 0,

Φp = |s|p−2s, z ≥ z0 > 0,

where m is even and p > 1 . Moreover, the authors used the comparison method to obtain
oscillation conditions for this equation.

Other work has been done on similar equations with advanced term. Li et al. [3]
investigated some oscillation criteria of equation

(
j(z)|ζ ′′′(z)|p−2

ζ ′′′(z)
)′

+ ∑
j
i=1 qi(z)|ζ(Gi(z))|p−2ζ(Gi(z)) = 0,

1 < p < ∞, , z ≥ z0 > 0.

The purpose of this paper is to establish new oscillation criteria for (1). The methods
used in this paper simplify and extend some of the known results that are reported in the
literature [4,26]. The authors in [4,26] used a comparison technique that differs from the
one we used in this article. Moreover, the authors in [4,26] also studied the equation under

the condition
∫ ∞

z0

[
1

j(s) exp
(
−
∫ s

z0

a(y)
j(y) dy

)]1/α
ds = ∞ which is different from our condition∫ ∞

z0

[
1

j(s) exp
(
−
∫ s

z0

a(y)
j(y) dy

)]1/α
ds < ∞.

The organization of this article is as follows. After this introduction, in Section 2, we
propose some preliminary lemmas that are used in the proof of our main theorems. In
Section 3, we establish some oscillation criteria for (1) by Riccati technique; our results
extend and correlate many of the existing results in the literature. Then, some examples are
considered to check the efficiency of our main results.

2. Some Lemmas

These are some of the important Lemmas

Lemma 1 ([27]). Let α ≥ 1. Then

Dy− Cy(α+1)/α ≤ αα

(α + 1)α+1
Dα+1

Cα
,
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for all positive y, C > 0 and D be positive constant.

Lemma 2 ([28]). Let ζ ∈ Cm([z0, ∞), (0, ∞)) and ζ(m−1)(z)ζ(m)(z) ≤ 0 such that m a positive
integer, then

ζ(θz) ≥ Mtm−1ζ(m−1)(z),

for all θ ∈ (0, 1) there exists a constant M > 0.

Lemma 3 ([29]). Let ζ ∈ Cm([z0, ∞), (0, ∞)) and

ζ(m−1)(z)ζ(m)(z) ≤ 0,

then
ζ(z) ≥ λ

(m− 1)!
zm−1

∣∣∣ζ(m−1)(z)
∣∣∣,

Lemma 4 ([30]). Let ζ is a positive solution of (1). Then, there exist two possible cases

(D1) ζ(z) > 0, ζ ′(z) > 0, ζ ′′′(z) > 0, ζ(4)(z) < 0;

(D2) ζ(z) > 0, ζ ′′(z) > 0, ζ ′′′(z) < 0.

for z ≥ z1 where z1 ≥ z0 is sufficiently large.

3. Oscillation Criteria

The motivation for this section is to create new oscillation criteria, established for (1)
by the Riccati technique.

For ease of use, here are some notations.

G(z0, z) = exp
(∫ z

z0

a(z)
j(z)

du
)

,

ξ(z) =
∫ ∞

z

ds

(j(s)G(z0, s))
1

p−1
,

φ(z) =
δ′(z)
δ(z)

−
k f a(z)

j(z)
,

ϕ(z) =
1

G
1

p−1 (z0, z)
− ξ(z)a(z)j(2−p)/(p−1)(z)

p− 1

and

ϕ̃(z) =
a(z)
j(z)

+
(p− 1)pδ(z)ϕp(z)G(z0, z)

ξ(z)j
1

p−1 (z)
.

Theorem 1. Let (2) holds. Suppose that δ, ϑ ∈ C1([z0, ∞), (0, ∞)) and M > 0 and kg > 1 are
constants such that

lim sup
z→∞

∫ z

z0

(
kgδ(s)q(s)−

(
2

Ms2

)p−1 j(s)δ(s)(φ(s))p

pp

)
ds = ∞. (3)

If
ϑ(z)

ξ(z)(j(z)G(z0, z))1/(p−1)
+ ϑ′(z) ≤ 0 (4)

and, for some µ ∈ (0, 1),

lim sup
z→∞

∫ z

z0

(
kgq(s)

(
µc2(s)

2
ϑ(c(s))

ϑ(s)
ξ(s)

)p−1

G(z0, s)− ϕ̃(s)

)
ds = ∞, (5)
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then Equation (1) is oscillatory.

