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Abstract: In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–
MacArthur predator–prey model. The model is derived by assuming that the prey may be infected
by a disease. In order to take the memory effect into account, we apply two fractional differen-
tial operators, namely the Caputo fractional derivative (operator with power-law kernel) and the
Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler
kernel). We take the same order of the fractional derivative in all equations for both senses to maintain
the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e.,
in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium
points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator
point, the infected prey free point, the predator-free point and the co-existence point. For a model
in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the
local and global stability analysis and establish the conditions for the existence of Hopf bifurcation.
It is found that the trivial equilibrium point is a saddle point while other equilibrium points are
conditionally asymptotically stable. The numerical simulations show that the solutions of the model
in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically
that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The
essential difference between the two models is the convergence rate to reach the stable equilibrium
point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of
both models are different. Moreover, we also observe a bistability phenomenon which disappears via
Hopf bifurcation.

Keywords: Atangana–Baleanu; Caputo; eco-epidemiology; Rosenzweig–MacArthur

1. Introduction

The long history of mathematical biology reveals that predator–prey modeling plays
an imperative role in scientific research. Since the classical Lotka–Volterra, as the funda-
mental predator–prey model, have been proposed [1–3], the theoretical ecology has been
constantly developed. The Lotka–Volterra model has been modified by a lot of researchers
to contrive the relevant model which corresponds to the actual phenomena, such as the
functional response [4–9], the Allee effect [10–14], the impact of competition [15–17] and so
forth. All of these modifications affect the density of populations as the result of interac-
tions between two or more populations. From the biological point of view, the population
density also depends on the epidemiological frameworks, which leads to the increment
of the death rate caused by the disease in the population. Eco-epidemiology describes
the occurrence of ecological and epidemiological circumstances simultaneously [18–23].
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For instance, in a biotope that involves pests and its natural enemies, we observe that the
eco-epidemiological problem occurs and described by the interaction between pest and its
predator. One or both populations may be infected by a disease caused by microbiologi-
cal pathogens such as parasites, viruses, fungi and bacteria, for further see refs. [24–28]
and some references therein. For the real-world example, to suppress the growth rate of
rats (Rattus sp.) in agricultural landscape, the farmers use barn owls (tyto alba) and some
pathogens such as viruses (paramyxoviridae and pneumovirus family), bacterias (klebsiella
pneumoniae, mycoplasma pulmonis, citrobacter rodentium and streptococcus pneumoniae), and
parasites (giardia muris, spironucleus muris, oxyuriasis and acariasis) [29–33].

Regarding to the description above, some researchers have successfully constructed
and studied the eco-epidemiological problem in a deterministic model. Mondal et al. [21],
Wang et al. [34] and Suryanto et al. [35] study the dynamics of the interaction between
two populations in a predator–prey relationship where the prey is infected by a disease
and the predator is hunting the infected prey. In facts, many natural phenomena in the
ecological system show that predation still occurs although the infected prey does not
exist. This means both susceptible and infected prey are regarded to be predated. Based on
this assumption, Sahoo [19], Saifuddin et al. [20], Panigoro et al. [23], Upadhyay et al. [36]
and Nugraheni et al. [37] study the eco-epidemic model with the predation existing on
both susceptible and infected prey. The fundamental differences of their models lie on the
infectious transmission behavior, the predator functional response, the existence of the
Allee effect and the operator of the derivative. Here, we study the eco-epidemic model
formulated under the following assumptions.

(a) In the presence of disease, the prey is divided into two compartments, namely
susceptible prey S(t) and infected prey I(t). The susceptible prey becomes infected
when the individuals have contact with the infected prey. Since the density of prey
and predator are assumed large enough, the infection rate due to this contact is
bilinear which is symbolized by b.

(b) In the presence of the predator–prey relationship, the interaction between suscepti-
ble prey, infected prey and predator is following the Rosenzweig–MacArthur model
[38] with a few adjustments. The susceptible prey growth logistically with intrinsic
growth rate r and environmental carrying capacity K. The infected prey competes
for food with the susceptible prey but has no contribution to the growth rate of
susceptible prey. Both susceptible prey and infected prey are predated following
Holling type-II with the attack rate of predator on susceptible prey ms, the attack
rate of predator on infected prey mi, the half-saturation constant of predator for
susceptible prey ks and the half-saturation constant of predator for infected prey
ki. Since both predations contribute to the predator birth, the conversion efficiency
consists of two parts, i.e., the conversion efficiency of predator on susceptible prey bs
and the conversion efficiency of predator on infected prey bi. It is also assumed that
both infected prey and predator are reduced due to mortality following exponential
decay where d is the death rate of infected prey, and a is the death rate of predator.

