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Abstract: An abdominal aortic aneurysm (AAA) is usually asymptomatic until rupture, which is
associated with extremely high mortality. Consequently, the early detection of AAAs is of paramount
importance in reducing mortality; however, most AAAs are detected by medical imaging only
incidentally. The aim of this study was to investigate the feasibility of machine learning-based pulse
wave (PW) analysis for the early detection of AAAs using a database of in silico PWs. PWs in the large
systemic arteries were simulated using one-dimensional blood flow modelling. A database of in silico
PWs representative of subjects (aged 55, 65 and 75 years) with different AAA sizes was created by
varying the AAA-related parameters with major impacts on PWs—identified by parameter sensitivity
analysis—in an existing database of in silico PWs representative of subjects without AAAs. Then, a
machine learning architecture for AAA detection was trained and tested using the new in silico PW
database. The parameter sensitivity analysis revealed that the AAA maximum diameter and stiffness
of the large systemic arteries were the dominant AAA-related biophysical properties considerably
influencing the PWs. However, AAA detection by PW indexes was compromised by other non-AAA
related cardiovascular parameters. The proposed machine learning model produced a sensitivity
of 86.8 % and a specificity of 86.3 % in early detection of AAA from the photoplethysmogram PW
signal measured in the digital artery with added random noise. The number of false positive and
negative results increased with increasing age and decreasing AAA size, respectively. These findings
suggest that machine learning-based PW analysis is a promising approach for AAA screening using
PW signals acquired by wearable devices.

Keywords: abdominal aortic aneurysm; pulse wave analysis; one-dimensional modelling; in silico
pulse waves; machine learning; recurrent neural network; long short-term memory

1. Introduction

An abdominal aortic aneurysm (AAA) is usually defined as the irreversible local-
ized dilatation of the infrarenal abdominal aorta, which is usually asymptomatic until
rupture [1]. The morbidity of AAA is significantly higher in men than in women (1.3%
to 8.9% vs. 1.0% to 2.2%) and increases as a result of various factors such as tobacco
smoking, ageing, and a family history of AAAs [1–3]. Given that the rupture of an AAA
is often lethal with mortality reaching about 90% [4,5], timely diagnosis and appropriate
treatment are crucial for patients with an AAA. Large AAAs in underweight subjects can
often be detected by physical examination, but accuracy depends on the examiner’s skills
and is considerably reduced for obese body habitus and small AAA size [6]. In current
clinical practice, AAAs are most often detected as incidental findings of ultrasonogra-
phy, abdominal computed tomography, or magnetic resonance imaging performed for
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other purposes [6]. However, these medical imaging examinations require professional
equipment that cannot be used in daily life.

Considering that the presence of an AAA has a systemic impact on the biophysical
properties of the cardiovascular system, thus influencing the arterial pulse wave (PW) [7,8],
analysis of PWs acquired by wearable devices may provide an alternative approach for
the early detection of AAAs. These devices are more convenient and less expensive for
large-scale screening than medical imaging exams. In particular, the photoplethysmogram
(PPG) PW is easily acquired using pulse oximeters, which are frequently used in healthcare
settings to measure arterial blood oxygen saturation and pulse rate. The PPG signal
can also be acquired by devices available to the wider population, such as smartphones,
smartwatches and fitness bands [9]. Therefore, if it was possible to detect an AAA from the
PPG then it may have great clinical utility.

In recent years, machine learning-based PW analyses have been performed to in-
vestigate a wide range of clinical problems, showing promising results [10–13]. Training
machine learning models usually requires databases of PWs measured in a large number
of subjects. Acquiring these data, however, presents several challenges: (i) the measure-
ment accuracy is subject to the type of equipment used and may be operator-dependent;
(ii) it is complex to measure PWs at all sites of interest; (iii) it can be difficult to measure
reference variables precisely; (iv) it is challenging to study the influence of individual
cardiovascular properties on the PW in vivo since other properties may change over time;
and (v) data acquisition is expensive and time-consuming. Databases of simulated PWs
representative of real subject samples provide an alternative approach that addresses all
these challenges. A database of in silico PWs can be produced by using computational
blood flow modelling [14–17]. This is a cost-effective approach to generate a large num-
ber of virtual subjects, each with a distinctive set of PW signals, across a wide range of
pathophysiological conditions for the training process of a machine learning model for PW
analysis. Consequently, machine learning-based PW analysis using the database of in silico
PWs could be employed for the early detection of AAAs.

