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Abstract: The article extends a model-based controller design to higher-order systems, focusing on
the speed and shapes of the closed loop responses, including the noise attenuation. It shows that, to
obtain simple but reliable results, it is necessary to pay attention to the initial process identification
and modelling and also to modify the target closed-loop transfer functions, which must remain
causal. To attenuate high initial control signal peaks, appropriate pre-filters are introduced. In order
to work with as few parameters as possible, all higher-order transfer functions (process models,
target closed loops, pre-filters and noise-attenuation filters) are selected in the form of binomial filters
with multiple time constants. Consequently, the so-called “half-rule”, used to reduce too complex
process transfer functions, has been modified accordingly. Because derived controllers can lead to
different transient dynamics depending on the context of use, the article recalls the need to introduce
dynamic classes of control to clarify the mission of individual types of controllers. Consequently, also
the performance evaluation using the total variation (TV) criterion had to be refined. Indeed, in its
original version, TV is not suitable to distinguish between reasonable and excessive control effort
due to improper tuning and noise. The modified TVs allow evaluating higher order systems with
multiple changes in direction of their control signal increase without contributing to the excessive
control increments. The advantages of the proposed modifications, compared to the traditional
approaches, are made clear through simulation examples.

Keywords: model based control; plant modeling; dead-time approximation; delay equivalences;
filtration; noise attenuation; derivative action; total variation; monotonicity

1. Introduction

The development of embedded computers and programmable devices has led to an
amazing expansion of applications for automatic control. At the same time, the expansion
of embedded solutions also has some drawbacks. Typically, the design aspects in embedded
systems are usually much more important than the optimal design of control systems. The
reason for this may be the large number of different control approaches that have been
developed in the last century. Selecting the most suitable one seems to be a difficult and,
above all, time-consuming task. The time required for control loop optimization was quite
limited even a few decades ago [1]. Now the situation is even worse under the constant
pressure of management deadlines. The problems are also caused by the ever-increasing
performance requirements and limits of the improved control devices, which also affect
linear PID design to varying degrees. The explosion of various new methods, among them
also those of fractional controller design [2,3]) cannot be overlooked, but new solutions
can also be documented by the recent revision of SIMC (SImple Control) tuning rules.
In the original work [4], for the most frequently used first-order time delayed (FOTD)
models [5], the PI controller was predominantly proposed. Recently, IAE optimization-
based PID controller modifications have been presented in [6] for this task to increase the
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achievable performance limits. Moreover, in the context of works dealing with fractional-
order PID controllers that eventually lead to implementation by higher-order controllers
(HO) [2], or works proposing directly HO derivatives (see, e.g., [7–11] and the references
therein), a trend toward using HO controllers is evident. The nice features of the model-
based approach were its constructiveness, simplicity and clarity. It coped well with the
requirements [4,12] that the controller design should be:

1. well motivated,
2. preferably model-based,
3. analytically derived,
4. simple and easy to remember,
5. work well for a variety of processes,
6. provide fast tracking speed and good disturbance rejection,
7. provide stability and robustness with lower variance of process inputs, and
8. reduce sensitivity to measurement noise.

However, forced by the ever-increasing requirements for improved performance
and robustness of transients, the analysis of the original SIMC design performed in this
paper also reveals some ad hoc simplifications. These could be useful for controlling
PI, but limit possible generalizations of the approach. The SIMC author has already
attempted to improve the method by introducing the iSIMC approach, which, however,
somewhat diminishes the advantages of the original analytical design by adding numerical
optimization [6].

In addition to the generalization of the model-based SIMC design for higher order
systems approximated by the transfer function jS(s) with a j-tuple time time constant
Tj, the original SIMC approach is modified, extended or supplemented in seven other
aspects. These include the early stages of controlled process identification, selection of
target transfer functions, reduction of more complex process transfer functions to a suitable
transfer function jS(s), pre-filter design, performance measures used to evaluate the design
and its visualization, and design optimization itself.

The choice of the desired first-order closed-loop transfer function for higher-order
processes resulted in a noncausal PID controller. Such simplifications complicated the
design of the controller, as the realization of appropriate filters needed to implement the
controller was far from trivial. By choosing a causal target transfer function, this problem
can be avoided: its specification also includes the design of the necessary filters and thus
the design of a PID controller is directly comparable to PI.

The mentioned design imbalance between PI and PID controllers is further reduced
by a new formulation of the “half-rule”, using an analytical model reduction to simplify
more complex transfer functions. A measure of control performance called total variation
(TV) has been proposed for the design [4]. Two decades ago, the introduction of TV to
evaluate total controller performance was a revolutionary step that demonstrated the
need to consider the shape of controller output. However, the limitations of using TV are
based on the process orders. Namely, the higher order systems undergo several changes
in the direction of the control signal in optimal response. However, such optimal control
increases the value of TV and thus deceptively impairs its suitability. Another performance
measure to evaluate the speed of transients is the integral of the absolute control error
(IAE). Unfortunately, its optimal value usually results in overshoots of the controlled
signal. However, these can be unacceptable for many (e.g., mechatronic) applications. To
reduce the overshoot, additional design constraints, for example, the sensitivity peaks,
were needed. As will be shown later, the aforementioned drawbacks of using both TV and
IAE measures can be eliminated by using IAE in combination with modified TV measures
based on deviations from the ideal input and output shapes of the system step responses.

Another disadvantage of the original SIMC design is that, with respect to the setpoint
step responses, it leads to exaggerated kicks of the control signals to the setpoint changes,
even for the simplest solutions. These can lead to the entire control solution being infeasible
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in practice, especially for lag- dominant systems. Without a suitable design of a pre-filter
(reference filter), the control dynamics for setpoint changes can become unacceptable.

After weighing all the problematic aspects, we finally conclude (supported by some
recently published works [10,11,13]) that an increase in control performance, robustness
and noise suppression can only be achieved by using higher order controllers.

With the aim of addressing the aforementioned trends, the paper is organized as
follows. Section 2 builds an internal structure for SIMC design, extends it with pre-filters,
and shows that the design is no longer limited to PI and PID controllers, but can be
extended to HO controllers even for FOTD plant models. The section also gives some
guidance on designing noise filters, modifying the half-rule method, and selection of the
desired closed-loop transfer function.

The performance of the modified controller is measured by a refined total variation
measure, which is summarized in Section 3. These further allow the modification of the
loop optimization to focus on minimizing unnecessary signal increments at both the input
and output of the system. The simulation examples given in Section 4, which illustrate the
main features and advantages of the newly proposed modifications, are then discussed in
Section 5. The final summary and possible further developments of the method are given
in the conclusions.

2. Exploring the SIMC Method for Different Plant and Dead-Time Approximations

Figure 1 shows the controller R(s) and the process F(s). Before revising the results
of the model-based controller design from [4], we first consider the pre-filter P(s) = 1.
Also, the limitations of the control signal are not yet considered explicitly, but they must be
respected at least implicitly. The corresponding closed-loop transfer function between the
setpoint W(s) and the process output Y(s) is then

Fcl(s) =
Y(s)
W(s)

= P(s)
R(s)F(s)

1 + R(s)F(s)
=

R(s)F(s)
1 + R(s)F(s)

. (1)

For the given desired closed-loop transfer function Fcl(s), the controller can be calcu-
lated from (1) as follows:

R(s) =
U(s)
E(s)

=
Fcl(s)

1− Fcl(s)
1

F(s)
. (2)

Numerous features of such a design have been studied and popularized by [4] in the
form of simple analytical rules. The aim of our work is to modify some of its ad hoc features
and generalize the above approach so that it can be effectively and reliably applied to
higher order processes. In doing so, several steps of the original design need to be revised,
including the use of higher-order process models if necessary. Since the modified controller
design depends entirely on the order of the process model, the applied model order will
be indicated by a superscript before the transfer function, for example, F(s) = jF(s) (e.g.,
2F(s) when using the second-order process model).

F
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Figure 1. The controller R and the process F in the closed-loop configuration with a possible control
signal limitation; P is the pre-filter, d-disturbance, δ-measurement noise.

2.1. Controllers Based on FOTD Models

As mentioned earlier, when using the stable first-order time-delay plant (FOTD)
models, all associated transfer functions and controllers are denoted by a superscript “1”.
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For example, F(s) = 1F(s) expresses the transfer function of the process between its input
U(s) and its output Y(s) as:

1F(s) =
Y(s)
U(s)

=
Ke−Tds

1 + T1s
, (3)

where Td is the time delay, K is the plant gain and T1 is the process time constant. Since
the process has a time delay, the desired closed loop transfer function Fcl(s) = Y(s)/W(s)
between the reference setpoint W(s) and the plant output Y(s) must also include the
time delay:

1Fcl(s)=
1

1 + Tc1s
e−Tds (4)

where Tc1 is the desired closed loop time constant.
Once the desired closed loop transfer function (4) is defined, the controller R(s)

parameters can be calculated from (2). However, the exponential term (the time delay)
appears in the denominator of (2). To solve the equation, the simplest solution is to
approximate the exponential term by the first-order Taylor series:

e−Tds ≈ 1− Tds. (5)

The above approach yields the first-order controller (PI):

1R1(s) =
U(s)
E(s)

=
1 + T1s

K(Tc1 + Td)s
= Kc(1 +

1
Tis

), (6)

where
Ti = T1 > 0; Kc =

T1

K(Tc1 + Td)
(7)

and where the left index “1” in 1R1 denotes the order of the process model used to compute
the controller parameters, and the right index “1” denotes the controller (in this case
PI controller) order. Note that this nomenclature will be used throughout the paper
from now on.

As indicated in (7), the integrative time constant and the process model time constant
should be positive. This implies that the method can only be applied to stable processes.
This restriction also applies to HO controllers.

Note that the recommended values for the closed-loop time constant are [4]:

Tc1 ≥ Td. (8)

However, as will be shown later, the above restriction is only a guideline. For the
simplest controllers, Tc1 should be chosen even larger, while it can be reduced for HO
controllers. To distinguish the process model parameters (1Fm(s)) from the actual pro-
cess parameters (1F(s)), the subscript “m” is appended to the process parameters in the
following text:

1Fm(s) =
Kme−Tdms

1 + T1ms
. (9)

Besides developing the exponential term in the denominator of (2) with the first-order
Taylor series (5), we can also use the Padé approximation [14]:

e−Tds ≈ 1− sTd/2
1 + sTd/2

. (10)

In this case, we obtain the following second-order (PID) controller:

1R2(s) = Kc

(
1 +

1
Tis

)
1 + TDs
1 + Tf 1s

, (11)
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where
Ti = T1; TD = Td/2;

Kc =
T1

K(Tc1 + Td)
; Tf 1 =

Tc1Td
2(Tc1 + Td)

. (12)

The controller (11) is briefly discussed in [4], where the conclusion was that “it proba-
bly does not justify the increased complexity of the controller and the increased sensitivity
to measurement noise”. However, in a recent paper [6], the use of the derivative term is
again proposed to improve the closed-loop performance.

Note that (similar to traditional analog controllers) the filter time constant Tf 1 is not
arbitrary but uniquely given. Moreover, with Tc1 = 0.75Td the parameters Ti, TD and
Kc (12) correspond to the recommended parameters of one of the oldest methods of PID
controller tuning [15].

The use of higher order Taylor approximations does not lead to stable controllers,
while this is not true for Padé approximations. Indeed, a stable higher order controller is
obtained by evolving the exponential term in the denominator of (2) to the second order
Padé approximations [14]:

e−Tds ≈
1− Td/2s + T2

d s2/12
1 + Td/2s + T2

d s2/12
(13)

From this approach, the third-order 1R3-proportional-integrative-derivative-accelerative
(1PIDA) controller is obtained:

1R3(s) = Kc

(
1 +

1
Tis

)
1 + TD1s + TD2s2

1 + Tf 1s + Tf 2s2 . (14)

where
Ti = T1; TD1 = Td/2; TD2 = T2

d /12;

Kc =
T1

K(Tc1 + Td)
; Tf 1 =

0.5Tc1Td
Tc1 + Td

; Tf 2 =
0.0833Tc1T2

d
Tc1 + Td

.
(15)

At this point, the reader may wonder why we should use HO PID controllers when
sometimes the PID controllers already have excessive noise gain? As shown in [7–11] and
as will be discussed later, the HO controllers can significantly improve control performance
even in noisy environments without introducing excessive noise at the controller output.
The higher order Padé approximations of the time delay lead to a better description of the
controlled system and hence improved control performance. To simplify the further deriva-
tions for higher order process models, we will first introduce the normalized dimensionless
parameters. By introducing the new time scale defined by the following complex variable:

p = Tds, (16)

all other time variables are then related to the time delay Td (note that Td > 0):

1F(p) =
Ke−p

1 + τ1 p
; 1Fcl(p)=

1
1 + τc1s

e−p;

τc1 =
Tc1

Td
; τi =

Ti
Td

; 1κ = KcK;

τD1 =
TD1

Td
; τD2 =

TD2

T2
d

; τf 1 =
Tf 1

Td
; τf 2 =

Tf 2

T2
d

.