Based on above assumptions, we have the following eco-pidemic model.

dS
dt

= rS
(

1− S + I
K

)
− bSI − msSP

ks + S
,

dI
dt

= bSI − dI − mi IP
ki + I

,

dP
dt

=

(
bsS

ks + S
+

bi I
ki + I

− a
)

P,

(1)

For simplicity, model (1) is transformed into a non-dimensional system by intro-
ducing transformation of variables (S, I, P, t) →

(
S
K , I

K , msP
rK , rt

)
to obtain the following

eco-epidemic model.
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dS
dt

=

[
1− S− (1 + η̂)I − P

κ + S

]
S,

dI
dt

=

[
η̂S− δ̂− m̂P

ω + I

]
I,

dP
dt

=

[
µ̂S

κ + S
+

β̂I
ω + I

− q̂

]
P,

(2)

where η̂ = bK
r , δ̂ = d

r , m̂ = mi
ms

, µ̂ = bs
r , β̂ = bi

r , κ = ks
K , ω = ki

K and q̂ = a
r .

To approach the superlative shape of the eco-epidemiological model, the ordinary
calculus is considered less effective in describing the complex ecological phenomena that
involves the system memory and hereditary biological properties of complex multiple
timescale dynamics, see refs. [39–41]. To overcome such problem, many researchers
apply fractional calculus because it is considered to have the ability to represent biological
conditions related to the memory effects more powerfully and accurately than the classical
calculus [42–48]. Particularly, the fractional-order derivatives, as part of the fundamental
theory of fractional calculus, have nonlocal properties which are naturally connected to
the biological systems. It means that the current state of population density depends
on all earlier states [49–51]. If we revisited the evolution of fractional-order derivative,
the Riemann–Liouville [52] and Caputo [53] operators have been widely applied to the
biological modeling. To investigate the behavior of the fractional-order dynamical system,
the theoretical aspect of the Caputo operator is the most complete tool compared to others,
see refs. [52,54,55]. However, the kernels of the first two definitions of fractional operators
are single and local [56–59]. Therefore, Caputo operator is not sufficient enough to express
better nonlocal dynamics. To cover the limitation of Caputo operator, in 2015, Caputo
and Fabrizio proposed a new fractional operator, which is called the Caputo–Fabrizio
derivative [60]. The non-singular and exponential kernel of this fractional derivative is the
novelty of their result and has been successfully applied in several fields [40,61–63]. One
year later, Atangana and Baleanu introduced a new fractional operator with a nonlocal and
non-singular kernel. Such an operator is well-known as the Atangana–Baleanu operator,
which has all the advantages of the Caputo–Fabrizio operator but it uses the Mittag–Leffler
function as its kernel [64]. Most researchers reveal that the Atangana–Baleanu operator
gives better results and claim that the effect of memory is represented efficiently, see
refs. [9,40,51,65].

For a better approach in epidemiological modeling, the fractional-order derivative
is utilized in a similar way with [48,66] which replace the first-order derivative d

dt at the
left-hand side of model (2) with the fractional-order derivative Dα

t . Therefore, we obtain

Dα
t S =

[
1− S− (1 + η̂)I − P

κ + S

]
S,

Dα
t I =

[
η̂S− δ̂− m̂P

ω + I

]
I,

Dα
t P =

[
µ̂S

κ + S
+

β̂I
ω + I

− q̂

]
P.

(3)

Pay close attention to the dimension of the equations in model (3), where the fractional-
order derivatives have the dimensions of (time)−α while the parameters η̂, δ̂, m̂, µ̂, β̂ and
q̂ have the dimensions of (time)−1. This circumstance means the inconsistency of physical
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dimensions in the model (3) and can be surmounted by rescaling the parameters as in the
following model.

Dα
t S =

[
1− S− (1 + η̂α)I − P

κ + S

]
S,

Dα
t I =

[
η̂αS− δ̂α − m̂αP

ω + I

]
I,

Dα
t P =

[
µ̂αS

κ + S
+

β̂α I
ω + I

− q̂α

]
P.

(4)

By applying new parameters η̂ = η, δ̂ = δ, m̂ = m, µ̂ = µ, β̂ = β and q̂ = q, we achieve

Dα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S,

Dα
t I =

[
ηS− δ− mP

ω + I

]
I,

Dα
t P =

[
µS

κ + S
+

βI
ω + I

− q
]

P.