Previous studies on AAAs have mainly studied AAA rupture by statistical analysis of
AAA morphology [18,19], biomechanical analysis using semi-empirical equations [20], and
three-dimensional finite element analysis of AAA wall stress [21,22]. Some computational
studies investigated the initiation and growth of an AAA [23–25], and others focused on
the prediction and planning of interventional procedures for AAAs such as endovascular
deployment of stent-grafts [26–28]. Moreover, some studies have studied PW propagation
in the presence of AAAs [29–31] and investigated the effects of AAAs on PW morphology
by using computational blood flow modelling [32–36].

The aim of this study was to create a new database of in silico PWs representative
of subjects aged 55, 65 and 75 years old, with and without AAAs, and investigate the
feasibility of machine learning-based PW analysis for the early detection of AAA using
this database. Firstly, PWs in baseline subjects with and without AAAs were modelled
using one-dimensional blood flow modelling, and a parameter sensitivity analysis was
performed to evaluate the influence of AAA-related biophysical properties on the simulated
PWs. Subsequently, the new database of in silico PWs was created by introducing the
AAA-related parameters found to have a large impact on PWs (by the sensitivity analysis)
into an existing in silico PW database representative of subjects without AAAs [14]. Finally,
a machine learning architecture was proposed based on the recurrent neural network
(RNN). This was trained and tested using the peripheral PPG PW derived from the in-silico
PW database to evaluate the performance of machine learning-based PW analysis for the
early detection of AAAs.

2. Materials and Methods
2.1. Modelling Pulse Waves in Baseline Subjects with and without AAAs

One-dimensional blood flow modelling in the lager systemic arteries (see Figure 1)
was used to simulate several PW signals: blood pressure, blood flow velocity, blood
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flow rate and PPG. The baseline subject without an AAA was adapted from the baseline
65-year-old subject derived from the database of in silico PWs developed by Charlton [14],
given that it is usually elderly people who suffer from AAA [2,22]. Herein, two biophysical
properties of the original model were adapted to make the subjects with and without AAA
comparable: (i) the tapered infrarenal abdominal aorta was replaced by a straight tube
with a diameter equal to the average value of the original proximal and distal diameters,
and (ii) wall viscosity in this segment was removed to improve numerical stability. The
baseline subject with an AAA was then obtained by modifying the baseline subject without
AAA (Figure 1). First, the shape of the infrarenal abdominal aorta was transformed from
a straight line (i.e., constant diameter) into a cosine curve with the same length and the
maximum diameter being set at 30 mm. Second, the stiffness of this segment, which was
quantified by the product of elastic modulus and wall thickness (Eh), was decoupled from
the diameter and thereby maintained constant.
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Figure 1. The one-dimensional model of pulse wave propagation with a normal infrarenal abdominal aorta (left) and the
parameter variations considered to simulate an AAA (right). These include (1) type of AAA shape, (2) AAA maximum
diameter (Dmax), (3) AAA length (L), (4) AAA local stiffness (Eh; i.e., elastic modulus multiplied by wall thickness), and
(5) global stiffness of the larger systemic arteries. The model contains the arterial segments making up the larger systemic
arteries, an aortic inflow waveform prescribed at the aortic root, and lumped outflow boundary conditions at each terminal
segment representing vascular beds.