(17)

Note that in (17), in addition to the normalized process and controller times denoted
by the variables τ, the controller gain Kc is also normalized by the parameter 1κ. The
controller parameters can then be expressed in a more compact form. For example, the
solution (15) can now be expressed as:
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1κ = τ1/[(τc1 + 1)]; τD1 = 1/2; τD2 = 1/12;
τf 1 = 0.5/(1 + 1/τc1); τf 2 = τf 1/6.

(18)

In addition to the FOTD process model, the HO models jF(s), j > 1 can also be used,
as derived in the following subsections.

2.2. Controllers Based on SOTD Models

Remark 1 (The first major change in the SIMC design). The requirement of the first-order
closed-loop transfer function for the second-order plant models in [4] leads to an ideal (improper)
controller that cannot be realized in practice. This step was probably motivated by the design of PID
controllers, prevalent at the time of the mentioned work [4], which did not take into account the
calculation of the controller filter. However, such a design violated the requirements of causality,
which it complied with only when choosing the appropriate delay of the desired closed-loop transfer
function. This also makes the comparison of different controllers under the influence of noise
difficult or impossible. Therefore, the mentioned design did not lead to a more efficient design of
PID controllers, but resulted in comments such as that the derivative term is difficult to tune [16],
that the design is not suitable for noisy and time-delayed processes [1], and that the PI control is
preferred because of its simplicity [6].

In view of the problems mentioned in Remark 1, for the second-order time-delayed
(SOTD) plant model with a double time constant T2

2F(s) =
Ke−Tds

(1 + T2s)2 , (19)

the desired closed-loop transfer function obeying controller causality should be

2Fcl(s)=
1

(1 + Tc2s)2 e−Tds. (20)

Then the first-order Taylor approximation (5) to (2) yields the second-order
2R2 controller

2R2(s)=Kc
1 + T2s

T2s
1 + T2s
1 + Tf 1s

e−Tds;

Kc =
T2

K(2 Tc2 + Td)
; Tf 1 =

T2
c2

2 Tc2 + Td

(21)

Note that 2R2 is also a PID controller, but it must be distinguished from the 1PID
controller (11) from the previous section, by index 2PID and by optimally tuned parameters.
The difference between the two types of PID controllers mentioned above is crucial, which
was pointed out some time ago [17]. In contrast to the SIMC PID controller, the change
in the calculated Kc is obvious. In contrast to the original design, the filter constant Tf 1 is
not chosen (e.g., as TD/100), but results directly from the required transfer function 2Fcl(s).
Writing with dimensionless parameters

τ2 = T2/Td, ; τc2 = Tc2/Td, ; 2κ = KcK; τD1 = TD/Td, (22)

We get

2κ = τ2/[(2τc2 + 1)]; τi = τ2; τD1 = τ2; τf 1 = τ2
c2/(2τc2 + 1). (23)

From the 1st order Padé approximation (10) we obtain the third-order 2R3 controller
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2R3(s) = Kc

(
1 +

1
Tis

)
1 + TD1s + TD2s2

1 + Tf 1s + Tf 2s2 ;

Ti = T2; TD1 = T2 + Td/2; TD2 = T2Td/2

Kc =
T2

K(2 Tc2 + Td)
;

Tf 1 =
Tc2(Tc2 + Td)

2 Tc2 + Td
; Tf 2 =

0.5T2
c2Td

2 Tc2 + Td
,

(24)

with the dimensionless parameters

2κ = τ2/[(2τc2 + 1)]; τi = τ2; τD1 = τ2 + 1/2; τD2 = τ2/2
τf 1 = τc2(τc2 + 1)/(2τc2 + 1); τf 2 = 0.5τ2

c2/(2τc2 + 1) (25)

Again, we must not forget to distinguish this 2PIDA controller from 1PIDA (14) from
the previous section. Similarly, we can derive the controller using the 2nd order Padé
approximation. To simplify and unify the nomenclature used in the following text, we
should replace the traditional abbreviations (PI, PID, or PIDA) with the shorter term
jRm(s), m ≥ j according to the following definition.

Definition 1 (jRm(s), m ≥ j controller). The designated jRm(s) is the model-based controller
(2) with F(s) = jF(s) where j denotes the order of the plant model. The symbol m denotes the
controller order, which depends on the chosen dead-time approximations (5), (10), or (13).

2.3. Controller Based on TOTD Models

The third-order time delayed (TOTD) plant model with a triple time constant T3

3F(s) =
Ke−Tds

(1 + T3s)3 (26)

with the required closed loop transfer function

3Fcl(s)=
1

(1 + Tc3s)3 e−Tds; 3Fcl(p)=
1

(1 + τc3s)3 e−p (27)

and the first-order Taylor approximation (5) yield a solution of (2) in the form of the
third-order 3R3 controller (3PIDA controller)

3R3(s)=Kc
1 + Tis

Tis
1 + TD1s + TD2s2

1 + Tf 1s + Tf 2s2 ;

Ti = T3; TD1 = 2T3; TD2 = T2
3 ;

Kc =
T3

K(3 Tc3 + Td)
;

Tf 1 =
3T2

c3
3 Tc3 + Td

; Tf 2 =
T3

c3
3 Tc3 + Td

.

(28)

In the dimensionless parameters

3κ = KcK = τ3/[(3τc3 + 1)];
τi = τ3; τD1 = 2τ3; τD2 = τ2

3 ;
τf 1 = 3τ2

c3/(3τc3 + 1); τf 2 = τ3
c3/(3τc3 + 1).

(29)

As can be seen, the model-based design leads to up to 3 different PIDA controllers,
each with a different task and optimal settings. Similarly, we could obtain 3R4(s) with the
first and 3R5(s) with the second-order Padé approximations.
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2.4. Controller Based on QOTD Models

The fourth-order time delayed model with a quadruple time constant T4 and dead-
time will be defined as

4F(s) =
Ke−Tds

(1 + T4s)4 (30)

The desired closed-loop transfer function will be chosen as:

4Fcl(s)=
1

(1 + Tc4s)4 e−Tds. (31)

Then, considering (2), (5) gives the following fourth-order controller 4R4 with the
3rd-order derivative action

4R4(s)=Kc
1 + Tis

Tis
1 + TD1s + TD2s2 + TD3s3

1 + Tf 1s + Tf 2s2 + Tf 3s3 ; Ti = T4; TD1 = 3T4; TD2 = 3T2
4 ; TD3 = T3

4 ;

Kc =
T4

K(4 Tc4 + Td)
;

Tf 1 =
6T2

c4
4 Tc4 + Td

; Tf 2 =
4T3

c4
4 Tc4 + Td

; Tf 3 =
T4

c4
4 Tc4 + Td

.

(32)

Such controllers are used, for example, in mechatronics and consider feedback of
position, velocity, acceleration and jerk. We could therefore refer to them as 4PIDAJ.

To control the fourth-order system considered with Td = 0 and denoted as E4 in [4]

4F(s) =
1

(1 + s)4 (33)

Its model order was first reduced by the “half-rule” method. Since, in [4], also the
desired closed loop (4) does not satisfy the causality conditions, we will use this example
to compare the traditional and modified model-based approaches. In contrast to the ideal
PID proposed in [4], the newly proposed solution (32) clearly separates the filter required
in (2) (with the time constants Tf 1, Tf 2, Tf 3) from a possible additional filter that attenuates
the measurement noise. Thus, the proper 4R4(s) transfer function simplifies the evaluation
and comparison of noise attenuation filters.

2.5. Why Just the Multiple Plant Time Constants?

Definition 2 (jth-order time delayed (jOTD) plant models jF(s) and the corresponding
mth-order jRm(s) controllers, j = 1, 2, ...; m ≥ j). For the sake of simplicity, all the above plant
models jF(s)

jF(s) =
Y(s)
U(s)

=
e−Tds

(1 + Tjs)j ; j ∈ [1, 4] (34)

used for derivation of jRm(s) controllers consider just a single j-tuple time constant Tj.

The multiple time constants (see e.g., [18]) have long been used to decrease the number
of identified parameters and thus to avoid ill-conditioned identification relationships and
simplify their solution. Obviously, by considering not equal stable time constants in jF(s),
j = 1, 2, ..., the family of jRm(s) controllers could be significantly extended and be more
accurate representation of the actual process. However, the controller design should be
robust enough to neglect small differences between the time constants of the model, or
to reduce the model transfer functions appropriately in the case of higher differences.
Therefore, we are going to modify accordingly the original “half-rule”, proposed in [4],
used for model reduction.

Additionally, for not equal model time constants, we would also have to select which
time constants Tj will be used for the calculation of the controller integral time parameter
Ti and which for the calculation of the derivative terms time constants. As has been shown
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in [19], in constrained control, the properties of the loop with simple anti-windup according
to [1] can vary significantly by the mentioned choice of time constants.

2.6. Low-Pass Noise Attenuation Filters

Due to the proportional term, the high frequency noise is not attenuated even in
the simplest PI controller. To decrease the noise level, some of works (without giving
any arguments) are suggesting using the 2nd-order Butterworth filters [20], while other
recommend using the simplest binomial filters at the controller input, or output [21]

Qn(s) = 1/
(

Tf s + 1
)n

. (35)

With regard to the minimum number of parameters, we will also prefer this second
option in this work. The filter will be included in the controller settings using a half-rule
and its modification.

2.7. Original Half Rule Method

To satisfy PI and PID controller design, ref. [4] proposed a two-step procedure:
Step 1. Obtain a FOTD or SOTD process model. The effective delay and time constants

in this model may be obtained using the half-rule. Thereby, the half-rule was formulated
for a mix of different time constants. When simplifying process transfer function including
several delays

• the largest neglected (denominator) time constant (lag) has been distributed evenly to
the effective delay and the smallest retained time constant,

• the effective delay has summarized (besides of above contribution) the original plant
delay and different shorter loop delays.

Step 2. Derive model-based controller settings. The PI controller parameters can be
obtained from the FOTD model, whereas the PID controller parameters are calculated from
the SOTD model. However, we will further examine how the original HR method supports
the design of HO controllers.

Thereby, by the chosen target model transfer function, the strategy of the reduction
process is not clearly defined. On the one hand side, by adding half of the neglected time
constant to the smallest retained time constant, it seems to decrease differences between the
retained (dominant) time constants. However, on the other side, in the reduction process
starting with a double dominant plant time constant and an n-fold shorter (filter) time
constant with the aim to get a second-order model, Skogestad’s approach would modified
just one of the dominant time constants by one half of the neglected filter time constant.
Its second half, together with the remaining n− 1 time constants, would be included into
the dead-time. We consider such an increase in the number of mutually different time
constants of the process to be unnecessary.

Since from context of the paper [4] one could understand that, preferably, FOTD mod-
els and PI controller should be used and for many years, the dominant use of PI controllers
only confirmed success of such an approach, we could ignore the previous remark.

2.8. Modified Half Rule for Multiple Time Constants

Note that recently, under denotation “improved SIMC (iSIMC)”, a modified IAE-
optimization-based rules [6,22] have been published. They also provide the PID controller
(i.e., 1PID) parameters for FOTD processes. Publication of iSIMC may also be considered
as one of the attempts to generalize SIMC rules to HO controllers. However, with respect
to FOTD models used, this modification provided no incentive for HR changes. Such
motivation arises only when we deal with controllers from branches corresponding to
the model of higher orders. (Note, thereby, that, with respect to the chosen branch of
controllers, for example, PIDA controller may correspond to 1PIDA, 2PIDA or 3PIDA
controller and the reduction process should take these possibilities into account.)
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As mentioned above, the effort to minimize the number of loop parameters when work-
ing with HO controllers leads us to use simplified system models and noise-attenuation
filters with multiple time constants. All these impulses are leading us to a modification of
the half-rule (MHR) as follow:

Step 1. Depending on the process type, obtain stable FOTD, SOTD, TOTD, or QOTD
(possibly also higher-order) process models. By using the modified half-rule approach (as
explained below), the effective time constants and time-delay in the chosen model may
be calculated so as to simultaneously design the appropriate controller filter without a
limitation on the model order.

Step 2. For the controller branch defined by the considered stable process model,
derive the model-based controller settings. The first branch of 1PI, 1PID, or 1PIDA-settings
result from a FOTD model. The second branch of controllers (2PID, or 2PIDA) results from
the SOTD process model. Similarly, the third branch of controllers (starting with PIDA
corresponding to 3PIDA and possibly continuing to higher-order 3Rm controllers) results
from TOTD plant models.