(5)

We note that model (5) consists of three fractional differential equations. The order of the
fractional derivative in all equations is set to be the same to maintain their symmetrical aspect.

Notice that we have to assume in model (5) that the disease transmission follows a
bilinear incidence rate. Previously, Nugraheni et al. [37] have studied the same model but
with saturated incidence rate. However, Nugraheni et al. [37] have only presented some
numerical simulations of model (5) with Caputo sense without any analytical studies. In
this article, we start our work by constructing the fractional-order eco-epidemic model
consisting of the model assumptions, the first-order modeling, its non-dimensional form
and the fractional-order modeling including the replacement of the first-order derivative
with fractional-order derivative and the time dimension adjustment for some parameters
to prevent the inconsistency of physical dimensions. Furthermore, we present the complete
dynamics of model (5) with Caputo operator including the local and global stability, the
existence of Hopf bifurcation and their appropriated numerical simulations. We also
use the Atangana–Baleanu in Caputo sense as the fractional-order operator of model (5)
numerically by previously showing the existence and uniqueness of solution of the model.
We compare numerically the difference between model (5) with Caputo and Atangana–
Baleanu operators, especially the difference of the dynamical behaviors when the Hopf
bifurcation occurs. All of these analytical results and numerical simulations have never
been done in [37], which is the novelty of our work.

This paper is organized as follows. In Section 2, we present some fundamental
concepts which consist of definitions, theorems and lemmas that are associated with
Caputo and Atangana–Baleanu derivatives and dynamical systems. Further, in Section 3,
we investigate the dynamics of model (5) with Caputo derivative. The investigation
includes the existence, uniqueness, non-negativity, boundedness of the solutions, the
existence of equilibrium points, their local and global stability, as well as the occurrence of
Hopf bifurcation. The existence and uniqueness of solutions of model (5) with Atangana–
Baleanu derivative in Caputo sense are discussed in Section 4. To support our theoretical
findings, we demonstrate some numerical simulations in Section 5. Finally, we present
some conclusions in Section 6.

2. Fundamental Concepts

In this section, we present the important results from previous research such as
definitions, theorems and lemmas associated with the fractional-order differential equation.
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Definition 1 ([55]). Suppose 0 < α ≤ 1. The Caputo fractional derivative of order−α is defined by

CDα
t f (t) =

1
Γ(1− α)

∫ t

0
(t− s)−α f ′(s)ds, (6)

where t ≥ 0, f ∈ Cn([0,+∞),R), and Γ is the Gamma function.

Definition 2 ([64]). Suppose 0 < α ≤ 1. The Atangana–Baleanu fractional integral and derivative
in Caputo sense of order−α (ABC sense) are respectively defined by

ABCIα
t f (t) =

1− α

B(α)
f (t) +

α

Γ(α)B(α)

∫ t

0
(t− s)α−1 f (s) ds,

ABCDα
t f (t) =

B(α)
1− α

∫ t

0
Eα

[
− α

1− α
(t− s)α

]
f ′(s) ds,

where t ≥ 0, f ∈ Cn([0,+∞),R), Eα is the Mittag–Leffler function defined by Eα(t) =

∑∞
k=0

tk

Γ(αk+1) , and B(α) is a normalization function with B(0) = B(1) = 1. In this paper,
we define B(α) = 1− α + α

Γ(α) .

Theorem 1 ([64]). By using the inverse Laplace transform and convolution theorem, the unique
solution of the time fractional differential equation

ABCDα
t f (t) = ϕ(t) (7)

can be written as

f (t) =
1− α

B(α)
ϕ(t) +

α

Γ(α)B(α)

∫ t

0
ϕ(s)(t− s)α−1 ds. (8)

Lemma 1 ([67]). Let 0 < α ≤ 1. Suppose that f (t) ∈ C[a, b] and CDα
t f (t) ∈ C[a, b]. If

CDα
t f (t) ≥ 0, ∀t ∈ (a, b), then f (t) is a non-decreasing function for each t ∈ [a, b]. If CDα

t f (t) ≤
0, ∀t ∈ (a, b), then f (t) is a non-increasing function for each t ∈ [a, b].