2.2. Parameter Sensitivity Analysis

Based on the reference model of a subject aged 65 years old with an AAA introduced
in Section 2.1, several AAA-related biophysical properties—the type of AAA shape, AAA
maximum diameter, AAA length, AAA local stiffness and global stiffness of the larger
systemic arteries—were varied individually to investigate their influence on the simulated
PWs (see Figure 1).

Although AAAs in real patients are usually fusiform and asymmetric [1,21,37], previ-
ous model-based studies have simulated AAAs as being axisymmetrical with a geometry
that can be described by several types of mathematical functions [33,35]. In the present



Symmetry 2021, 13, 804 4 of 18

study, three common types of AAA shapes derived from previous studies were considered:
multiple tangential arcs [33] (Shape 1), a cosine curve [35,38] (Shape 2), and a parabolic-
exponential curve [39] (Shape 3) (see Figure 1). The mathematical functions of the radius (y)
against the distance from the vessel inlet (x) for the three types of shapes were respectively
expressed by:
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where d is the radius of the straight infrarenal abdominal aorta without AAA, L is the vessel
length and h is the difference between the AAA maximum diameter and d (see Figure 1).

The AAA size is usually evaluated by the maximum diameter (Dmax) in clinical
practice, with Dmax larger than 30 mm being diagnosed as AAA and Dmax larger than
50 mm being stratified as a serious AAA [2,40]. Since this study focused on the early
detection of AAAs, herein three levels of Dmax were considered in the parameter sensitivity
analysis: 30, 40 and 50 mm. Besides the maximum diameter, the length of an AAA
also shows inter-patient difference [18,41], which was considered in the present study by
increasing the length of the reference model from 106 to 120 mm (see Figure 1).

Besides these morphological features, the infrarenal abdominal aorta in subjects with
an AAA usually has a higher elastic modulus and a thicker vascular wall compared with
normal subjects [25,42]. In the model this was simulated by coupling the stiffness Eh of the
AAA with the diameter (D, varying along the infrarenal abdominal aorta) using:

Eh = D[k1 exp(k2D) + k3]. (4)

The values of the empirical constants k1, k2, and k3 were taken from a previous study [14].
Variations in AAA local stiffness were described by multiplying the above expression by a
cosine function that made the maximum Eh value decrease or increase by 20% (see Figure 1).

Moreover, clinical studies have found larger carotid-femoral pulse wave velocities
(cf-PWVs) in patients with AAA than in age-matched healthy subjects [43–45]. The values
of cf-PWV for control and AAA patients reported by three clinical studies are listed in
Table 1. From these data a cf-PWV increase of 4.3 m/s was calculated in patients suffering
from AAA. This change was considered in the parameter sensitivity analysis by increasing
the prescribed desired cf-PWV as described by Charlton et al. [14].

Table 1. Carotid-femoral pulse wave velocities measured in control cohorts of healthy subjects and
in cohorts of patients with AAA.

Control (Number) AAA Patient (Number) Reference

10.0 m/s (20) 14.8 m/s (18) [43]
10.03 m/s (42) 12.99 m/s (108) [44]
7.97 m/s (31) 13.11 m/s (48) [45]

9.33 m/s 13.63 m/s Mean value
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2.3. Database of In Silico Pulse Waves
2.3.1. Modelling a Database of Pulse Waves in Subjects with and without an AAA

The entire database of in silico PWs created in this study contains three subsets:
(i) baseline subset, (ii) increased global stiffness (IGS) subset, and (iii) AAA subset. The
first two subsets consist of subjects without AAAs, while the third subset contains subjects
with different AAA sizes.

The baseline subset was modelled based on the database developed by Charlton et al. [14],
which contains six age groups with 729 subjects in each group. In the present study, only
the three groups with the older subjects (55, 65 and 75 years old) were used since AAA
usually occurs in the elderly rather than the young [2,22]. The baseline subset was obtained
by modifying each of the original 2187 (729 × 3) subjects as described in Section 2.1. The
IGS subset (also 2187 subjects) was created from the baseline subset, by increasing the
desired cf-PWV by 4.3 m/s as described above (see Table 1).