Although more accurate solutions can be proposed for the approximation of more
complex processes (e.g., by the method of moments according to [23]), with regard to
simplicity and tradition the low-pass binomial filters will be included into the plant delay
by a modified half-rule (MHR). When starting with j nearly equal dominant time constants
and wishing to keep this number, a symmetric distribution of one half of sum of the
neglected smaller (possibly n-fold filter time constants) to all the retained j dominant time
constants will be preferred. The 2nd half of this sum will be added to dead-time.

Definition 3 (Modified Half Rule (MHR) for jOTD models). When working with a combi-
nation of jOTD system (34) with ntuple filter time constant Tf (35), the plant model parameters
will be modified to keep a constant open loop average residence time (sum of all delays and time
constants) [1]. Furthermore, MHR will symmetrically modify the j-tuple dominant time constant
Tj which will be calculated from the identified value Tjm according to

jTj = jTjm + Tf 0/2; Td = Tm + Tf 0/2
Tf 0 = nTf << T1m

(36)

Similar to the original HR method, MHR maintains the average residence time (ART)
of the system (sum of time constants and delays). However, in the case of an n-fold time
constant Tf of a filter, not only one dominant time constant is corrected, but by equal parts
all the dominant time constants. The correction is using half of the filter ART Tf 0 = nTf ,
not only half of one of its time constants Tf . As a result, the equivalent dead-time will be
shorter than with HR, and the corresponding transients can be faster.

Thereby, such a simplification will be expected to yield expected results just for some
limited Tf 0.

Remark 2 (Conditions for a continuous-time domain application). The continuous-time-
domain design methodology can also be applied to today’s mostly digitally implemented con-
trollers, provided that the sampling period Ts used is negligible compared to the smallest filter time
constant, that is,

Ts << Tf (37)

By keeping this requirement, for given hardware limits on Ts and some chosen Tf 0 yielding
Tf ≈ Tf 0/n, the filter order n in (36) will always be limited.

3. Refined Performance Measures

The aim to increase performance of SIMC control unavoidably requires refinement
of the performance measures introduced in [4]. In the new setup of the optimal control
design [20], one has to deal with a trade-off between speed of control error attenuation
(measured usually in terms of integral of absolute error)
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IAE =
∫ ∞

0
|e(t)|dt ; e = w− y ; w = setpoint, (38)

Measurement noise injection (influencing primarily the “excessive control effort”,
denoted also as controller activity, or input usage, but including possibly also the “output
wobbling” [19]) and the robustness.

To avoid undesired effects due to inadequate loop robustness, [6] used in the IAE
optimization the sensitivity constraints, as, for example, defined by

max{Ms, Mt} = 1.59 (39)

Thereby, Ms and Mt represent the peaks of sensitivity functions

Ms = max
{∣∣∣ 1

1+L(jω)

∣∣∣} ; Mt = max
{∣∣∣ L(jω

1+L(jω)

∣∣∣}
ω ≥ 0; L(s) = R(s)F(s)

(40)

which correspond to PI control of a stable plant with Tc1 = Td, Ti = T1.
Despite the fact that the use of Ms and Mt represents one of the pillars of the tradi-

tional robust design of PID control, it does not always lead to adequate conclusions [11].
Therefore, we replace the sensitivity constraints in this article with restrictions on the shape
of transients at the input and output of the plant.

3.1. Ideal Shapes of Step Responses at the Plant Input and Output

In the era of relay minimum time control of nth-order systems, which brought the
first systematic research of optimal control, the requirement to terminate the process in
n (rectangular) pulses (control intervals) was used dominantly. It was first mentioned in
work by Feldbaum [24]. From this point of view, later formulated modification resulting
from maximum/minimum principle [25] brought differences just for the case of systems
with complex poles for a large distance between the initial and final states. In the case of
jOTD systems with real poles, the conclusions of Feldbaum’s theorem could be formulated
in a simplified form and without a proof as:

Theorem 1 (Feldbaum Theorem). For linear systems with j real poles and full relative degree
r = j, after a step change of the reference setpoint or the disturbance, the number of control signal
intervals required to achieve the neighbourhood of the desired state, with piece-wise alternating
control signal limits, is equal to j.

In engineering practice, we approach the minimum-time control only exceptionally.
Greater emphasis is placed on smooth continuous changes of the control signal (manipu-
lated variable) and well-damped steady states. In the minimum-time control developed
especially for military applications (as missile control, fire control, etc.) the steady-states are
frequently not considered. Therefore, due to different priorities, in the literature focused on
PID controllers, the Feldbaum’s theorem has been practically forgotten and has rarely been
mentioned [26,27]. In addition, when controlling stable systems, the effectively observed
number of pulses may be less than the order of the system under consideration. In this
respect, it should be noted that with sufficiently smooth and slow processes, it is possible
to fill the formulations of the following Lemma:

Lemma 1. In each Bounded-Input-Bounded-Output (BIBO) stable system, after a step change of
the reference setpoint or disturbance, a neighbourhood of the desired state may be achieved with
monotonic setpoint step responses of the controller output (plant input) u(t).

Proof. With regard to a simpler explanation, consider a discrete-time control of a BIBO
stable system implemented with some sampling period Ts. For such systems, it is always
possible to find (sufficiently small) increments of input ∆u such that the corresponding
over-regulation (under-regulation) does not exceed an acceptable fraction of the required
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deviation from monotonicity. After the transient is over, it is possible to add another input
increment and wait for the corresponding transient to fade. Thus, by choosing sufficiently
slow input increase, it is always possible to achieve (nearly) monotonic plant output
response with a monotonic input and to extend such a control also to the continuous-time
control with Ts → 0.

Although, with some exceptions such as above mentioned [26,27], which continued
to use Feldbaum’s theorem on optimal control also for smoother control responses, this
feature of relay time-optimal controllers dealing with the number of optimal control pulses
disappeared from the PID control over time. However, the ever-increasing demands placed
on the performance of PID control lead to the fact that when evaluating its dynamics of
transients, it will again be necessary to pay attention to control responses obtaining possibly
a higher number of pulses. However, due to the requirement of smoothness of processes,
these pulses may not be obvious at first glance and thus new performance measures may
be required [28]. We will show this on the example of the system 1/(1 + s)4 (33) (process
E4 from [4]), from which we require monotonic closed loop setpoint step response with the
time constant shortened from T4 = 1 to Tc4 = 0.18.

The unit setpoint step responses in Figure 2 illustrate that in order to achieve a
smooth monotonic increase of y from initial to final steady state, the course of the first
derivative y(1) must have one extreme at time T1m = 0.54 and start and end with zero
values. However, for the same purpose, the course y(2) must have a maximum at some
point T21 ∈ (0, T1m) and a minimum at T22 ∈ (T1m, ∞). As higher derivatives proceed, the
number of extremes increases, with maxima alternating with minima and the time of the
first maximum gradually decreasing. Finally, in the course of the highest derivative y(4) the
first monotonic interval between t = 0− and t = 0+ shrinks to zero. Furthermore, we are
no longer able to optically distinguish extremes with higher indices due to high amplitude
of initial peak.

Figure 2. Unit setpoint step responses of system (33) for Tc4 = 0.18 with a monotonic increase of the
output y(t) and four pulses (5 monotonic intervals) of the input u(t), the first interval of u(t) increase
between t = 0− and t = 0+ shorten to zero.
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The same applies to the course of u(t), which, by alternating increases and decreases,
affects the sign of the highest derivative. Therefore, in order to illustrate the increase and
decrease of u(t) and the corresponding pulses of control with respect to the steady value
u∞ = 1, the course of log(u(t) − 1) can be used. The peaks of this response illustrate
the change in the sign of u(t) − 1 and document that an alternative of the Feldbaum’s
theorem can also be formulated for a smooth control signal u(t). However, the decreasing
amplitudes of extremes with higher indices, together with the Lemma 1, suggest that nearly
optimal responses can also be achieved by simpler control with lower number of pulses.

We encounter similar piece-wise monotonic responses achieved with the same con-
troller when evaluating input disturbance step responses in Figure 3. However, the ideal
output response begins with a 1P shape, and the ideal system input u(t) is monotonic in
this case.

To simplify the relevant formulations, we will introduce the concept of m-pulse
responses in the following.
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Figure 3. Unit input disturbance step responses of system (33) for Tc4 = 0.18 with 1P output y(t) and
monotonic input u(t).
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Definition 4 (mP function u(t)). Let u(t) be a function corresponding to the closed loop control
signal of a stable jth-order linear time-delayed system that is:

• continuous for t ∈ (0, T), T → ∞,
• with possible discontinuity at t = 0+ and
• with initial value u0 = u(0−) and final steady-state value uT = u(T).

Let in a step response u(t) can be found for 0 < t < T m extremes (0 ≤ m ≤ j) lying
alternately over and below (or vice versa) the level uT (as shown in Figure 4) and fulfilling (with
the denotation ui = u(ti); i = 1, 2, ..., m for 0 < t1 < ... < tm) conditions

(ui − uT) (ui+1 − uT) < 0; i = 1, 2, ..., m− 1 (41)

Then the function u(t), which is monotonic on each of the m + 1 intervals not containing one
of the above extreme points ui, i = 1, 2, ..., m, is called as m-Pulse (mP) function.

In case of discontinuity at t = 0, the first extreme point can also be moved to the origin t = 0+

(i.e., u1 = u(0+), thus shrinking the first monotonic interval between u0 and u1 with t ∈ (0−, 0+)
to zero.
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Figure 4. 4P control signal response with extreme values u1, u2, u3 and u4 outlining 5
monotonic intervals.

According to this terminology, monotonic transients can also be referred to as 0P and
periodic responses as ∞P functions.

As we will show in the solved examples, the above described model-based control
can tend to high initial peaks of the control signal. Such controllers may not be feasible in
practice. However, as will be shown later, the initial peaks can be alleviated by a modified
controller design.

Definition 5 (Dynamical classes of control). Dynamical class of control DCN [17] is used to
denote control with all setpoint step responses given by NP input-0P output pairs u(t), y(t). In
other words, it denotes setpoint step responses with the plant input u(t), t ∈ (0, ∞) consisting
of N + 1 alternately monotonically increasing and decreasing (or vice versa) segments, which are
associated with the monotonic plant output y(t), t ∈ (0, ∞).

In the case of the disturbance step responses, it denotes NP input-1P output pairs u(t), y(t)
with the plant input u(t), t ∈ (0, ∞) consisting of N + 1 monotonic segments, which are associated
with the plant output y(t), t ∈ (0, ∞) consisting of two monotonic response segments.

Thus, setpoint step responses of DC0 includes transients with a monotonic course of
the control signal corresponding according to Lemma 1 to a monotonic response at the
output. The disturbance step responses of DC0 consist of two monotonic intervals at the
output associated with a monotonic change of the control signal.
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Similarly, the setpoint step responses of DC2 include control signal u(t) transient with
3 monotonic intervals and a monotonic process output response y(t). The disturbance step
responses of DC5 consist of two monotonic intervals of the output signal and 6 monotonic
intervals of the control signal.

As illustrated by input disturbance step responses in Figure 3, the same controller
as considered in Figure 2 may give setpoint and disturbance step responses from fully
different dynamical classes.

Definition 6 (Symmetric controller design). A symmetric controller design assumes setpoint
and disturbance step responses from the same dynamic class.

The question of the symmetry of the dynamics of setpoint and disturbance responses
is of interest to us mainly in terms of their applicability, when at the same controller
setting, diametrically different requirements regarding the amplitudes of the control signal
may be placed on the actuators. However, it should also be remembered that because
the considered model-based approach is based only on the requirements formulated for
setpoint responses (1), we can modify the disturbance responses only indirectly.

3.2. Shape Related Performance Measures for Useful/Excessive Output Increments

IAE values used for evaluating speed of the transientsmay be applied both in analyti-
cal derivations and in experimental evaluation of the controller design. Since the setpoint
step responses can also be improved by an appropriate feedforward, the analysis will
preferably focus on the input (load) disturbance step responses given fully by the feedback
controller. The achieved responses strongly depend on possible uncertainty of the consid-
ered plant model, with an uncertainty impact similar to external disturbances [29]. This
gives additional motivation to deal with the disturbance responses, as an indispensable
part of the robustness analysis.

Together with the requirement to have the output responses as fast as possible, it
is also necessary to consider shapes of actual output and input signals. Thus, although
a minimum of (38) usually corresponds to a slight output overshooting, in numerous
applications, an ideal setpoint step response has to be monotonic. This corresponds to a
situation, when the sum of absolute values of all output increments ∑i(|yi+1 − yi|) equals
to the net output change |y∞ − y0| specified by the initial and the final values y0 and y∞.
Therefore, to characterize the output deviations from monotonicity, the excessive output
variation (the total sum of absolute increments [4] reduced by the useful output change)
can be used

TV0(y) =
∫ ∞

0

(∣∣∣∣dy
dt

∣∣∣∣− sign(y∞ − y0)
dy
dt

)
dt ≈ ∑i(|yi+1 − yi|)− |y∞ − y0| (42)

Such “excessive” increments yield the best view on the “smoothness” of the output
response: the ideally smooth monotonic output change corresponds to TV0(y) = 0 , else
TV0(y) > 0. By limiting the deviations from the monotonicity, we limit also the magnitude
of the maximum overshooting, as well as the permanent oscillations of the system.