Theorem 2 (Matignon condition [55,68]). Consider a Caputo fractional-order system

CDα
t ~x = ~f (~x); ~x(0) = ~x0; α ∈ (0, 1]. (9)

A point ~x∗ is called an equilibrium point of Equation (9) if it satisfies ~f (~x∗) = 0. This equilibrium

point is locally asymptotically stable if all eigenvalues λj of the Jacobian matrix J = ∂~f
∂~x evaluated

at ~x∗ satisfy | arg(λj)| > απ
2 . If there exists at least one eigenvalue that satisfies | arg(λk)| > απ

2
while | arg(λl)| < απ

2 , k 6= l, then ~x∗ is a saddle-point.

Lemma 2 ([69]). Consider a Caputo fractional-order system

CDα
t x(t) = f (t, x(t)), t > 0, x(0) ≥ 0, α ∈ (0, 1], (10)

where f : (0, ∞)×Ω→ Rn, Ω ⊆ Rn. A unique solution of Equation (10) on (0, ∞)×Ω exists if
f (t, x(t)) satisfies the locally Lipschitz condition with respect to x.

Lemma 3 (Standard comparison theorem for Caputo fractional-order derivative [42]). Let
x(t) ∈ C([0,+∞)). If x(t) satisfies

CDα
t x(t) + λx(t) ≤ µ, x(0) = x0,
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where α ∈ (0, 1], (λ, µ) ∈ R2 and λ 6= 0, then

x(t) ≤
(

x0 −
µ

λ

)
Eα[−λtα] +

µ

λ
.

Lemma 4 ([70]). Let x(t) ∈ C(R+), x∗ ∈ R+, and its Caputo fractional derivatives of order α
exist for any α ∈ (0, 1]. Then, for any t > 0, we have

CDα
t

[
x(t)− x∗ − x∗ ln

x(t)
x∗

]
≤
(

1− x∗

x(t)

)
CDα

t x(t).

Lemma 5 (Generalized Lasalle Invariance Principle [71]). Suppose Ω is a bounded closed set
and every solution of system

CDα
t x(t) = f (x(t)), (11)

which starts from a point in Ω remains in Ω for all time. If ∃V(x) : Ω→ R with continuous first
order partial derivatives satisfies following condition:

CDα
t V|Eq.(11) ≤ 0,

then every solution x(t) originating in Ω tends to M as t→ ∞, where M is the largest invariant
set of E and E :=

{
x|CDα

t V|Eq.(11) = 0
}

.

3. Eco-Epidemic Model in the Caputo Sense

In this section, we consider a fractional-order eco-epidemic model (5) with the frac-
tional derivative in the Caputo sense as defined in Definition 1:

CDα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S = F1(X),

CDα
t I =

[
ηS− δ− mP

ω + I

]
I = F2(X),

CDα
t P =

[
µS

κ + S
+

βI
ω + I

− q
]

P = F3(X),

(12)

where X = (S, I, P). In the following sub-sections, we investigate the dynamics of model (12).

3.1. Existence and Uniqueness

In this section, we investigate the sufficient condition for the existence and uniqueness
of solution of model (12).

Theorem 3. Consider model (12) with positive initial condition S0 ≥ 0, I0 ≥ 0, P0 ≥ 0 and
α ∈ (0, 1], F : [0, ∞) → R3, where F(X) = (F1(X), F2(X), F3(X)), X ≡ X(t) and Ψ ={
(S, I, P) ∈ R3

+ : max{|S|, |I|, |P|} ≤ γ
}

for sufficiently large γ. The model (12) with positive
initial condition has a unique solution.

Proof. We use a similar approach as in [8]. For any X = (S, I, P), X̄ = (S̄, Ī, P̄), X, X̄ ∈ Ψ,
it follows from model (12) that

‖F(X)− F(X̄)‖ = |F1(X)− F1(X̄)|+ |F2(X)− F2(X̄)|+ |F3(X)− F3(X̄)|

=

∣∣∣∣(S− S̄)− (S2 − S̄2)− (1 + η)(SI − S̄ Ī)−
(

SP
κ + S

− S̄P̄
κ + S̄

)∣∣∣∣+∣∣∣∣η(SI − S̄ Ī)− δ(I − Ī)−m
(

IP
ω + I

− Ī P̄
ω + Ī

)∣∣∣∣+∣∣∣∣µ( SP
κ + S

− S̄P̄
κ + S̄

)
+ β

(
IP

ω + I
− Ī P̄

ω + Ī

)
− q(P− P̄)

∣∣∣∣
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≤
∣∣S− S̄

∣∣+ ∣∣∣S2 − S̄2
∣∣∣+ (1 + η)