According to the parameter sensitivity analysis, the AAA-related parameters that
strongly influence the simulated PWs were AAA maximum diameter and global stiffness
of the systemic arteries (see Section 3.1). Variations in global stiffness, which was quantified
by cf-PWV, were already considered in the IGS subset. Accordingly, the AAA subset was
created by introducing an AAA with maximum diameters of 30, 40, or 50 mm to each
subject of the IGS subset. The resulting AAA subset thereby included 6561 (2187 × 3)
subjects with three different AAA sizes. The methodology used to simulate an AAA for
each subject followed the steps described in Section 2.1 to obtain the baseline subject with
an AAA, except for the calculation of AAA local stiffness. Herein, higher Eh values with
cosine distributions were assigned instead of the constant Eh values used in the baseline
and IGS subsets.

A literature review provided the elastic modulus, E, and wall thickness, h, of the
normal infrarenal abdominal aorta and AAA, as summarized in Table 2. The mean increase
in E from normal to AAA was 73.2%. The average h increased by 42.9%, from 1.4 mm
(normal condition) to 2 mm (AAA) and was found to be independent of AAA size [42].
Accordingly, the Eh value of the infrarenal abdominal aorta for the baseline 65-year-old
subject in the AAA subset was assigned a cosine distribution with the mean value increasing
by 147.43% with respect to the baseline subset. At the two extremes in the vessel, Eh was
assigned the same values as for the corresponding subject in the IGS subset. All other 6560
subjects in the AAA subset were prescribed the same distribution of Eh in the infrarenal
abdominal aorta as the baseline 65-year-old subject. This distribution was linearly scaled
to maintain the value at the two vessel extremes used in the IGS subset.

Table 2. Elastic modulus and wall thickness of the normal infrarenal abdominal aorta and AAA.

Source Value Reference

Growth ratio of elastic modulus from normal to AAA

Measured by magnetic
resonance elastography 96.8% [42]

Calculated from the measured
pressure and diameter 49.6% [46]

73.2% Mean value

Normal wall thickness

Derived from clinical
measurements

1.4~1.5 mm [25]
1.39 mm [47]

1.4 mm Mean value
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Table 2. Cont.

Source Value Reference

AAA wall thickness

Derived from clinical
measurements

2 mm [37]
1.63 mm [48]
1.48 mm [49]
2.71 mm [50]
2.87 mm [51]
1.64 mm [52]

Used by previous
model-based studies 2 mm [21,40]

2 mm Mean value

Figure 2 shows the variations in the model input parameters with age for the entire
database. These include the cardiovascular parameters prescribed by Charlton et al. [14]
and the AAA-related parameter changes introduce in this study; i.e., the AAA maximum
diameter and global stiffness of the systemic arteries (shown in red dots and lines).
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2.3.2. Extracting Pulse Wave Indexes

The cf-PWV and the augmentation index (AIx) have been shown to be significantly
higher in patients with AAA compared to normal subjects [43–45]. Accordingly, for each
subject in this study, cf-PWV was calculated from the carotid-femoral pulse transit time (cf-
PTT) and corresponding arterial path length, with the cf-PTT measured from the pressure
PWs in the carotid and femoral arteries using the foot-to-foot method [14,53]. Wave
separation analysis [54] was used to calculate the AIx for each virtual subject, as well as the
timing and magnitude of wave reflection. The forward (Pf) and backward (Pb) components
of the pressure PW in the ascending aorta were calculated from the pressure (P), flow (Q),
and local characteristic impedance (Zc, herein the average value of the modulus of the 3rd
to 10th harmonics of the input impedance [55]):{

Pf = (P + ZcQ)/2
Pb = (P− ZcQ)/2

. (5)

The wave reflection magnitude was calculated as the ratio of the amplitude of Pb to the
amplitude of Pf. The time delay (∆Tf-b) between Pb and Pf was obtained using their zero
cross-over as reference points. The AIx was calculated as:

AIx = 100× SBP− Pfb
PP

, (6)

with SBP the systolic blood pressure, PP the pulse pressure, and Pfb the pressure at the
time when the Pb adds to the Pf (corresponding to the zero cross-over of Pb).