Similarly as considered in [30] for FOTD plants, an ideal input disturbance step
response of the considered stable jOTD plants has always the shape of an one-pulse (1P)
curve at the plant output (see y(t) in Figure 3). It means that after eliminating imbalance
due to a disturbance step change by a corresponding manipulated variable change, the
output stops to diverge and then it monotonically returns to the desired reference value.
Two monotonic intervals of such a 1P disturbance rejection process are thereby separated
by an extreme point ym /∈ (y0, y∞) and the monotonicity evaluation according to (42) has to
be applied twice. Output deviations from an ideal 1P behavior summarize the deviations
from monotonicity on these two intervals

TV1(y) = ∑
i
|yi+1 − yi| − |2ym − y∞ − y0| (43)
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In case of several extreme points outside of the strip y ∈ (y0, y∞), the maximal
deviation has to be chosen as ym.

3.3. Shape Related Performance Measures for Useful/Excessive Input Increments

A much more complex situation occurs, when evaluating the optimality of the input
variables of the considered stable jOTD plants.

As shown in [28,30], in case of the single integrator the controller output (plant input)
corresponding to the setpoint and input disturbance steps have to ideally consist of two
monotonic intervals forming an 1P shape (as y(1)(t) in Figure 2). Then, similarly as above,
deviations of the plant controller output u(t) from an ideal 1P step response should be
constrained in terms of TV1(u) measures. However, for control of the stable FOTD plants
it may be meaningful (see Lemma 1) to consider also input with lower number of control
pulses, that is, with a monotonic shape and to consider its evaluation using TV0(u) measure.
The decision regarding the choice of TV0(u) or TV1(u) is entirely up to the designer and
his subjective evaluation of the specific features of the application.

When it comes to controlling the position of the moving mass represented in mecha-
tronics by integrative second-order models, a 2P (two-pulse) input (similar to y(2)(t) in
Figure 2) is already needed to achieve a monotonic change in output. It will be dominated
with two extremes, one for the acceleration and one for the braking phases. These extremes
are separating the total input response into 3 possible monotone sections [31]). Unlike a
chain of integrators, when controlling stable 2nd -order systems, the monotonic course of
the output can be achieved by 2P, 1P, but also by 0P input.

Similarly, to control a chain of j integrators, an jP type input composed of j + 1
monotonic sections is needed. However, the situation is complicated by the fact that this
time we are not working with integrators, but stable systems, the resulting behavior of
which may be more varied and represented by mP functions specified in Definition 4.

Remark 3 (Shape requirements on input of stable jOTD systems). When controlling stable
jOTD systems, the input may approach the jP signal (with j + 1 monotonic intervals) only at high,
nearly minimum-time control requirements, which correspond to Td → 0, a negligible measurement
noise and a negligible plant uncertainty. Else, the number of monotonic intervals will be lower,
in the limit case just one (with no extreme point). As a result, accurate evaluation of deviations
from the ideal input shapes represents an open problem, when controlling stable jOTD systems,
since the number of pulses and monotonic segments varies and may be different for the setpoint
and disturbance step responses. With a higher level of noise and uncertainty, deviations from
monotonicity using TV0(u), or deviations from the 1P signal using TV1(u) will usually suffice.
However, this does not exclude even more complex situations with a higher number of pulses or
monotone intervals of the control signal, which makes the use of a TV performance measure in the
form introduced in [4] questionable. This evaluates more frequent changes to the control signal as
inappropriate and unwanted.

For example, for the transient in Figure 4 with values

u0 = 0; u1 = 1.68; u2 = 0.80; u3 = 1.05; u4 = 0.98; uT = 1; (44)

The traditional “input usage” evaluation yields traditional and modified total
variation values

TV = 2.9; TV0 = 1.9; TV1 = 0.54; TV2 = 0.14; TV3 = 0.04; TV4 = 0. (45)

The deviation from monotonicity would be calculated as TV0 = TV − |uT − u0| = 1.9.
Of course, transients with monotonic input (required for some special applications) may
be too slow in a general case. Therefore, frequently a more active control is required.
The deviation from 1P response (required typically in PI control) is already much less,
just TV1 = TV − |2u1 − uT − u0| = 0.54. The deviation from 2P calculated as TV2 =
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TV − |2u1 − 2u2 + uT − u0| = 0.14 is yet lower. Similarly, TV3 = TV − |2u1 − 2u2 + 2u3 −
uT − u0| = 0.04 representing deviations from 3P shape. Finally, we may conclude that
for the 4th order system, which was under control, the analysed response with TV4 =
TV− |2u1− 2u2 + 2u3− 2u4 +uT−u0| = 0.0 represents a fully effective 4P control, without
an excessive effort. An optimization process based on TV value would never propose such
a solution, even if it is very fast and without excessive control increments. Again, we recall
that the decision regarding the choice of a preferred shape related performance measure
is entirely up to the designer and his subjective evaluation of the specific features of
the application.

Of course, the above calculation refers to ideal waveforms without the influence
of measurement noise or imperfect controller settings due to uncertainties, imperfect
identification, or time changes of the controlled system. In order to be able to address the
influence of individual design factors on the achieved control performance, the evaluation
of the circuit will probably need to be divided into several phases.

3.4. First Evaluation Step—Idealized Situation with No Noise

For testing impact of the controller tuning it is recommended to start with an idealized
situation without measurement noise and no uncertainties in the plant dynamics. Then, if
the control error does not change its sign (which is fulfilled for TV0(ys) = 0 and TV1(yd) =
0), the IAE values (38) may be calculated as the integral of error (IE). Then, from application
of Laplace transform of e(t) denoted as E(s) follows

IAE = IE =
∫ ∞

0
e(t)dt = lim

s→0
E(s) = E(0); e(t) = w(t)− y(t) (46)

For the unit setpoint and input disturbance steps, for all above nominal controllers
follows from

Es(s) = 1/[(1 + jF(s) jRj(s))s]; Ed(s) = jF(s)/[(1 + jF(s) jRj(s))s]; (47)

values
IAEs =

Ti
KcK

; IAEd =
Ti
Kc

(48)

In ideal situations, with zero shape related deviations at the output, for controllers
based on models 1F(s)− 4F(s) we get

1 IAEs = Tc1 + Td; 1 IAEd = K(Tc1 + Td)
2 IAEs = 2Tc2 + Td; 2 IAEd = K(2Tc2 + Td)

...
j IAEs = jTcj + Td; j IAEd = K(jTcj + Td)

(49)

Thereby, the figure jTcj + Td corresponding to the target transfer functions with j-tuple
time constants Tj denotes the average residence time (ART) of the closed loop system [1].
This is once more to stress that above formulas hold just in the nominal case. In practical
applications, they will also depend on the accuracy of the system model used.

3.5. Optimization Problem

Let us continue with summarizing basic facts:

1. Traditional optimization based on quadratic cost functions (LQ control design) does
not distinguish useful and excessive signal increments which significantly limits
effectiveness of its application.

2. Similarly, the use of TV to evaluate control efforts does not distinguish between useful
and redundant increments of control signal. This can cause a problem especially when
controlling higher order systems and requiring several active impulses of control.



Symmetry 2021, 13, 798 18 of 44

3. Separation of the excessive and useful increments (both at the input and output)
enables to focus fully on an effective minimization of the superfluous changes.

4. In application to evaluation of the setpoint step responses of the plant output ys, the
modified performance measure TV0(ys) (42) has a clear mathematical and physical
interpretation as a deviation from monotonicity.

5. In the new setup of the optimal control design [20], one has to deal with a trade-
off between speed of control error attenuation (IAE), measurement noise injection
resulting into “excessive control effort” (“controller activity/input usage” [6], or the
“output wobbling”) and “robustness”.

6. Optimal controller and filter tuning is expected to depend on the noise parameters.
Thus, without considering filtration properties, a “generally” optimal PID tuning
becomes questionable.

For the loop optimization, different cost functions and different optimization con-
straints may be defined. A “holistic” loop optimization requiring for the plant model jF(s)
fast and smooth transients, that is, considering both the plant input and output, may be
looking for a minimal value of the cost function

j Jk(u) = IAEk TVj(u) (50)

By the parameter k it is possible to weight contributions of IAE (speed of control) into
the resulting product. The problem remains how to consistently compare the shape of
transients proposed using models of different orders j.

A simpler situation occurs during the evaluation with the task to minimize the output
wobbling. For the setpoint and disturbance step responses the cost functions may be
defined as

Jk(ys) = IAEk
s TV0(ys); Jk(yd) = IAEk

d TV1(yd) (51)

Applications of above measures to dominant first-order plants (j = 1) may be found
in [10,11].

3.6. Speed-Effort and Speed-Wobbling Characteristics

Impact of chosen tuning parameters on the trade-off between the speed of control and
the shape related deviations at the input and output, may be illustrated by several types of
characteristics.

In this paper, they will be based on

• the shape related deviations at the input or output, that is, the measures expressing,
how far are the measured transients from their ideally required shapes (variable ξ)
and

• IAE measure characterizing the speed of the control error attenuation (variable η)

Dependence of these two basic measures of the closed loop performance, when either

ξ = TV1(u), η = IAEk, or
ξ = TV0(ys) η = IAEk

s or ξ = TV1(yd), η = IAEk
d

(52)

Define two types of the loop characteristics. Into the PID controller design they have
been introduced in [32]. Here, they will be denoted as the speed-effort (SE) and speed-wobbling
(SW) characteristics.

3.7. IAE-Optimization-Based Tuning of Noisy FOTD Plants

Whereas we may agree with great part of conclusions of [6], one of the basic problems
of the IAE-optimization-based “improved” SIMC rules [6] seems to be that, once wishing
to be rigorous, the optimization has to be repeated for each new set of parameters of FOTD
plant (3) and filter (35). Therefore, it does not allow simple analytical filter consideration.
The only possibility is to simplify the plant description (e.g., by application of MHR) up to
an integral model. However, such a consideration of the noise attenuation filters (added
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by the half-rule to the plant dead-time) changes the actual sensitivity values, which again
makes use of the optimization-based approaches questionable.

4. Modified Controllers with Reduced Initial Control Signal Peak

One of the shortcomings of the traditional model-based approach is that it does not
pay higher attention to the achieved shapes of the control signal responses. Reference [4]
only mentions the possibility to avoid derivative kick on setpoint change by following
industry practice and differentiating only the output of the system. However, such a
solution is not as efficient in terms of adapting the dynamics of the closed-loop responses
when compared to pre-filters, or setpoint weighting used in two-degree-of-freedom (2DOF)
PID control. We will show that an effective solution to this problem is also related to the
actual distribution of dynamic elements of a feedback control system.

As we have already shown above, the model-based design presented in the intro-
ductory sections does not provide the same setpoint and disturbance rejection dynamics.
During the setpoint step changes, the excessive initial control signal kicks may not be
feasible in practice. In further derivations we will show, how to adjust the control signals
by using the pre-filters P added to the circuit in Figure 1. We will use an auxiliary system in
Figure 5 (firstly with FP(s) = 1), which has a clearly defined optimal shapes of the control
signal u(t) and of a hypothetical output y0 for a setpoint step. This auxiliary system still
includes the same jOTD model as considered previously. However, the setpoint response
related to its output ym = yj will be different than it should correspond to the required
target closed-loop transfer function

jFcl(s) =
Y(s)
W(s)

=
e−Tds

(1 + Tcjs)j . (53)

Finally, we show the impact of modifications of the pre-filter P (e.g., its omission
equivalent to P = 1) on the equivalent pre-filter FP and the shape of the transients in the
auxiliary circuit.

Lemma 2 (Equivalence of model-based controllers according to Figures 1 and 5). For stable
systems that can be approximated by jOTD model (34) with a j-tuple time constant Tj, an auxiliary
control structure with the setpoint and disturbance step responses of DC0 may be specified according
to Figure 5 with

jFp(s) = 1; jFy(s) =
Ua f (s)
Ym(s)

=
1
K

(
1 + Tjs
1 + Tf s

)j

; jFu(s) =
U f (s)
U(s)

=
e−Tds

(1 + Tf s)j . (54)

This can be transformed to the structure according to Figure 1 with the controllers
R(s) = jRj(s)

jRj(s) =
(1 + Tjs)j

K[(1 + Tcjs)j − 1 + Tds]
(55)

and the the pre-filter P(s) = jP(s)

jP(s) =

(
1 + Tcjs
1 + Tjs

)j

. (56)

Thereby, controllers jRj(s) coincide with the solutions defined for j ∈ [1, 4] by the Equations
(6), (7), (21), (28) and (32).
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Figure 5. Static feedforward with input disturbance reconstruction and compensation and a hypo-
thetical process dynamics decomposition into the feedforward and feedback path drawn for a FOTD
system; δ-measurement noise.