Proof. Let ζ be a nonoscillatory solution of Equation (1), then ζ ≥ 0. From Lemma 4, let
case (D1) hold. By Lemma 2, we obtain

ζ ′(z/2) ≥ Mt2ζ ′′′(z). (6)

Define

ψ(z) := δ(z)
j(z)(ζ ′′′)p−1(z)

ζ p−1(z/2)
(7)

and

ψ′(z) = δ′(z)
j(z)(ζ ′′′)p−1(z)

ζ p−1(z/2)
+ δ(z)

(
j(ζ ′′′)p−1

)′
(z)

ζ p−1(z/2)

−(p− 1)δ(z)
ζ ′(z/2)j(z)(ζ ′′′)p−1(z)

2ζ p(z/2)
.

Using (7) and (6), we find

ψ′(z) ≤ δ′(z)
δ(z)

ψ(z) + δ(z)

(
j(ζ ′′′)p−1

)′
(z)

ζ p−1(z/2)

−(p− 1)Mt2δ(z)
j(z)(ζ ′′′)p(z)

2ζ p(z/2)
.

From (1), we obtain

ψ′(z) ≤ δ′(z)
δ(z)

ψ(z)− k f a(z)
ψ(z)
j(z)

−kgδ(z)q(z)
ζ p−1(c(z))
ζ p−1(z/2)

− (p− 1)Mt2 ψ
p

p−1 (z)

2(δ(z)j(z))1/(p−1)

≤ −kgδ(z)q(z) +
(

δ′(z)
δ(z)

− k f
a(z)
j(z)

)
ψ(z)− (p− 1)Mt2 ψ

p
p−1 (z)

2(δ(z)j(z))1/(p−1)
.

So, we find

ψ′(z) ≤ −kgδ(z)q(z) + φ(z)ψ(z)− (p− 1)Mt2

2(j(z)δ(z))1/(p−1)
ψ

p
p−1 (z). (8)

Using Lemma 1, we set

D = φ(z), C = (p− 1)Mt2/
(

2(j(z)δ(z))1/(p−1)
)

and y = ψ,

we have

ψ′(z) ≤ −kgδ(z)q(z) +
(

2
Mt2

)p−1 j(z)δ(z)(φ(z))p

pp . (9)

Integrating from z1 to z, we obtain

∫ z

z1

(
kgδ(s)q(s)−

(
2

Ms2

)p−1 j(s)δ(s)(φ(s))p

pp

)
ds ≤ ψ(z1),

which contradicts (3).
For case (D2). Since
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(
−j(z)

(
−ζ ′′′(z)

)p−1G(z0, z)
)′

=
(
−j(z)

(
−ζ ′′′(z)

)p−1
)′

G(z0, z)

+
(
−j(z)

(
−ζ ′′′(z)

)p−1
)

G(z0, z)
a(z)
j(z)

= (−1)p(−a(z) f
(
ζ ′′′(z)

)
− q(z)g(ζ(c(z)))

)
G(z0, z)

−a(z)
(
−ζ ′′′(z)

)p−1G(z0, z)

≤ (−1)p
(
−k f a(z)

(
ζ ′′′(z)

)p−1 − kgq(z)ζ p−1(c(z))
)

G(z0, z)

−a(z)
(
−ζ ′′′(z)

)p−1G(z0, z)

=
(
−a(z)

(
−ζ ′′′(z)

)p−1(1− k f
)
+ kgq(z)

(
−ζ p−1(c(z))

))
G(z0, z)

= (−1)p−1
(
−a(z)

(
ζ ′′′(z)

)p−1(1− k f
)
+ kgq(z)

(
ζ p−1(c(z))

))
G(z0, z)

≤ −kgq(z)ζ p−1(c(z))G(z0, z) < 0,

we deduce that −j(z)(−ζ ′′′(z))p−1G(z0, z) is decreasing. Thus, for s ≥ z ≥ z1

(j(s)G(z0, s))1/(p−1)ζ ′′′(s) ≤ (j(z)G(z0, z))1/(p−1)ζ ′′′(z). (10)

Dividing both sides of (10) by (j(s)G(z0, s))1/(p−1) and integrating from z to h, we get

∫ h

z
ζ ′′′(z)dt ≤ (j(z)G(z0, z))1/(p−1)ζ ′′′(z)

∫ h

z

ds

(j(s)G(z0, s))1/(p−1)
.

Easily, we find that

ζ ′′(h)− ζ ′′(z) ≤ (j(z)G(z0, z))1/(p−1)ζ ′′′(z)
∫ h

z

ds

(j(s)G(z0, s))1/(p−1)
.

Letting h→ ∞, we find that

−ζ ′′(z) ≤ (j(z)G(z0, z))1/(p−1)ζ ′′′(z)
∫ ∞

z

ds

(j(s)G(z0, s))1/(p−1)
.