The PPG PW in the digital artery of each virtual subject was extracted for further
analysis using the mathematical expression [14]:

PPG(t) =
∫ t

0

(
Q1D

(
t′
)
−Qout

(
t′
))

dt′, (7)

where Q1D is the inflow to the windkessel segment connecting with the arterial outlet, and
Qout is the outflow (see Figure 1).

2.4. Machine Learning-Based Pulse Wave Analysis
2.4.1. Recurrent Neural Network

RNN is a machine learning architecture that is widely applied to handle time-series
data in which the inputs at each time step include not only the input from the current
time step, but also the output from the previous step [56]. For the purpose of improving
the accuracy of prediction, bidirectional RNN (BRNN)—an advanced architecture—may
be chosen when all time steps of the sequential input data are available [57]. Among the
different types of nodes for RNN, the long short-term memory (LSTM) unit is one of the
most suitable units for data with long duration, which is able to stop vanishing gradients
by keeping track of dependencies between different time steps [58]. Accordingly, BRNN
with LSTM was employed to perform the machine learning-based PW analysis in this
study. Figure 3 shows a schematic of this machine learning architecture together with the
workflow followed to train the machine learning model using the in silico PWs from the
new database.
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the input layer, where the waves with short durations were extended to the duration of
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dummy values from being considered when the data were processed in the following
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where Hk
j−1 and Hk

j are the input and output, respectively, of the kth LSTM unit in the
jth layer, and Mk

j is the memory cell. U and W are the weights, and b is the bias. The
subscripts f, i, and o represent the forget gate, input gate, and output gate, respectively. σ
and tanh represent the sigmoid function and tanh function, respectively. The parameters
of the present machine learning architecture are summarized in Table 3. This architecture
was constructed using the open-source library TensorFlow 2.1 together with the high-level
application programming interface Keras. The development of this architecture referred to
a previous study as well as the corresponding online repository [59].
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Table 3. Parameters assigned to the BRNN with LSTM.

Parameter Value

Number of LSTM units 16
Batch size 32

Epoch number 256
Optimiser Adam

Cost function Binary cross-entropy

2.4.2. Training and Testing

PPG PWs in the digital arteries were extracted from the new database of in silico
PWs to train and test the machine learning architecture (see Figure 3). The entire database
included 10,935 subjects with (6561) and without (4374) an AAA, randomly split into a
training (80%, 8748) and testing (20%, 2187) set. The infrarenal abdominal aorta was as-
signed a label condition of ‘0’ if an AAA was not present and ‘1’ if an AAA was present. The
PPG PWs in the training set together with their corresponding conditions were employed
in the training process. Subsequently, the trained machine learning model was tested on
the testing set to evaluate its performance in the early detection of AAAs (i.e., classification
of the normal (0) and AAA (1) conditions). Moreover, the trained machine learning model
was further tested on a modified testing set which consisted of randomly varied PPG PWs
obtained by superposing random variations (uniform distribution between−50% and 50%)
to the first twenty harmonics of each PW. These variations reduced the similarity of the
testing set to the training set and made the PWs more realistic by simulating the presence
of measurement errors.