Proof. Given the simplicity and wide use of the PI controller, we start the proof with of
j = 1, 1Fp(s) = 1 (see Figure 5). The constructive approach gives the simplest controller of
DC0 for the FOTD plant model in the feedback of the auxiliary system. Thereby, we will
not assume that the measured output signal ym represents directly the controlled output y.
In this hypothetical situation considering a memoryless system with a (possibly dominant)
transport delay in the direct control branch, that is, with y = y0. All explicitly considered
(stable) time constants of the jOTD model will be located in the feedback and interpreted
as sensor dynamics or noise attenuation filters. Although such a situation seem to be rare
in practical applications, in considering both the distribution of the dynamical terms in
the loop, as well as the shapes of particular loop signals, it provides a fixed point from
which we can start when analyzing shapes of the signals in Figure 1 even at higher values
of j. This controller scheme drawn for j = 1 can be considered as a generalization of the
historically first dead-time compensator from Reswick [33].

With a sufficiently long filter time constant Tf preventing exaggerated responses to
possible disturbances, after a step change of the reference setpoint signal w, we get both a
step change of the controller output u(t) and the plant output y, as well as a monotonic
(exponential) change of the measured output ym. Since the step change represents a limit
case of monotonic changes, in terms of both considered outputs y0 and y1, the circuit
belongs to DC0 and will remain in it also for the plant time constant T1 moved to the direct
branch (i.e., for y = y1).

In a nominal case, with the dead-time estimate Tm = Td and the model time constant
T1m = T1, we can denote the observer transfer function based on filtered inversion of the
process dynamics as

1Fy(s) =
Ua f (s)
Ym(s)

=
1 + T1s

K(1 + Tf s)
. (57)

Estimate of the process dead-time and the used observer filter are included in

1Fu(s) =
U f (s)
U(s)

=
e−Tds

1 + Tf s
. (58)

For y = y0, this control structure provides the closed loop transfer functions

1Fwy0(s) =
Y0(s)
W(s)

= e−Tds; 1Fd(s) =
Y0(s)
D(s)

= Ke−Tds

(
1− e−Tds

1 + Tf s

)
. (59)

They guarantee both the setpoint and the disturbance responses from DC0. Thereby,
tha auxiliary loop has clearly defined shapes of all internal signals corresponding to step
inputs: the setpoint steps lead to step changes of u(t) and y0(t) and to an “open-loop”
response of y1(t). The local loop with a positive feedback via 1Fu(s) may be replaced (when
substituting for Td (5)) by
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1Su(s) =
1

1− 1Fu(s)
=

1 + Tf s
(1 + Tf s)− e−Tds ≈

1 + Tf s
(Tf + Td)s

. (60)

Moving 1Fy from the feedback to the direct branch, merging with 1Su and the inverse
gain 1/K, is then leading with Tf = Tc1 to the controller (6) and (7). The difference,
however, is that this time we also got a pre-filter

1P(s) =
1 + Tf s
1 + T1s

=
1 + Tc1s
1 + T1s

. (61)

From the design, which is to compensate for the shift of 1Fy from the feedback to 1R1

located in the direct control path. In addition, from (59) we know that for a sufficiently
large value of Tf = Tc1, the disturbance reconstruction will not spoil the step character of
the setpoint step responses of the variables u and y0, whereby ym = y1 remains monotonic.
Both the setpoint and the disturbance responses retain the monotonic character even for
the time constants T1 located in the direct control branch (i.e., with y = y1).

Next, we derive the design of the controller for the SOTD system (19) and show again
that in addition to the controller (21) itself, the design of a suitable pre-filter must also be
considered. From the derivation we can then easily come to generalizations for higher
order systems.

For a SOTD nominal process (19) in the feedback loop of an auxiliary system with
2Fp(s) = 1

2Fy(s) =
Ua f (s)
Ym(s)

=
(1 + T2s)2

K(1 + Tf s)2 (62)

2Fu(s) =
U f (s)
U(s)

=
e−Tds

(1 + Tf s)2 (63)

and for y = y0, this control structure provides the closed loop transfer functions

2Fwy0(s) =
Y0(s)
W(s)

= e−Tds; 2Fd(s) =
Y0(s)
D(s)

= Ke−Tds

(
1− e−Tds

(1 + Tf s)2

)
. (64)

Guaranteeing both the setpoint and the disturbance responses from DC0. Ideally,
after a setpoint step, u(t) and y0(t) also show a step change and y2(t) corresponds to an
“open-loop” monotonic response. By replacing the local loop with a positive feedback via
2Fu(s) we get

2Su(s) =
1

1− 2Fu(s)
=

(1 + Tf s)2

(1 + Tf s)2 − e−Tds . (65)

Moving 2Fy from the feedback to the direct branch, merging with 2Su and the inverse
gain 1/K, substituting for Td (5) and Tf = Tc2, is then leading to the controller (21). Again,
the difference is that this time we also got a pre-filter

2P(s) =
(1 + Tf s

1 + T2s

)2

=

(
1 + Tc2s
1 + T2s

)2
. (66)

In addition, from (64) we know that for a sufficiently large value of Tf = Tc2, the
disturbance reconstruction will not spoil the step character of the setpoint step responses of
the variables u and yh, whereby ym remains monotonic. Both the setpoint and disturbance
responses retain the monotonic character even for both time constants T2 located in the
direct control branch (i.e., with y = ym).

In Lemma 2, the model-based controller design from previous sections derived for
jOTD models (34) using the target transfer function (53) has been compared with an
auxiliary system with clearly defined shapes of all internal variables. As a result, the
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control structure of DC0 according to Figure 5 has been shown to be equivalent to the
structure according to Figure 1 with the controller R(s) = jRj(s) and the the pre-filter
P(s) = jP(s) (56). However, the equivalence assumed a step in the control signal after the
setpoint steps, which is far from suitable for all applications. The possibilities of further
modifications of setpoint responses are described by the following theorem.

Theorem 2 (Pre-filter design for model-based control). When omitting pre-filter in Figure 1
(i.e., working with P(s) = 1, as in SIMC design [4]), although the output of the j-tuple time time
constant Tj fulfills behavior prescribed by the target transfer function (53), the control signal may
not be feasible for smaller values of Tcj . When applying an equivalent change defined by Fp = P−1

to the auxiliary system, the target transfer function (53) used for design of jRj(s) in the structure
according to Figure 1 will be matched by the measured signal ym = yj in the structure according to
Figure 5.

To get smooth setpoint step responses without initial kicks of the control signal, the pre-filter
P(s) has to be simplified to a strictly proper transfer function. Thereby, by using the same controllers
R(s) with lower order pre-filters P(s) than given by (56), it is possible to speed up the setpoint step
responses of the structure according to Figure 1, which then already correspond to a higher dynamic
class DCN, 0 < N ≤ j.

Proof. Omitting the pre-filter P(s) = 1P(s) from the structure in Figure 1 with R(s) =
1R1(s) corresponds to a modified pre-filter P(s) = 1P(s)(1P(s))−1 = 1. Therefore, it
is equivalent to adding the pre-filter 1Fp(s) = (1P(s))−1 = (1 + T1s)/(1 + Tc1s) to the
structure from Figure 5. Then, U(s)/W(s) = (1 + T1s)/[K(1 + Tc1s)], Y0(s)/W(s) =
(1+ T1s)e−Tds/(1+ Tc1s) and the transfer function Y1(s)/W(s) = e−Tds/(1+ Tc1s) matches
exactly the target transfer function (4). However, the course u(t) will no longer have
the shape of a step and, for relatively short Tc1 values, high peaks with the amplitude
Umax = limt→0 u(t) = lims→∞ sU(s) = T1/(KTc1) may occur in it after unit setpoint steps.

Therefore, where appropriate, the initial kicks of the setpoint step responses u(t) of
both considered structures may be completely eliminated by using the pre-filters

1P(s) =
1

1 + T1s
; 1Fp(s) =

1
1 + Tc1s

; (67)

Definition 7 (Controller 0PI). With respect to the dynamical class DC0 of the achieved step
responses, controller (6) and (7) extended by the pre-filter (67) could also be denoted as 0PI.

0PI yields smoother monotonic u(t) course from DC0, that is, without overshooting,
which may be important in design of control respecting given constraints, or in design of
systems with hysteresis. The setpoint step response at the output of FOTD model y1(t) are,
however, slower than required by (4). They will not be faster than the open-loop FOTD
responses. Two dynamical classes of PI control have been firstly identified in [34].

Experimentally, the monotonic step responses of 0PI can yet be accelerated by decreas-
ing the pre-filter time constants in (67), which could lead to transients going on with an
acceptable overshooting of u(t).

Similarly, for SOTD models, the step character of the setpoint step responses u(t) of
the structure according to Figure 5 can be replaced with a smoother (but slightly slower)
continuous course of u(t) by simplifying the pre-filters according to

2P(s) =
1

(1 + T2s)2 ; 2Fp(s) =
1

(1 + Tc2s)2 . (68)

Definition 8 (0PID controllers for lag and dead-time dominant plants). PID Controller
(21) extended according to Figures 1 and 5 by the pre-filters P(s) and Fp(s) (68), which at the
plant input and output yield setpoint, or monotonic step responses of DC0, may be denoted as
0PID controllers.
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However, 0PID controllers with monotonic step responses from DC0 can also be designed on
the basis of the 1PID controller (12) supplemented by the pre-filters (67).

While the use of a solution based on SOTD models can be expected to be advantageous for
controlling lag-dominant processes, a controller based on FOTD models may appear to be more
advantageous for controlling dead-time dominant processes.

As a compromise between (66) and (68) we can choose P(s) in the form (68), but of a
lower order, thus speeding up the setpoint responses. These can then belong to a higher
dynamic class.

We proceed similarly for other values of j (e.g., in designing 0PIDA controllers),
with generalizing multiplicity of the numerator and denominator of the pre-filters (66),
or (68) to

jP(s) =
1

(1 + Tjs)j ; jFp(s) =
1

(1 + Tcjs)j . (69)

Although circuits with relatively large Tf = Tcj values are the most resistant to
uncertainties and noise and do not attack the control signal constraints, it may be interesting
to use smaller values. As Tf decreases, the speed of setting the signal y = ym to the desired
reference value w increases. Situations with monotonic responses y = ym achieved under
u(t) with 0 ≤ N ≤ j extremes then correspond to control from a higher dynamic class DCN.
This can, however, require to consider control signal constraints and to use appropriate
anti-windup schemes [35–38], or more advanced design methods [39,40].

4.1. Integrative Controllers for the Simplest Pure Dead-Time Plant Models

To complement the family of integrative controllers, we will include even simpler
process models with pure delay. The control structure in Figure 5 can also be advanta-
geously modified for situations where the time constants T1m << Td can be neglected
(j = 0) when leading to a predictive integrative (I) controller. In such a situation, with a
first order reconstruction filter

0Fcl(s) =
Y(s)
W(s)

= e−Tds; 0Fd(s) =
Y(s)
D(s)

= Ke−Tds

(
1− e−Tds

1 + Tf s

)
0P(s) = 1 + Tf s; 0Fp(s) = 1 + Tf s.

(70)

By omitting the not feasible pre-filters 0P and 0Fp in the auxiliary circuit according
to Figure 5 and in Figure 1, we will replace the step-wise responses of u(t) and y(t) by
smoother exponential transients, which correspond to:

0Fcl(s) =
Y(s)
W(s)

=
e−Tds

1 + Tf s
; 0P(s) = 1; 0Fp(s) = 1. (71)

It also means that the tuning parameter is Tc0 = Tf .
For the dead-time approximation (5), the approach gives equivalent loops

with I-controller

0R1(s) =
U(s)
E(s)

=
Ki
s

; Ki =
1

K(Tf + Td)

0Fcl(s) =
Y(s)
W(s)

=
e−Tds

(Tf + Td)s + e−Tds ; 0Fd(s) =
Y(s)
D(s)

= K(Tf + Td)
se−Tds

(Tf + Td)s + e−Tds .
(72)

If we continue in this way using the Padé approximation (10), we get another integra-
tive controller that might be denoted as a filtered 0PI controller, or 0I-PD controller given
by the equations
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0R2(s) =
U(s)
E(s)

= Kc
1 + Tis

Tis
1

1 + Tf 1s
=

Ki
s

1 + TDs
1 + Tf 1s

;

Kc =
Ti

K(Tf + Td)
; Ti =

Td
2

; Ki =
1

K(Tf + Td)
; TD =

Td
2

; Tf 1 =
Tf Td

2(Tf + Td))
.