Therefore, we see that

−ζ ′′(z) ≤ (j(z)G(z0, z))1/(p−1)ζ ′′′(z)ξ(z),

which yields

− ζ ′′′(z)
ζ ′′(z)

ξ(z)(j(z)G(z0, z))1/(p−1) ≤ 1.

Hence,
j(z)(ζ ′′′(z))p−1

(ζ ′′(z))p−1 ≥ −1
ξ p−1(z)G(z0, z)

. (11)

Define

B(z) := − j(z)(−ζ ′′′)p−1(z)

(ζ ′′(z))p−1 , (12)

we obtain B(z) < 0 also, from (11) and (12), we have

B(z) ≥ −1
ξ p−1(z)G(z0, z)

. (13)
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From (12), we find

B′(z) =

(
−j(z)(−ζ ′′′(z))p−1

)′
(ζ ′′(z))p−1 − (p− 1)

−j(z)(−ζ ′′′(z))p

(ζ ′′(z))p .

Using (1), we obtain

B′(z) ≤
−a(z)k f (−ζ ′′′(z))p−1

(ζ ′′(z))p−1 −
q(z)kgζ p−1(c(z))

(ζ ′′(z))p−1 − (p− 1)
−j(z)(−ζ ′′′(z))p

(ζ ′′(z))p .

From (12), we see

B′(z) = −k f
a(z)
j(z)

B(z)− kgq(z)
ζ p−1(c(z))

(ζ ′′(z))p−1 − (p− 1)
B

p
p−1 (z)

j
1
α (z)

. (14)

= −k f
a(z)
j(z)

B(z)− kgq(z)
ζ p−1(c(z))

(ζ ′′(c(z)))p−1
(ζ ′′(c(z)))p−1

(ζ ′′(z))p−1 − (p− 1)
B

p
p−1 (z)

j
1

p−1 (z)
.

Using Lemma 3, we find

ζ(z) ≥ µ

2
z2ζ ′′(z). (15)

From (13)–(15), we obtain

B′(z) ≤
k f a(z)

j(z)ξ p−1(z)G(z0, z)
− kgq(z)

(µ

2
c2(z)

)p−1
− (p− 1)

B
p

p−1 (z)

j
1

p−1 (z)
. (16)

From (11), we see
ζ ′′′(z)
ζ ′′(z)

≥ −1

ξ(z)(j(z)G(z0, z))1/(p−1)
.

Using the latter inequality and (4), we see

(
ζ ′′(z)
ϑ(z)

)′
=

ζ ′′′(z)ϑ(z)− ζ ′′(z)ϑ′(z)
ϑ2(z)

≥ −ζ ′′(z)
ϑ2(z)

(
ϑ(z)

ξ(z)(j(z)G(z0, z))1/(p−1)
+ ϑ′(z)

)
≥ 0,

which implies that ζ ′′(z)/ϑ(z) is nondecreasing. Thus, it follows from c(z) ≥ z that

ζ ′′(c(z))
ζ ′′(z)

≥ ϑ(c(z))
ϑ(z)

.

So, by (14) and (15), we see

B′(z) ≤
k f a(z)

j(z)ξ p−1(z)G(z0, z)
− kgq(z)

(µ

2
c2(z)

)p−1
(

ϑ(c(z))
ϑ(z)

)p−1
− (p− 1)

B
p

p−1 (z)

j
1

p−1 (z)
. (17)

Multiplying (17) by ξ p−1(z)G(z0, z) and integrating from z1 to z, we get
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ξ p−1(z)G(z0, z)B(z)− ξ p−1(z1)G(z0, z1)B(z1)− k f

∫ z

z1

a(s)
j(s)

ds

−(p− 1)
∫ z

z1

j
−1

p−1 (s)ξ p−2(s)G(s0, s)ϕ(s)B(s)ds

+
∫ z

z1

kgq(s)
(µ

2
c2(s)

)p−1
(

ϑ(c(s))
ϑ(s)

)p−1
ξ p−1(s)G(s0, s)ds

+(p− 1)
∫ z

z1

B
p

p−1 (s)

j
1

p−1 (s)
ξ p−1(s)G(s0, s)ds

≤ 0.

By Lemma 1, we set

C = ξ p−1(s)G(s0, s)/j
1

p−1 (s), D =
∫ z

z1

j
−1

p−1 (s)ξ p−2(s)G(s0, s)ϕ(s)ds, y = B(s).

Thus, we see

ξ p−1(z)G(z0, z)B(z)− ξ p−1(z1)G(z0, z1)B(z1)− k f

∫ z

z1

a(s)
j(s)

ds

+
∫ z

z1

kgq(s)
(µ

2
c2(s)

)p−1
(

ϑ(c(s))
ϑ(s)

)p−1
ξ p−1(s)G(z0, s)ds

−
∫ z

z1

(p− 1)pδ(s)ϕp(s)G(s0, s)

ξ(s)j
1

p−1 (s)
ds

≤ 0.