3. Results
3.1. Parameter Sensitivity Analysis

Figure 4 shows the simulated pressure PWs in the infrarenal abdominal aorta, and
an upstream (ascending aorta) and downstream (femoral artery) vessel with individual
variations in the AAA-related parameters described in Section 2.2. The maximum AAA
diameter was the dominant morphological feature affecting the PW shape in these three
arteries, introducing oscillations to the baseline PW with their amplitudes increasing with
the diameter size. In contrast, the type of AAA shape and AAA length only had a small
influence on the simulated pulse waveforms (see the first three rows of Figure 4). Arterial
stiffness also influenced pulse waveforms (see the last two rows of Figure 4). Although
the AAA local stiffness only had a moderate influence, the global stiffness of the larger
systemic arteries considerably affected PW morphology. The pulse pressure increased
with the stiffening of the vascular wall in all one-dimensional model arteries (global
stiffening) under both normal and AAA conditions (see the last row of Figure 4). Under
AAA conditions, the increased pulse pressure combined with the oscillations introduced
by the localized change in diameter in the infrarenal abdominal aorta.
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The simulated flow velocity PWs at the same three arterial sites were also mainly
affected by changes in maximum AAA diameter and overall stiffness (see Figure 5). How-
ever, only the infrarenal abdominal aorta and femoral artery were affected by these changes,
since the velocity PW in the ascending aorta was determined primarily by the prescribed
inflow waveform at the aortic root and the ascending aorta diameter, and neither was
varied to simulate arterial haemodynamics with the presence of an AAA. Furthermore, the
amplitude of the velocity PW in the infrarenal abdominal aorta was reduced by more than
50% for all AAA-related parameters, since the AAA increased the luminal cross-sectional
area in that vessel without changing the flow rate.
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3.2. Effects of AAA on Pulse Waveforms and Comparison with the Literature

Figure 6 shows pressure, flow velocity and PPG PWs for the baseline 65-year-old
subjects in the IGS and AAA subsets at various measurement sites. The presence of an
AAA introduced oscillations to the PWs in the infrarenal abdominal aorta (where the AAA
is located), as well as in other upstream and downstream arteries. The amplitudes of these
oscillations increased with increasing maximum AAA diameter. Further comparison of the
PPG PWs in the digital artery in the frequency domain revealed increasing discrepancies
between the magnitudes of the 5th and the 6th harmonics with the increasing maximum
AAA diameter. These findings suggest that PWs measured in peripheral sites, such
as the digital artery in the finger, could be used to detect the presence of an AAA in
clinical practice.

According to in vivo measurements reported by previous studies, the flow velocity
PW in a normal infrarenal abdominal aorta has a triphasic waveform due to the highly
resistive blood flow, while the presence of an AAA leads to a much slower and less resistive
waveform [8]. These results are qualitatively comparable with the simulated velocity PWs
in the middle of the infrarenal abdominal aorta shown in Figure 6. Moreover, in vitro
measurements in a hydraulic bench model showed similar trends to the simulated results
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of the present study, such as the oscillations in the pressure PW in the ascending aorta in
the presence of an AAA, and the increased magnitude and oscillations in the velocity PW
at the inlet of the AAA [36].
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AAA subset (Dmax = 30 mm, Dmax = 40 mm, and Dmax = 50 mm). The PPG wave is shown in the digital artery in the time
and frequency domains (labelled in blue).

3.3. Comparison of Pulse Wave Indexes Extracted from the Pulse Wave Database

Figure 7 compares PW indexes obtained from pressure measurements in the ascending
aorta (except for cf-PWV and digital PPG indexes) under normal conditions (baseline and
IGS subsets) and with an AAA (AAA subset). These indexes were selected because they
have been shown to differ in subjects with and without AAA in clinical studies [43–45].
The mean blood pressure (MBP) in the ascending aorta was similar between the two
conditions, but the systolic blood pressure (SBP) increased in the IGS and AAA subsets and
the diastolic blood pressure (DBP) decreased due to arterial wall stiffening increasing pulse
pressure (Figure 7a–c), as well as carotid-femoral pulse wave velocity (Figure 7g). Moreover,
although the wave reflection magnitude (Pb/Pf) was similar between the IGS and AAA
subsets, the wave reflection time (∆Tf-b) increased significantly in the AAA condition
(Figure 7d,e). The AIx did not show a clear trend, though it was considerably higher in the
AAA subset with the largest AAA diameters than in the baseline subset (Figure 7f).