(73)

It may be used with pre-filters (71).
The 2nd-order Padé approximation (13) yields similarly solution that may be denoted

as 0I-PDD2 controller

0R3(s) =
U(s)
E(s)

=
Ki
s

1 + TD1s + TD2s2

1 + Tf 1s + Tf 2s

Ki =
1

K(Tf + Td)
; TD1 =

Td
2

; TD2 =
T2

d
12

; Tf 1 =
Tf Td

2(Tf + Td))
; Tf 2 =

Tf T2
d

12(Tf + Td))
.

(74)

For the pre-filter design applies the same as for the I-controller.
Of course, the solutions based on the elimination of dead-time from the controller

structure had its justification in the time of analog controllers. Today, it might be more
advantageous to implement this control based on a default scheme with disturbance recon-
struction and compensation in Figure 5. Especially in the simplest considered situation,
such a “predictive” integrative (I) controller can be significantly more efficient than an
I controller. However, it can be effectively and robustly tuned just by the performance
portrait method [4,41,42].

4.2. Pre-Filter Design for the SIMC PID Controller

When applying the above procedure to the SIMC PID for the plant Ke−Tds/[(1 +
T1s)(1 + T2s)] according to [4], it must be taken into account that this design leads to
an ideal controller (with non-causal target transfer function). Thus, as in Figure 5, the
first-order filter is applied, while in the feedback loop, the two time constants T1 and T2 are
compensated, that is,

Fy(s) =
(1 + T1s)(1 + T2s)

K(1 + Tf s)
; Fu(s) =

e−Tds

(1 + Tf s)
. (75)

By replacing the inner loop with

Su(s) =
1

1− Fu(s)
=

1 + Tf s
1 + Tf s− e−Tds , (76)

moving Fy to a straight branch, merging with Su and 1/K, substituting for Td (5) and
considering Tf = Tc, both the pre-filter P(s) and the ideal SIMC PID controller R(s) can be
calculated as:

P(s) =
(1 + Tf s)

(1 + T1s)(1 + T2s)
=

(1 + Tcs)
(1 + T1s)(1 + T2s)

;

R(s) = Kc
(1 + Tis)(1 + TDs)

Tis
; Kc =

T1

K(Tc + Td)
; Ti = T1; TD = T2.

(77)

Practical implementation of the controller requires using the first-order low-pass filter
with the time constant Tf = αTD; α ∈ [0.01, 0.1] [4].

Smoother monotonic responses u(t) can again be achieved by selecting the pre-filter
according to

P(s) =
1

(1 + T1s)(1 + T2s)
; Fp(s) =

1
(1 + Tcs)

. (78)

The speed of setpoint step responses may be further accelerated with considering just
the first-order pre-filter P(s) (67).
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5. Illustrative Examples

The differences between the traditional SIMC method with HR and the proposed
design modifications using MHR, will be illustrated on several examples. For the sake
of simplicity, where appropriate, the upper index “1” used to denote 1PI, 1PID, or 1PIDA
controller will be omitted.

5.1. Example 1: SIMC and Newly Proposed Control of FOTD System with the 2nd Order
Low-Pass Filter

In this example, the 2nd order binomial filter (35) inspired by [27] (with n = 2) has
been added to SIMC PI and PID controllers (SPI and SPID) and to all three first-branch
controllers (1PI, 1PID and 1PIDA) based on FOTD models.

According to HR, the SPI and SPID controllers are tuned as follows

T1 = T1m + 0.5Tf ; Td = Tm + 1.5Tf (79)

For SPID, the derivative action time constant [6] and the series controller filter time
constant for noisy processes [4] have been specified according to

TD = Td/3; Tf 1 = 0.1TD. (80)

According to MHR (36), used in 1PI, 1PID and 1PIDA tuning, the identified plant time
constant T1m = 1 and the identified plant model dead-time Tm = 1 have to be modified
according to

T1 = T1m + Tf ; Td = Tm + Tf . (81)

Particular loop parameters have been specified as follows:

PI: Tc1 = 0.9; Tf = 0.05
PID: Tc1 = 0.7; Tf = 0.1
PIDA: Tc1 = 0.5; Tf = 0.15.

(82)

The required closed loop time constant Tc1 under the PI controller has been chosen
slightly below the recommended (8) with the aim to keep the speed of transients close to
PID and PIDA control. Since the PI controller does not include “aggressive” derivative
term, the filter time constant Tf may be decreased. PID control, in general, allows faster
transients, which is reflected by smaller Tc1. However, due to an increased noise level,
Tf has been intuitively increased as well. Both mentioned modifications have also been
applied on PIDA controller.

Performance measures IAEd, TV1(ud), and TV1(yd) on unit input step disturbance,
for all three controllers (82) are given in Figure 6. For all controllers, IAEd values are
nearly equal. In terms of TV1(ud), the lowest excessive control effort, when there is no
noise (δ = 0), is achieved with PIDA controller, while the highest effort is obtained with
PID controller.

Concerning the process output signal, the PID and PIDA controllers yield nearly ideal
1P responses with TV1(yd) ≈ 0. The highest excessive output changes TV1(yd) are obtained
with the PI control. With existing measurement noise |δ| ≤ 0.2, the output changes are even
larger than the ones obtained with the PID and PIDA controllers. For all three controllers,
the excessive control effort, due to the measurement noise, significantly exceeds the one
without the noise (δ = 0). Surprisingly, PIDA controller, with the fastest transients and
seemingly “aggressive” 2nd order derivative action, shows lower excessive control effort
than the simplest and slowest PI control. This is well documented by the combined cost
functions (50) and (51) in Figure 7. The normalized values, based on the PI controller, show
that the PID controller with k = 1 has slightly higher value of Jk(ud). However, the PIDA
controller’s cost function is lower. The superiority of PID and PIDA control is even more
evident when emphasizing the speed of transients (k = 6). Obviously, the optimization
of the chosen controller and filter tuning is far from being trivial and requires to develop
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a systemic approach. Given the unlimited range of different requirements of practice
(represented by the parameter k), the search for a globally optimal method of controller
tuning can therefore be considered erroneous, even when restricted just to simple PID
control [43].
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Figure 6. Performance of the loops with FOTD plant, SIMC PI ad PID controllers (SPI and SPID)
tuned for (79), 1PI (6) and 1PID (12) and 1PIDA (15) controllers tuned for model (81). All controllers
are using the 2nd order filter (35) with parameters (82). The performance is calculated for no external
noise (δ = 0) and for noise amplitudes |δ| ≤ 0.2; K = 1; T1m = 1; Tm = 1; Ts = 0.001; tsim = 12.
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Figure 7. Holistic cost functions (50) and (51) corresponding to performance measures in Figure 6
related to 1PI control for external noise with amplitudes |δ| ≤ 0.2 for k = 1 and k = 6.
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From the noise attenuation point of view, in comparison with SPI and SPID controller,
the 1PI and 1PID controllers show improved noise attenuation, which is demonstrated (for
1PID) by lower shape-related deviations in Figure 6, or (for both 1PI and 1PID) by the lower
values of the cost functions in Figure 7. Transients under noisy process signals are shown
in Figure 8. As indicated by increased TV1(yd), under 1PI control, a relatively short Tc1
value leads to a moderate output undershooting. Although the amplitude of the noise δ
superimposed according to Figure 1 on the output variable exceeds 25% of the maximal
useful signal, on the control variable u(t) and even less on the output y(t), its effect is
relatively small.
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Figure 8. Disturbance step responses of the loop with FOTD plant and 1PI (6), 1PID (12) and 1PIDA
(15) controllers, with 2nd order filter (35) with parameters (81) and (82); K = 1; Tm = 1; T1m = 1;
|δ| ≤ 0.2; Ts = 0.001; tsim = 12.

The process output responses, under 1PID and 1PIDA controllers, are nearly ideal 1P
responses with TV1(y), TV1(u) ≈ 0. Therefore, in the case with no noise we may expect
IAE values (49) to be close to the values achieved by simulation. Thus, under 1PID control
with Tf = 0.1, choosing the equivalent model parameters (81) Td = T1 = 1.1, we get for
Tc1 = 0.7 1 IAE = 1.98 (49), which is nearly the same as 1 IAE = 1.978 from simulation.
Similarly, for 1PIDA control with Tf = 0.15 resulting in Td = T1 = 1.15 (81), we get
for Tc1 = 0.5 1 IAE = 1.897 (49), which is again nearly the same as 1 IAE = 1.896 from
simulation. These calculations may be considered as an experimental verification of the
applicability of MHR from Definition 3. They also illustrate motivation of [6] to return to
the 1PID control, which was rejected in the initial work [4].

5.2. Example 2:SE/SW Based Analysis of Controller + Filter Tuning—No Noise

The aim of this example is to explain the choice of the parameter Tc1 in (82) by
exploring SE and SW characteristics of the particular controllers with the chosen filters (35).

To get almost constant filter delay for different filter orders n, the filter time constants
Tf will be derived by MHR from the filter average residence time Tf 0 = nTf according to

Tf = Tf 0/n; n ∈ [1, 4]. (83)

Filtered 1PI control with three different values of Tf 0 yields SE and SW characteristics
shown in Figure 9. By increasing Tc1 the corresponding IAE values increase. Thereby, the
curves corresponding to different filter degrees n mostly overlap, which supports simplified
filter description (83). To get nearly 1P responses at the plant output for Tf 0 = 0.1, when
TV1(y)→ 0, one needs to choose Tc1 ≥ 1.3. For Tf 0 = 0.2 it may already be achieved with
Tc1 ≥ 1.2.
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Figure 9. SE and SW characteristics of the loop with FOTD plant, Qn(s) (35) with n ∈ [1, 4] and 1PI
(6) controller with parameters Tc1 = {0.9, 1.0, 1.1, 1.2, 1.3} and Tf 0 = 0.01 (black), Tf 0 = 0.1 (red) and
Tf 0 = 0.2 (blue) K = 1; Tm = 1; T1m = 1; δ = 0; Ts = 0.001; tsim = 20

To get nearly 1P transients at the input (not covered by these figures), for Tf 0 = 0.1 and
0.2 one needs to choose Tc1 = 1.5 and 1.4, respectively. Thus, for PI controller, and desired
zero shape related deviations, even when including Tf 0 into the equivalent dead-time, the
recommendation (8) is too weak.

Remark 4 (Lag and delay dominant processes). It can be stated that the above conclusions
regarding the choice of Tc = Tc1, to guarantee the smallest possible deviation of responses from their
ideal shapes, are in a good agreement with the recommendations of “smoother tuning” in SIMC [6]
for PI controller, giving Tc = 1.5Td. Of course, the considered process with T1m = Tm = 1, does
not even represent all stable 1st order processes. However, regarding the choice of Tf , the obtained
results can thus be easily interpreted using the ratio Tf /Tm or Tf /T1m. Furthermore, some other
recommendations are anticipated for lag-dominant processes with Tm < T1m and still other for
delay-dominant with Tm > T1m. In this article, however, we will not discuss in detail all possible
cases, but we plan to offer the reader an interactive web application, where the particular cases can
be easily verified.

1PID control (12) inspected for Tc1 = {0.3, 0.4, 0.5, 0.6, 0.7} yields nearly 1P output
transients for Tc1 ≥ 0.5 (Figure 10). At the input this happens just for Tc1 ≥ 0.8 (Tf 0 = 0.01)
or Tc1 ≥ 0.9 (Tf 0 ≥ 0.1). The value Tc1 = 0.7 in (82) guarantees ideal shapes just at
the output.
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Figure 10. SE and SW characteristics of the loop with FOTD plant, Qn(s) (35) with n ∈ [1, 4] and
1PID (12) controller with parameters Tc1 = {0.3, 0.4, 0.5, 0.6, 0.7} and Tf 0 = 0.01 (black), Tf 0 = 0.1
(red) and Tf 0 = 0.2 (blue), K = 1; Tm = 1; T1m = 1; δ = 0; Ts = 0.001; tsim = 20.
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Improvements achieved for the same range of Tc1 by augmenting 1PID to 1PIDA
control filtered by (35) (Figure 11) are already not so remarkable as when extending 1PI
to 1PID. SE and WE characteristics show that at the output, with Tf 0 ≥ 0.1 the transients
become 1P already for Tc1 ≥ 0.4 and at the input for Tc1 ≥ 0.7. Thereby, they allow to
achieve nearly ideal 1P transients at the input and output with lower IAE values. Again,
the value Tc1 = 0.5 in (82) guarantees ideal 1P shapes just at the output.
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Figure 11. SE and SW characteristics of the loop with FOTD plant, Qn(s) (35) with n ∈ [1, 4] and
1PIDA (15) controller with parameters Tc1 = {0.30.4, 0.5, 0.6, 0.7} and Tf 0 = 0.01 (black), Tf 0 = 0.1
(red) and Tf 0 = 0.2 (blue), K = 1; Tm = 1; T1m = 1; δ = 0; Ts = 0.001; tsim = 20.