Hence, by (13), we obtain

∫ z

z1

(
kgq(s)

(
µc2(s)

2
ϑ(c(s))

ϑ(s)
ξ(s)

)p−1

G(s0, s)− ϕ̃(s)

)
ds ≤ ξ p−1(z1)G(z0, z1)B(z1) + 1,

which contradicts (5).
Theorem 1 is proved.

Remark 1. As a special case of (1), we can apply the same method used in this work to second-order,
advanced differential equations to obtain new results. We set

B(z) := ϑ(z)
ζ ′(z)
ζ(z)

,

in second-order, advanced differential equation with middle term. We find the following result

Corollary 1. Let (2) holds. If δ, ϑ ∈ C1([z0, ∞), (0, ∞)) such that

lim sup
z→∞

∫ z

z0

(
kgδ(s)q(s)− j(s)δ(s)(φ(s))p

pp

)
ds = ∞, (18)

additionally, (4) is satisfied and

lim sup
z→∞

∫ z

z0

(
kgq(s)

(
ϑ(c(s))

ϑ(s)
ξ(s)

)p−1
G(z0, s)− ϕ̃(s)

)
ds = ∞, (19)
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then equation (
j(z)Φp[ζ

′(z)]
)′
+ a(z) f

(
ζ ′(z)

)
+ q(z)g(ζ(c(z))) = 0, (20)

is oscillatory.

Now, we present two examples that illustrate the applicability of the obtained results.
It is worth noting that these examples represent many physical phenomena, such as their
application in earthquake structures, mechanical oscillations and clinical applications.

Example 1. Consider the differential equation(
z2(ζ ′′′(z)))′ + z

2
ζ ′′′(z) +

q0

z2 ζ(2z) = 0. (21)

where q0 > 0, p = 2, z0 = 1, j(z) = z2, a(z) = z/2, q(z) = z, c(z) = 2z, we now set
δ(z) = z, k f = kg = 1, then

G(z0, z) = exp
(∫ z

z0

a(z)
j(z)

du
)
= z1/2, ξ(z) =

∫ ∞

z

ds

(j(s)G(z0, s))
1
α

=
2z−3/2

3
,

ϑ(z) =
2z−3/2

3
, ϕ(z) =

1

G
1

p−1 (z0, z)
− ξ(z)a(z)j(2−p)/(p−1)(z)

p− 1
=

2z−1/2

3
, φ(z) =

−1
2z

and

ϕ̃(z) =
a(z)
j(z)

+
(p− 1)pδ(z)ϕp(z)G(z0, z)

ξ(z)j
1

p−1 (z)
=

2z−1/3

3
.

Thus, we obtain

lim sup
z→∞

∫ z

z0

(
kgδ(s)q(s)−

(
2

Ms2

)p−1 j(s)δ(s)(φ(s))p

pp

)
ds = ∞

and
ϑ(z)

ξ(z)(j(z)G(z0, z))1/(p−1)
+ ϑ′(z) = 0

also, for some µ ∈ (0, 1),

lim sup
z→∞

∫ z

z0

(
kgq(s)

(
µc2(s)

2
ϑ(c(s))

ϑ(s)
ξ(s)

)p−1

G(z0, s)− ϕ̃(s)

)
ds = ∞.

Using Theorem 1, the Equation (21) is oscillatory if q0 > 0.

Example 2. Consider the differential equation(
z2(ζ ′(z)))′ + z

2
ζ ′(z) + q0ζ(2z) = 0. (22)

where q0 > 0, p = 2, z0 = 1, j(z) = z2, a(z) = z/2, q(z) = q0, c(z) = 2z, we now set
δ(z) = k f = kg = 1, then ξ(z) = ϑ(z) = 2z−3/2/3.

Using Corollary 1, the Equation (22) is oscillatory if q0 > 2
√

2.

4. Conclusions

In this article, we establish oscillation conditions of advanced nonlinear differential
equations of fourth-order with middle term of the form (1). Our approach is different and
obtained by using Riccati technique to reduce the main equation into a first-order equation.
The new proposed criteria complement several results in the literature. We provide two



Symmetry 2021, 13, 843 9 of 10

examples with specific parameters to illustrate the applicability of our theorems. In future
work, we will discuss the oscillatory behavior of these equations by using the integral
averaging technique and under the condition

∫ ∞

z0

[
1

j(s)
exp

(
−
∫ s

z0

a(y)
j(y)

dy
)]1/α

ds = ∞. (23)
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