∣∣SI − S̄ Ī
∣∣+ ∣∣∣∣ SP

κ + S
− S̄P̄

κ + S̄

∣∣∣∣+
η
∣∣SI − S̄ Ī

∣∣+ δ|I − Ī|+ m
∣∣∣∣ IP
ω + I

− Ī P̄
ω + Ī

∣∣∣∣+ µ

∣∣∣∣ SP
κ + S

− S̄P̄
κ + S̄

∣∣∣∣+
β

∣∣∣∣ IP
ω + I

− Ī P̄
ω + Ī

∣∣∣∣+ q|P− P̄|

≤ L1
∣∣S− S̄

∣∣+ L2|I − Ī|+ L3|P− P̄|
≤ L‖X− X̄‖

where

L1 = 1 +
(

3 + 2η +
1 + µ

κ

)
γ,

L2 = δ +

(
1 + 2η +

m + β

ω

)
γ,

L3 = q +
(

1 + µ

κ
+

m + β

ω

)
γ +

(
1 + µ

κ2 +
m + β

ω2

)
γ2,

L = max{L1, L2, L3}.

Hence, F(X) satisfies the Lipschitz condition. According to Lemma 2, the existence
and uniqueness of model (12) with initial value S0 ≥ 0, I0 ≥ 0 and P0 ≥ 0 is established,
and the theorem is well proven.

3.2. Non-Negativity and Boundedness

Model (12) describes an eco-epidemiological model in fractional-order differential
equations. Therefore, the solution of model (12) must be bounded and non-negative, as it
is performed in the following theorem.

Theorem 4. All solutions of model (12) with non-negative initial values are non-negative and
uniformly bounded.

Proof. We start by proving that for non-negative initial condition, S(t) ≥ 0 for t → ∞.
Suppose that is not true, then there exists t1 > 0 such that

S(t) > 0, 0 ≤ t < t1,
S(t1) = 0,
S(t+1 ) < 0.

(13)

Employing (13) and the first equation of model (12), we obtain

CDα
t S(t1)

∣∣∣
S(t1)=0

= 0. (14)

Based on Lemma 1, we have S(t+1 ) = 0, which contradicts to the fact S(t+1 ) < 0. Thus,
S(t) ≥ 0 for all t ≥ 0. Using the similar procedure, we conclude I(t) ≥ 0 and P(t) ≥ 0 for
all t > 0.

Now, we show the boundedness of solutions by adopting similar manner as in [8]. We
first define a function

V(t) = S + I + ζP.

Then, for each ξ > 0, we obtain

CDα
t V(t) + ξV(t) =

(
S− S2 − (1 + η)SI − SP

κ + S

)
+

(
ηSI − δI − mIP

ω + I

)
+
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ζ

(
µSP

κ + S
+

βIP
ω + I

− qP
)
+ ξ(S + I + ζP)

= (1 + ξ)S− S2 − SI + β

(
ζ − m

β

)
IP

ω + I
+ µ

(
ζ − 1

µ

)
SP

κ + S
+

(ξ − δ)I + ζ(ξ − q)P.

By choosing ξ < min{δ, q} and ζ < min
{

m
β , 1

µ

}
, we have

CDα
t V(t) + ξV(t) ≤ (1 + ξ)S− S2

= (1 + ξ)S− S2 −
(

1 + ξ

2

)2
+

(
1 + ξ

2

)2

= −
(

S2 − (1 + ξ)S +

(
1 + ξ

2

)2
)
+

(
1 + ξ

2

)2

≤ (1 + ξ)2

4
.

The standard comparison theorem for fractional-order derivative (see Lemma 3) gives

V(t) ≤
(

V(0)− (1 + ξ)2

4ξ

)
Eα[−ξtα] +

(1 + ξ)2

4ξ
,

from which we have that V(t) is convergent to (1+ξ)2

4ξ for t→ ∞. Therefore, all solutions of
model (12) with non-negative initial conditions are confined to the region Φ, where

Φ :=
{
(S, I, P) ∈ R3

+ : V(t) ≤ (1 + ξ)2

4ξ
+ ε, ε > 0

}
. (15)

Therefore, the proof of non-negativity and boundedness of solutions are completely
presented.

3.3. The Existence of Equilibrium Point

From model (12), we can determine the nullclines of the susceptible prey, infected
prey and predator, which are respectively denoted by NS, NI and NP and are defined by
the following sets

NS :=
{
(S, I, P) : S = 0∨ S + (1 + η)I +

P
κ + S

= 1
}

,

NI :=
{
(S, I, P) : I = 0∨ S =

δ

η
+

mP
η(ω + I)

}
,

NP :=
{
(S, I, P) : P = 0∨ µS

κ + S
+

βI
ω + I

= q
}

.