Indexes calculated from the peripheral PW were also considered in this study. The
differences between the magnitudes of the 5th and the 6th harmonics of the PPG PWs in
the digital artery, which showed a significant increase with the presence of an AAA in
the baseline 65-year-old subject (see Figure 6, last plot), were compared among different
subsets. As shown in Figure 7h,i, the mean value of the differences in magnitude were
similar among different subsets, but the standard deviations of the AAA subset were
relatively larger, indicating a wide range of values in the AAA subset. This result suggests
that the difference between the magnitudes of the 5th and the 6th harmonics of the digital
PPG PW (as well as the PW itself) was strongly influenced by various cardiovascular
parameters in addition to the AAA size. Therefore, the detection of an AAA by individual
analysis of PPG PW indexes is a challenging task.
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Figure 7. Comparison of pulse wave indexes obtained in the baseline and increased global stiffness (IGS) subsets (in black)
and the AAA subset with different AAA sizes (in red). SBP: systolic blood pressure (a); DBP: diastolic blood pressure
(b); MBP: mean blood pressure (c); Pb/Pf: wave reflection magnitude (d); ∆Tf-b: time delay between Pb and Pf (e); AIx:
augmentation index (f); cf-PWV: carotid-femoral pulse wave velocity (g); difference between the magnitudes of the 5th
and the 6th harmonics of the digital PPG pulse wave (h), and the same difference normalized by the magnitude of the 1st
harmonic (i). Dots indicate mean values and error bars represent standard deviations. All indexes were calculated in the
ascending aorta except for cf-PWV and digital PPG indexes.

3.4. AAA Early Detection Using Machine Learning

Figure 8 shows the confusion matrices and receiver operator characteristic (ROC)
curves of the AAA prediction using both the original testing set (top) and the modified
testing set with randomly varied PPG PWs (bottom). The trained machine learning model
showed near to perfect performance when using the original set. The area under the curve
(AUC) was approximately equal to 1, and almost all subjects were classified correctly (see
top panels in Figure 8). When the modified testing set was employed (Figure 8, bottom),
the resulting AUC could reach 0.928, suggesting that the trained machine learning model
was competent in classifying normal and AAA conditions using digital PPG PWs that had
less resemblance to the PWs of the training set.

Further analysis of the type of subjects in each condition of the confusion matrix
revealed that misdiagnosis (i.e., false positive) usually occurred in older subjects (age 75:
89%, when using the original testing set; 53%, when using the modified testing set), while
younger subjects with relatively smaller AAA were more likely to suffer from missed
diagnosis (i.e., false negative) (see central column in Figure 8). Nonetheless, the ratio of
misdiagnosis and missed diagnosis were overall low in the predicted results using both
the original and modified testing sets (misdiagnosis: 9/853 (original), 117/853 (modified);
missed diagnosis: 13/1334 (original), 176/1334 (modified)). These findings suggest that
the machine learning model trained with a database of in silico PWs could be used for the
early detection of AAAs in real subjects.
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applicable) in brown.

4. Discussion

We have provided a proof of concept for the feasibility of early detection of AAAs
by machine learning-based pulse wave (PW) analysis. Given the high mortality of AAA
rupture, early detection of AAAs is crucial for an effective treatment to reduce the risk of
rupture. AAAs are often detected as incidental findings of medical imaging assessments
which are costly and can only be performed at specialised centres. Analysis of PPG PWs, on
the other hand, offers the possibility to screen the wider population, since these signals can
be acquired by a wide range of ubiquitous devices such as smartphones, tablets, and fitness
devices. Using a newly created database of in silico PWs in subjects with and without AAAs,
we have demonstrated that AAA detection using individual PW indexes is a challenging
task, but machine learning-based PW analysis is a more promising approach. By using a
recurrent neural network, we have obtained a sensitivity of 86.8% and a specificity of 86.3%
in AAA detection when tested in a modified dataset representative of a sample of subjects
with and without AAAs with random noise added to their PPG PWs.