5.3. Example 3: SE and SW Characteristics—External Noise

The following example will illustrate the results given in [6], where it was shown that
“smooth” (i.e., nearly 1P) input and output transients are achieved by slightly different
values of Tc1 than recommended in (8) or in (82) in Example 1. The tested controllers, filters
and the optimal parameters Tc are given below:

PI: Tc1 = 1.2
PID: Tc1 = 1.0
PIDA: Tc1 = 0.8
Tf 0 = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
Tf = Tf 0/n; n ∈ [1, 4]
T1 = T1m + Tf 0/2; Td = Tm + Tf 0/2; |δ| ≤ 0.2

(84)

The results of the experiment (see SE and SW characteristics in Figure 12) show that
by increasing the controllers order, the IAE values decrease without significant increase of
the controller effort. Thus the results evidently refute general belief that controllers with a
derivative action are not suitable for noisy systems. On the contrary, it is clearly shown
that the closed-loop transients may be accelerated, with simultaneously decreasing the
controller output noise, just by increasing the controller derivative order. In other words,
when properly combining filtration, which yields smoother, but slightly slower transients,
with derivative action (prediction) allowing faster, but noise amplifying dynamics, you
may get faster responses without impairing their closed-loop shapes. Once upgrading PI to
PID (as already done in [6]), we can continue with upgrading to PIDA, or to higher-order
controllers (as used in the actual implementation of fractional order controllers, where the
filters commonly exceed the order of 10)? During the era of pneumatic and other analog
controllers, the PI control is used due to its simplicity [6]. However, as documented by
increasing interest in fractional order PID, implemented by the HO controllers [2], the
controller order does not play a role anymore in today’s software-implemented controllers.
Taking into account that all the controllers are calculated from the same process model (in
our case FOTD), it does not complicate process identification. Grimholt and Skogestad [6]
are aware that with respect to the PI-tuning with Tc = Td, the iSIMC PID-tuning with
Tc = Td/2 improves IAE performance by about 30%, while keeping about the same
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robustness level (Ms ≈ 1.7). Such PID controller is even better in almost all aspects than
a well-tuned Smith Predictor. However, the HO controllers may also require solving
problems associated with control constraints [19]. Moreover, frequent discard of the
derivative term [1,16] may only be explained by improperly solved filtration problems.
Here, it is important to mention that the differences between n = 1 and n > 1 in Figure 12
would be even more pronounced on extended x-. This means that the excessive control
effort may be even lower by using at least 2nd order filters.
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Figure 12. SE and SW characteristics of the loop with FOTD plant, Qn(s) (35) with n ∈ [1, 4] and with
1PI (6), 1PID (12) and 1PIDA (15) controller with parameters (84), K = 1; Tm = 1; T1m = 1;|δ| ≤ 0.2;
Ts = 0.001; tsim = 20.

5.4. Example 4: SIMC and Newly Proposed Control of Fourth-Order System, No Noise

In [4], SIMC PI and PID control have also been applied to the fourth-order system
(30) with K = 1, Td = 0 and T4 = 1 (33). By means of HR, this plant has either been
approximated by FOTD model [4]

1FHR(s) =
e−2.5s

1 + 1.5s
(85)

or by SOTD model

2FHR(s) =
e−1.5s

(1 + 1.5s)(1 + s)
(86)

For Tc = Td = 2.5, the FOTD model yields a SIMC PI (SPI) controller with

Ti = 1.5; Kc = T1/[K(Tc + Td)] = 1.5/5 = 0.3 (87)

For Tc = Td = 1.5, the SOTD model yields the SIMC PID controller (SPID)
with parameters

Ti = 1.5; TD = 1; Kc = T1/[K(Tc + Td)] = 1.5/3 = 0.5; Tf 1 = TD/100 = 0.01 (88)

On the other side, application of MHR yields the following models

1FMHR(s) =
e−1.5s

1 + 2.5s
(89)

2FMHR(s) =
e−s

(1 + 1.5s)(1 + 1.5s)
(90)

3FMHR(s) =
e−0.5s

(1 + 1.1667s)(1 + 1.1667s)(1 + 1.1667s)
(91)

The above models have been used in design of 1PI and 1PID controllers, 2PID and
2PIDA controllers and 3PIDA controller. In each case, we have chosen Tc = Td.
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From the QOTD model (33) follows Td = 0. However, zero Td value, and low values of
Tc, can lead to high controller gains causing oscillations. This can be avoided by taking into
account the neglected time constants, which will eventually be translated into the effective
dead-time value. These enable to replace the ideal Td = 0 with some positive number,
chosen for example, as Td = 0.2T4. In our case, with T4 = 1, the plant approximation used
for the controller design is

4F(s) =
e−0.2s

(1 + s)4 . (92)

Remark 5 (Reliability of model (33) in controller design). Although the addition of a transport
delay to the model (33) may seem like a non-system solution, in reality, adhoc simplifications can
be expected already in the process of obtaining (33). The assumption that the process has only a
four-tuple dominant time constant and no other minor delays may correspond to reality only in very
unlikely circumstances. Exact identification of shorter delays runs into numerical problems—in
trying to identify exactly large dominant time constants, the determination of small delays in
accuracy ceases. Nevertheless, if we could determine them, in the end, according to HR and MHR,
we will still include them in Td. The problem can easily be demonstrated for example, when using
Strejc identification [18]. There, the zero value of the transport delay is output only for specially
measured process values, which we probably do not get on repeated identification. To obtain a model
without a transport delay, the measured values must be rounded appropriately. Models based on
such data manipulation may yield quite high data fitting in the identification evaluation. They can
also give good results in controller design using reduced-order process models, when shorter time
constants neglected are negligible compared to the dead-time resulting from model order reduction.
However, they are not appropriate for a reliable controller design using models (30) with Td = 0.

Figure 13 shows that for j = 1 and j = 2, an increase of the derivative action order
(e.g., from 1PI to 1PID, or from 2PID to 2PIDA) has virtually no effect on the process
responses. However, the higher accuracy of the delay approximation, by using higher-
order transfer functions and thus increasing the controller order, does not have a significant
effect on the closed loop response in lag-dominant processes. The advantage of the newly
proposed design is the possibility to significantly improve the control performance with
simultaneously achieving nearly ideal shapes of process output transients.
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Figure 13. Setpoint and input disturbance unit step responses of the system (33) by SPI, SPID, 1PI,
1PID, 2PID, 2PIDA, 3PIDA and 4PIDAJ controllers, no noise.
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For all used controllers, the course of the control action at the setpoint change exhibits
large signal swing. The initial control kick can be attenuated by using the derivative filter
derived in Section 4. Another way to avoid derivative kick on setpoint change [4], is to
follow industry practice by differentiating only the output of the system (or by using a
setpoint weighting parameters). However, such a solution is not as efficient in terms of
adapting the dynamics of the closed-loop responses when compared to pre-filters.

5.5. Example 5: Comparing SIMC PI and PID Controllers with the Newly Proposed Solutions
Applied to Fourth-Order System

A comparison of the SIMC PI controller (SPI) and the newly designed 1PI controller
in the above example implemented for Tc = Td shows faster SPI setpoint step response
and slower, but strictly monotonic setpoint step response of 1PI control. However, such a
comparison for a single tuning parameter value does not capture the resulting performance
of the whole family of controllers. Figure 14 shows such responses corresponding to the
plant approximations (85), (89) and the pre-filter (67) with the following Tc values

Tc = {0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4}. (93)

They illustrate that the nearly ideal shapes of the plant input and output signals, corre-
sponding to the FOTD process model, are achieved at higher Tc values than recommended
in (8).
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Figure 14. Setpoint (left) and input disturbance unit step responses (right) of the system (33) with
SPI (red), and 1PI controllers (blue) for Tc (93), pre-filter (67) and the plant approximations (85) and
(89), no noise.

Thereby, the dynamics of the considered controllers depends on Tc in different ways.
The SE and SW characteristics in Figure 15 show that for the same values of shape-related
deviations the IAE values of SPI controller are generally higher than for 1PI controller.
For both controllers, increasing the Tc decrease the excessive control effort and wobbling.
However, the overshooting of the SPI controller, which indeed gives less IAE than for
monotonic responses, is manifested by higher values of output wobbling and it does not
fall to zero even for very high values of Tc. From the results of comparison, it is clear that
MHR gives better results than the HR when reducing higher order transfer functions for
tuning the PI controllers.
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Figure 15. SE and SW characteristics corresponding to transients with with SPI controller (red) in
Figure 14 correspond mostly to higher IAE values than the transients with 1PI controller (blue), no noise.

Let us now discuss the details of the setpoint step responses of the PID controllers
from Figure 13. The process (33) is represented by the second order models (86), or (90).
Neglecting the initial peak, the process input is practically zero during the simulation time
(Figure 16). Such kind of control cannot lead to robust closed-loop control. As Tc decreases,
this initial peak narrows and increases. Although the 2PID controller is much better in this
respect than SPID, the initial peaks increase by decreasing Tc. The problem can be solved
by using pre-filters (68), or (78) derived in Sections 4 and 4.2. In Figure 17, the transients of
both compared controllers (SPID and 2PID) are shown for

Tc = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. (94)

Obviously, the closed-loop responses are significantly faster when compared to the
PI controllers in Figure 14. Thanks to the pre-filters used, their closed loop responses are
smooth and without distinct peaks.
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Figure 16. Detail of the setpoint unit step responses of the system (33) from Figure 13 corresponding
to SPID and 2PID controllers, no noise.
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Figure 17. Setpoint and input disturbance unit step responses of the system (33) with SPID (red) and
2PID controllers (blue), Tc (94), pre-filters (78) and (68) and the plant approximations (85) and (89),
no noise.

The SE and SW characteristics in Figure 18 show again that, by increasing Tc, the
IAE value changes much less for SPID controller and they are always above the values
for 2PID controller for the same shape-related deviations. The 2PID controller results in
zero shape-related deviations in almost the entire range of considered Tc values. Again, it
can be concluded that although processes with overshooting give less IAE than monotonic
responses, the MHR gives, in combination with 2PID control, lower IAE values than the
HR, when reducing the HO transfer function (33) order for the SPID controller design.

Remark 6 (Ambiguities of design and evaluation regarding the choice of pre-filter and
ideal shape of u(t)). The SE characteristics in Figure 18 evaluate the deviations from the ideal
shape of the input signal u(t) using TV2(u) criterion. The criterion was chosen to unify the
selection of controller and the evaluation of its performance. Similarly, when evaluating SPI and 1PI
controllers in Figure 15, we calculated the deviations by using TV1(u). However, the requirement
for consistency of the controller design may lead to conclusion that we still control the fourth-order
system (30), so we should use TV4(u). Another possible proposal could require that we adapt the
performance measures to the most complex controller used.
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Figure 18. SE and SW characteristics corresponding to transients in Figure 17 with SPID (red) and
2PID controllers (blue), no noise.

To illustrate broad spectrum of possible design alternations, the next comparison on
the same example considers SPID controller (88) with pre-filter (78) and 3PIDA controller
(28) based on the model (91) with a reduced-order pre-filter

3P2(s) =
1

(1 + T3s)2 . (95)

Both control structures have been compared for the following tuning parameters:

Tc = {0.25, 0.4, 0.55, 0.75, 1.0}. (96)

To sufficiently suppress the measurement noise, a second-order filter Q2(s) has been
used for SPID and a fourth-order filter Q4(s) for 3PIDA control, both with time constants
Tf = 0.15, at the sampling period Ts = 0.001.

The closed-loop responses on unit step setpoint and disturbance unit step responses
changes in Figure 19 show significantly faster dynamics of 3PIDA control compared to SPID
control. The conclusions are also supported by the SE and SW characteristics in Figure 20.
Given that SPID is based on the 2nd order model, we might expected ideal output shapes
to be achieved with 2P input (i.e., transients from DC2) and use in the corresponding
evaluation of the excessive control effort the TV2(u) measure. Using the same arguments
for 3PIDA controller, the performance evaluation should work with TV3(u). To illustrate
the emerging differences, we will compare both performance measures.

The SE characteristics in Figure 20 demonstrate the difference between both measures.
They show that, the process input, in terms of TV3(u), when using the SPID controller,
also provides ideal 3P responses for some larger values of the considered Tc setting (96).
However, the achievable range of IAE values is significantly narrower and the output
signal deviations from the ideal responses are larger than with 3PIDA. Note that while
with 3PIDA control, Tc mainly affects the closed-loop speed without much effect on input
and output shape deviations. On the other hand, with SPID, the correlation between the Tc
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and the output shape is quite significant. At the same time, transients with 3PIDA control
are both faster and smoother.