Since we are only interested in solutions that satisfy biological conditions, we only
consider equilibrium points that satisfy NS ∩ NI ∩ NP ⊂ R3

+. We can obviously identify
that the infected prey and predator are extinct if the susceptible prey is zero. Therefore,
the following lemma shows that the origin is the only equilibrium point when NS =
{(S, I, P) : S = 0}.

Lemma 6. If NS := {(S, I, P) : S = 0} then the origin E0 = (0, 0, 0) is the only equilibrium
point of model (12).
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Proof. For NS := {(S, I, P) : S = 0}, the equilibrium point is defined by NI ∩ NP ∩ R3
+,

where

NI :=
{
(S, I, P) : I = 0∨ δ

η
+

mP
η(ω + I)

= 0
}

,

NP :=
{
(S, I, P) : P = 0∨ βI

ω + I
= q

}
.

Since δ
η + mP

η(ω+I) 6= 0, then I = 0 is the only nullcline of I. By substituting I = 0 to NP,
we have NP = {(S, I, P) : P = 0∨ q = 0}. P = 0 is the only nullcline of P because q 6= 0.
Thus, E0 = (0, 0, 0) is the only equilibrium point.

Now, we will investigate the equilibrium point when S 6= 0. Notice that if NI :=
{(S, I, P) : I = 0}, then NS ∩ NP ∩R3

+ is the equilibrium point of model (12) where

NS :=
{
(S, I, P) : S +

P
κ + S

= 1
}

, and NP :=
{
(S, I, P) : P = 0∨ µS

κ + S
= q

}
.

Immediately we recognize two equilibrium points as follows:

1. The extinction of infected prey and predator point: E1 = (1, 0, 0), which always exists.
2. The infected prey free point E2 =

(
Ŝ, 0, P̂

)
where Ŝ = qκ

µ−q and P̂ = (1− Ŝ)(κ + Ŝ)
which exists if µ > (1 + κ)q. The condition µ > (1 + κ)q is equivalent to condition
that the conversion rate of susceptible prey predation into the birth rate of predator
is larger than the sum of the death rate of predator and its multiplication with half-
saturation constant of predation.

Furthermore, if NP = {(S, I, P) : P = 0}, we obtain equilibrium points that satisfy
NS ∩ NI ∩R3

+ where

NS := {(S, I, P) : S + (1 + η)I = 1}, and NI :=
{
(S, I, P) : I = 0∨ S =

δ

η

}
.

Thus, we have the extinction of infected prey and predator point E1 = (1, 0, 0) and
the predator-free point E3 =

(
S̃, 1−S̃

1+η , 0
)

, where S̃ = δ
η . The point E3 exists if S̃ ∈ (0, 1) or

η > δ, i.e., when the prey infection rate is greater than the infected prey death rate.
By considering the following nullclines

NS :=
{
(S, I, P) : S + (1 + η)I +

P
κ + S

= 1
}

,

NI :=
{
(S, I, P) : S =

δ

η
+

mP
η(ω + I)

}
, NP :=

{
(S, I, P) :

µS
κ + S

+
βI

ω + I
= q

}
,

we obtain the co-existence equilibrium point E∗ = (S∗, I∗, P∗) that satisfies NS ∩ NI ∩ NP ∩
R3
+, i.e.,

S∗ =
−a2 ±

√
D

2a1
, I∗ =

(1− S∗)(κ + S∗)m−ω(ηS∗ − δ)

(κ + S∗)(η + 1)m + (ηS∗ − δ)
, P∗ =

(ηS∗ − δ)(ω + I∗)
m

,

where

a1 = (β + µ)m−mq, a3 = ((η + 1)ω + 1)mqκ − (mκ + δω)β

a2 = ((η + 1)ω + 1)mq + (ηω + mκ)β D = a2
2 − 4a1a3

− (((η + 1)ω + 1)µ + qκ + β)m

The existence of E∗ is described by the following lemma.
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Lemma 7. Suppose that

S∗1 = − a2 −
√

D
2a1

, S∗2 = − a2 +
√

D
2a1

, S∗3 = − a2

2a1
,

S∗1,2 ∈
(

δ

η
, 1
)

, m >
ω(ηS∗j − δ)

(1− S∗j )(κ + S∗j )
, j = 1, 2, a1a2 < 0.

(i) If D < 0, then the co-existence point does not exist.
(ii) if D > 0 and

(a) a1a3 > 0 then there are two co-existence points, i.e., E∗1 = (S∗1 , I∗1 , P∗1 ) and E∗2 =
(S∗2 , I∗2 , P∗2 ).