Our results also suggest that PW indexes may not be sufficient to detect the presence of
an AAA. However, we have not conducted a comprehensive study involving all available
PW indexes and the different methods for calculating them. For example, the AIx was
only calculated using wave separation analysis from pressure and flow waveforms in the
ascending aorta, but the calculation using the second or fourth derivative of the pressure
waveform may be more convenient and improve the results of AAA detection [54]. In
addition, the combination of multiple PW indexes may improve the ability to detect the
presence of an AAA, which needs further research.

The database of in silico PWs was created using a physics-based computational blood
flow model, which allowed us to study the interpretability of the machine learning results.
The simulated AAAs in the virtual subjects of the database covered a range of AAA—from
small to moderate—which enabled evaluation of the ability of the machine learning model
to predict the presence of an AAA in its early stage of development. The size of an AAA
is usually quantified by the maximum diameter which, according to the results of our
parameter sensitivity analysis, is the major morphological factor influencing PWs. This
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finding is consistent with the fact that many computational model-based studies simulating
PWs in the presence of AAAs have varied the AAA maximum diameter [10,33,36]. In
addition, the virtual subjects in our new database had their global stiffness increased to
make the simulated PWs more realistic. Many clinical studies have observed an increase in
the overall stiffness of patients with an AAA [43–45], although this has not been considered
in previous computational model-based studies investigating the influence of AAAs on
PW propagation [10,33–36]. Our parameter sensitivity analysis has suggested that the
global stiffness of large systemic arteries has a considerable effect on the discrepancies of
the PWs under normal and AAA conditions, highlighting the importance of simulating
the effect of increased global stiffness with AAAs. Moreover, the false positive and false
negative results of the machine learning prediction were closely related to the age of the
subject and AAA size, suggesting that these two factors should be considered to optimise
the predictive power of machine learning algorithms. Lastly, although the PPG PW was
used in the training and testing of the machine learning architecture used in this study,
PWs measured along the arteries in the arm were similarly affected by the presence of an
AAA. As a result, it is expected that any of these PWs could be used for AAA detection by
machine learning-based PW analysis, although the PPG PW at the digital artery or radial
artery may be easier to acquire in real subjects.

The findings of this study must be considered in the context of certain limitations.
Firstly, the computational model used in the present study is a one-dimensional model
rather than a three-dimensional model that should be more accurate in simulating blood
flow in the presence of an AAA. Nonetheless, a recent study has demonstrated that one-
dimensional modelling of the large arteries is accurate compared to three-dimensional
modelling to simulate PW propagation across AAA [60]. Secondly, in patients with AAAs,
calcification and intraluminal thrombus usually occur within the AAA, which change
the stiffness (both the elastic modulus and wall thickness) of the AAA and significantly
influence the distribution of AAA wall stresses [61–63]. However, one-dimensional mod-
elling is not able to directly simulate calcification and intraluminal thrombus. In this study,
the effects of calcification and intraluminal thrombus were described by increasing the
local stiffness of AAAs, which was also the approach adopted by previous studies using
one-dimensional modelling [10,35,36]. Lastly, although the variations of many influential
cardiovascular parameters were considered to generate the present in silico PW database,
the conditions of real subjects were not fully described since they are more complicated and
not so systematic. The testing set was derived from the in silico PW database and in vivo
measurements were not used, making our study a proof-of-concept. Further research
is warranted to test the machine learning model trained in this study using PPG PWs
measured in real subjects.

A well-trained and tested machine learning model would be a very useful mathe-
matical tool for the early detection of AAAs by pulse wave analysis. The proliferation of
commercial wearable devices that can accurately measure PPG signals on the wrist or finger
offers an opportunity to screen the wider population for AAAs in daily life. A diagnosis
of AAA should ultimately be confirmed by a medical imaging examination. However,
AAA detection by PPG PW analysis may help improve AAA diagnosis by identifying
those subjects with a potential AAA, thus paving the way for more effective treatment that
reduces the current mortality rates.
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