When using TV2(u), the considered responses u(t) would give larger deviations than
yielded by TV3(u). From the comparison of numerical values in (45), it is then clear that
the controller optimization based on TV prevents achieving the optimal performance,
especially for the higher-order systems.
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Figure 19. Setpoint and input disturbance unit step responses of the system (33) with SPID+Q2(s)
(red) and 3PIDA+Q4(s) controllers (blue), Tc (96), Tf = 0.15, pre-filters (78) and 3P(s) = 1/(1+ T3s)2

and the plant approximations (85) and (91).

A similar conclusion is achieved when comparing the structure of SPID +Q2(s) with
the 4PIDAJ controller proposed in Example 4 for the plant (92) and supplemented by the
noise attenuation filter Q4(s) with Tf = 0.15 and the reduced-order prefilter

4P3(s) =
1

(1 + T4s)3 . (97)

In order to be able to speed up the loop responses under 4PIDAJ control, with respect
to the 3PIDA controller, another Tc value was added to the tuning parameter set (96):

Tc = {0.15, 0.25, 0.4, 0.55, 0.75, 1.0}. (98)

Analysis of the family of time responses in Figure 21 yields the SE and SW characteris-
tics in Figure 22.
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Figure 20. SE and SW characteristics of SPID and 3PIDA controllers corresponding to transients in
Figure 19.
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Figure 21. Setpoint and input disturbance unit step responses of the system (33) with SPID+Q2(s)
(red) and 4PIDAJ+Q4(s) controllers (blue), Tc (98), Tf = 0.15, pre-filters (78), 4P3(s) = 1/(1 + T4s)3

(97) and the plant approximations (85) and (92).
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Figure 22. SE and SW characteristics of SPID and 4PIDAJ controllers corresponding to transients in
Figure 21.

The comparison with the characteristics in Figure 20 shows a significant decrease
of TV4(u) values. The performance improvements for the 4PIDAJ controller, in terms of
TV4(u), are particularly visible in disturbance responses.

5.6. Example 6: SIMC and Newly Proposed Control of QOTD System with 3rd-Order Noise
Attenuation Filters

The dynamics of the plant considered in the previous example will be evaluated with
an external measurement noise with an amplitude |δ| ≤ 0.1 generated in Matlab/Simulink
by a Uniform Random Number block. To attenuate the noise impact, all considered
controllers will be extended by the binomial filters (35) with the time constant Tf = 0.1.
Based on the plant approximations and taking into account the filters Qn(s) using HR and
MHR we get

SPI + Q1(s) : T1 = 1.5; Td = 2.5 + Tf ; Tc = 2Td; P(s) =
1

1 + T1s

SPID + Q2(s) : T1 = 1.5; T2 = 1; Td = 1.5 + 2Tf ; Tc = Td; P(s) =
1

1 + T1s
; Tf 1 =

T2
100

1PI + Q1(s) : T1 = 2.5 +
Tf

2
; Td = 1.5 +

Tf

2
; Tc1 = 2Td; 1P(s) =

1
1 + T1s

2PID + Q2(s) : T2 = 1.5 +
Tf

2
; Td = 1 + Tf ; Tc2 = Td; 2P(s) =

1
(1 + T2s)2

3PIDA + Q4(s) : T3 = 1.1667 +
2Tf

3
; Td = 0.5 + 2Tf ; Tc3 = Td; 3P(s) =

1
(1 + T3s)3

4PIDAJ + Q6(s) : T4 = 1 +
3Tf

4
; Td = 0.2T4 + 3Tf ; Tc4 = Td; 4P2(s) =

1
(1 + T4s)2 .

(99)

Similar to the previous example, in order to obtain nearly ideal shapes of transients,
SPI and 1PI controllers are tuned with Tc = Tc1 = 2Td. All other controllers are tuned
with the default value of Tc = Tci = Td, i = 2, 3, 4 with pre-filters (69) except for SPID and
4PIDAJ, which use reduced-order pre-filters 4P2(s) (99).
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Since 1PID and 2PIDA controllers in Example 4 did not confirm any significant
improvement over the 1PI and 2PID controllers, we are no longer considering them in
this comparison.

The obtained transients in Figure 23 show that even under a relatively high mea-
surement noise and higher-order derivative actions by some controllers, it is possible to
significantly accelerate the responses while maintaining a relatively low control efforts.
Here, it is worth noting that the lowest values of the excessive controller effort are not
produced by the simplest controllers, despite the slow transients. However, when we look
at the control signal responses in Figure 23 (associated with the nearly ideal responses of
the output), we see that they are nearly monotonic. One pulse is visible in them only in
case of setpoint response under 4PIDAJ with reduced-order pre-filter 4P2(s). Indications of
1P responses are also seen when using 2PID and 3PIDA controllers. Therefore, with respect
to the Definition 5, these are the responses from DC0. In order for several pulses of the
action variable to stand out more significantly (as discussed in Example 5), the level of
measurement noise should be reduced.
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Figure 23. Setpoint and input disturbance unit step responses of the system (33) for SPI, SPID,
1PI, 2PID, 3PIDA and 4PIDAJ controllers combined with the noise attenuation filters and tuning
parameters for a measurement noise with an amplitude |δ| ≤ 0.1 (i.e., up to 10% of the setpoint step)
generated in Matlab/Simulink by a Uniform Random Number block.

Although the IAE values in Figure 24 (see also Tables 1 and 2) decrease when using
higher-order controllers, they do not show entire behavior of the responses, which should
take into account both the speed of transients and excessive controller effort or output
oscillation. From this point of view, the corresponding cost functions (50) and (51) show
interesting results.
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Figure 24. Performance measures corresponding to transients in Figure 23.

Namely, for k = 1, when placing equal emphasis on the speed of transients and
shape deviations, the optimal values of J1(us) and J1(ud) are achieved with 3PIDA con-
troller. By the same controller we get very good values also in terms of output wobbling
J1(y). However, the best values of J1(y) are obtained by the slowest SPI controller. On
the other hand, when reflecting with k = 5 increased demands on the speed of tran-
sients, the 4PIDAJ controller, resulting in the fastest transients for both setpoint and dis-
turbance rejection responses, yields very good values also in terms of combined cost
functions J5(u) and J5(y).

Table 1. Evaluation of the setpoint responses from Example 6.

Controller SPI SPID 1PI 2PID 3PIDA 4PIDAJ

IAEs 9.3005 6.3096 7.2040 6.4126 5.2836 4.7447
TV4(us) 3.9871 13.5908 12.7076 1.8372 1.8740 3.9900

TV0(ys)103 1.3649 5.5289 3.4414 8.7998 13.5847 22.1266
J1(us) 37.0818 85.7518 91.5451 11.7814 9.9014 18.9313

J1(ys)102 1.2695 3.4885 2.4792 5.6429 7.1777 10.4984
J5(us)10−5 2.7745 1.3591 2.4656 0.1992 0.0772 0.0959

J5(ys) 94.9803 55.2887 66.7736 95.4184 55.9382 53.2052

Table 2. Evaluation of the disturbance responses from Example 6.

Controller SPI SPID 1PI 2PID 3PIDA 4PIDAJ

IAEd 7.8032 4.8093 4.6555 3.3136 2.8161 2.5935
TV4(ud) 3.9458 13.4804 12.6906 1.7935 1.7950 3.8461

TV1(yd)102 0.0428 2.4693 1.9083 18.7217 8.5841 15.8702
J1(ud) 30.7900 64.8315 59.0811 5.9429 5.0548 9.9748

J1(yd)102 0.0334 1.1876 0.8884 6.2037 2.4174 4.1159
J5(ud)10−5 1.1416 0.3468 0.2775 0.0072 0.0032 0.0045

J5(yd) 1.2392 6.3532 4.1732 7.4794 1.5203 1.8621

6. Discussion: Everything Should Be Made as Simple as Possible, but Not Simpler

The discussion of the achieved results can be briefly summarized in a well-known
statement attributed to Albert Einstein. The newly presented analytical design of HO-PID
controllers and its comparison with SIMC and optimization-based iSIMC and other similar
works leads us namely to the following comments—the published paper, “Probably the
best simple PID tuning rules in the world” [43], was in fact mainly focused on “The best
simple PI tuning rules”. Reference [4] was written in the same direction by suggesting
adhoc choice in numerous points, as the choice of the target transfer function, half-rule for
the reduction of complex plant models, or performance evaluation based on the IAE and
TV. Later on, the SIMC author with the co-author analyzed the possibilities and limitations
of the original method [44]. Recently, they have tried to extend the design to the PID
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controllers [6,22], where, they encountered the limitations of the initial postulates and
tried to overcome them by using optimization methods. When trying to replace analytical
approaches by the seemingly simpler numerical optimization approaches, we should
note that:

• obtaining a perfect process model is frequently associated with trial-and-error ap-
proaches enabling to achieve the highest possible match between theoretical and
experimentally obtained results (underpinned by appropriate identification results).

• These expectations are usually interpreted in terms of multicriteria cost functions, instead
of a single general-purpose cost function and a single all-encompassing optimization.

• Diverse requirements led to the birth of fuzzy control based on the use of linguistically
formulated conditions of optimality [45]. However, similar objectives can be easily
achieved with simple analytical and modular approaches offering more direct relation
to the tuning parameters, especially when they are designed to optimally cover the
specific requirements.

• When looking for the optimal solution for a wider class of problems, the price to be
paid is a wide range of existing and newly emerging controllers and methods for
evaluating them. A simple list of existing solutions (as offered by [5]), with their
ever-growing number, may not lead to a simplification and clarity of the situation.
From this point of view, it seems more efficient to classify existing solutions into
dynamic classes of control [17,39].

• From this perspective, the clear structure, openness, flexibility of adaptation and
compatibility with the concept of dynamic classes can be considered as the main
advantages of the newly proposed modifications to the original SIMC method.

It was found out that several of the proposed simplifications of the original SIMC were
counterproductive or required certain modification. At the same time, as shown on the
example of the system (33) taken from [4], there was identified the danger of exaggeration.
Of course, simplifications are not avoided by the modified method. In order to suffice with
the minimum possible number of parameters, it works with multiple time constants of
the model already in the identification of the system, the choice of the target behavior, pre-
filters and the choice of noise filters. By increasing the number of considered parameters, it
would perhaps be possible to slightly improve the closed loop responses. However, the
question is whether, in the face of all the existing uncertainties in real systems, it is worth it.

In the HO controller design and evaluation stages, it was essential to take into account
the more complex shapes of transients. In addition to paying attention to the filter choice
and limiting the main tuning parameter, this lead to design of pre-filters or setpoint
weighting solutions. Our research led to final realization that, although based on SIMC,
the core of its original concepts can be used on more complex controllers with higher order
derivative actions.

7. Conclusions

This paper can be considered as an extension of the SIMC method to HO controllers
with user-defined filter order. Although the paper focused on the stable process models, the
SIMC method provided a versatile environment to satisfy challenging transient response
requirements with some simple modifications. Noise attenuation requirements were met
by choosing the filter order and time constant.

The key factor for the successful implementation of the HO controllers was appropriate
signal filtering, since the higher-order derivatives without filters can be the main obstacle to
practical implementation of the controller. The results of the illustrative examples showed
that the proposed approach was suitable for implementation at different levels of process
measurement noise.

The newly developed model-based approach for HO stable plants therefore provided ex-
cellent control results, which allow its implementation even in very demanding applications.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
2P Two-Pulse, response with 3 monotonic segments (2 extreme points)
ART Average Residence Time
BIBO Bounded-Input-Bounded-Output
FOTD First-Order Time Delayed
HO Higher Order
HR Half-Rule
I Integrative
IMC Internal Model Control
jOTD j-Order Time Delayed
MHR Modified Half-Rule
mP m-Pulse, response with m + 1 monotonic segments (m extreme points)
PI Proportional-Integrative
PID Proportional-Integrative-Derivative
PIDA Proportional-Integrative-Derivative-Accelerative
PIDAJ Proportional-Integrative-Derivative-Acceleration-Jerk
jRm mth-order controller for jth-order stable plant, m ≥ j

jRm
n

mth-order controller for jth-order stable plant combined with nth-order filter
Qn(s), m ≥ j, n ≥ 0

SE Speed - Effort
SIMC Simple Control/Skogestad IMC
SPI SIMC PI controller
SPID SIMC PID controller
SW Speed - Wobbling
SOTD Second-Order Time Delayed
QOTD Fourth-Order Time Delayed (with quadruple time constant)
TOTD Third-Order Time Delayed
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