(b) a1a3 ≤ 0 then E∗1 = (S∗1 , I∗1 , P∗1 ) is the unique co-existence point.

(iii) If D = 0, then there is a unique co-existence point E∗3 = (S∗3 , I∗3 , P∗3 ).

Proof. Notice if S∗j ∈
(

δ
η , 1
)

and m >
ω(ηS∗j −δ)

(1−S∗j )(κ+S∗j )
then I∗j > 0 and P∗j > 0, j = 1, 2.

(i) It is clear that if D < 0 then S∗j /∈ R, and thus the co-existence point does not exist.
(ii) if D > 0 then S∗j ∈ R. As a result that a1a2 < 0, we have S∗1 + S∗2 > 0. Furthermore, if

(a) a1a3 > 0 then S∗1S∗2 > 0. Therefore, we have S∗1 > 0 and S∗2 > 0 and E∗1,2 ∈ R3
+.

(b) a1a3 ≤ 0 then S∗1S∗2 ≤ 0 so that S∗1 > 0 and S∗2 ≤ 0.

(iii) If D = 0 then S∗3 is the only solution for S∗j . Furthermore, if a1a2 < 0 then S∗3 > 0.

Thus, we have the lemma.

To illustrate the existence of equilibrium point by utilizing the nullclines, we take
η = 0.95, κ = 0.3, δ = 0.2, m = 0.6, ω = 0.6 µ = 0.4, β = 0.4 and q = 0.1. We note that E0
always exists. Besides E0, there also exist E1 and E2 in R3

+, see Figure 1a,b. If we decrease η
so that η = 0.5, then model (12) has a predator-free point E3, see Figure 1c. Next, to show
the existence of co-existence point (E∗), we choose parameter values: η = 0.8, δ = 0.17,
m = 0.7, ω = 0.1, µ = 0.5, β = 0.3 and q = 0.4. It can be seen in Figure 1d that model (12)
with κ = 0.6 has two co-existence points. If we increase κ such that κ = 0.4, then we have a
unique co-existence point, see Figure 1e. However, if we take κ = 1, then model (12) does
not have co-existence point (see Figure 1f).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
I

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

P

E0

NI

NP
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(a) E0 always exists (b) Both E1 and E2 exist

Figure 1. Cont.
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(e) E∗ exists uniquely (f) E∗ does not exist

Figure 1. The existence of equilibrium point of model (12) by utilizing the intersection of nullclines.

3.4. Local Stability of Equilibrium Points

In this part, we investigate the local stability properties of each equilibrium point
of model (12). The local stability properties are studied by observing the eigenvalues
of the Jacobian matrix at each equilibrium points, and the results are described in the
following theorems.

Theorem 5. The equilibrium point E0 is always a saddle point.

Proof. The Jacobian matrix of model (12) evaluated at E0 is

J(E0) =

 1 0 0
0 −δ 0
0 0 −q

.

The eigenvalues of this Jacobian matrix are λ1 = 1, λ2 = −δ and λ3 = −q. Thus,
| arg(λ1)| = 0 < απ

2 and | arg(λ2)| = | arg(λ3)| = π > απ
2 . Based on Matignon condition

in Theorem 2, we conclude that E0 is a saddle point.

Theorem 6. The equilibrium point E1 is:

(i) locally asymptotically stable if η < δ and µ < (1 + κ)q.
(ii) a saddle point if η > δ or µ > (1 + κ)q.

Proof. The Jacobian matrix at E1 is

J(E1) =

 −1 −(η + 1) − 1
κ+1

0 η − δ 0
0 0 µ

κ+1 − q

.
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J(E1) has eigenvalues: λ1 = −1, λ2 = η − δ and λ3 = µ
κ+1 − q. We have | arg(λ1)| = π >

απ
2 . Hence, the stability of E1 depends on λ2,3.

(i) If η < δ and µ < (1 + κ)q, then | arg(λ2)| = π > απ
2 and | arg(λ3)| = π > απ

2 . Due
to Matignon condition at Theorem 2, E1 is locally asymptotically stable.

(ii) If η > δ then | arg(λ2)| = 0 < απ
2 . In addition, if µ > (1 + κ)q then | arg(λ3)| = 0 <

απ
2 . Thus, Theorem 2 says that E1 is a saddle point.

Theorem 7. Suppose that:

η̂ =
δ

Ŝ
+

m(1− Ŝ)(κ + Ŝ)
ωŜ

, ∆̂ =
4(1− Ŝ)µκŜ
(κ + Ŝ)2

−
(

κ − 1 + 2Ŝ
κ + Ŝ

)2

Ŝ2,

α̂ =
2
π

tan−1

(
(κ + Ŝ)

√
∆̂

(κ − 1 + 2Ŝ)Ŝ

)
.

The equilibrium point E2 is:

(i) locally asymptotically stable if η < η̂ and

(a) κ > 1− 2Ŝ, or;
(b) κ < 1− 2Ŝ, ∆̂ > 0 and α < α̂.

(ii) a saddle point if

(a) η > η̂ and κ > 1− 2Ŝ, or;
(b) η > η̂, κ < 1− 2Ŝ, ∆̂ > 0, and α < α̂, or;
(c) η < η̂, κ < 1− 2Ŝ, and α > α̂.

Proof. The Jacobian matrix of model (12) evaluated at E2 is

J(E2) =

 −Ŝ + (1−Ŝ)Ŝ
κ+Ŝ

−(1 + η)Ŝ − Ŝ
κ+Ŝ

0 (η − η̂)Ŝ 0
(1−Ŝ)µκ

κ+Ŝ
β(1−Ŝ)(κ+Ŝ)

ω 0

,

which has eigenvalues: λ1 = (η − η̂)Ŝ and λ2,3 = − Ŝ
2

(
κ−1+2Ŝ

κ+Ŝ

)
±
√

∆̂
2 . Notice that if η < η̂

then |arg(λ1)| = π > απ
2 , else if η > η̂ then |arg(λ1)| = 0 < απ

2 . Furthermore, if κ > 1− 2Ŝ
then |arg(λ2,3)| > απ

2 for both ∆̂ ≥ 0 and ∆̂ < 0. If κ < 1− 2Ŝ and ∆̂ > 0, then λ2,3 is a
pair of complex eigenvalues. Thus, |arg(λ2,3)| > απ

2 is attained if α < α̂. When κ < 1− 2Ŝ,
and α > α̂, we have |arg(λ2,3)| < απ

2 for both ∆̂ ≤ 0 and ∆̂ > 0. Therefore, by Matignon
condition in Theorem 2, the theorem is completely proven.

Theorem 8. Suppose that: q̃ = µS̃
κ+S̃

+ (1−S̃)β

ω(1+η)+(1−S̃)
. The predator-free point E3 is locally

asymptotically stable if q > q̃ and it is a saddle point if q < q̃.

Proof. We compute the Jacobian matrix of model (12) evaluated at E3 and obtain

J(E3) =


−S̃ −(1 + η)S̃ − S̃

κ+S̃
(1−S̃)η

1+η 0 − (1−S̃)m
ω(1+η)+(1−S̃)

0 0 q̃− q

.

The eigenvalues of J(E3) are λ1 = q̃− q and λ2,3 =
−S̃±
√

(S̃−4(1−S̃)η)S̃
2 . If η ≤ S̃

4(1−S̃)
, then

the eigenvalues λ2,3 are always real and negative. Moreover, if η > S̃
4(1−S̃)

, then λ2,3 are

a pair of complex conjugates where Re(λ2,3) < 0. Hence, the eigenvalues λ2,3 always
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satisfy |arg(λ2,3)| > απ
2 . Finally, | arg(λ1)| = π > απ

2 is achieved if q > q̃. Therefore, the
predator-free point E3 is locally asymptotically stable if q > q̃; otherwise it is a saddle
point.

Theorem 9. Suppose that:

d1 = S∗ −
(

S∗P∗

(κ + S∗)2 +
mI∗P∗

(ω + I∗)2

)
,

d2 =

[
mS∗ I∗(P∗)2

(κ + S∗)2(ω + I∗)2 +
βmI∗P∗

(ω + I∗)2 +
µS∗P∗

(κ + S∗)2 + (η + 1)ηS∗ I∗
]
−[

mS∗ I∗P∗

(ω + I∗)2 +
mβ(I∗)2P∗

(ω + I∗)3 +
µ(S∗)2P∗

(κ + S∗)3

]
,

d3 =

[
η

κ + S∗
+

ωm
(ω + I∗)2

]
βS∗ I∗P∗

ω + I∗
−
[

βη I∗

ω + I∗
+

(η + 1)µκm
κ + S∗

]
S∗ I∗P∗

(κ + S∗)(ω + I∗)
−[

µκ

κ + S∗
+

βω

ω + I∗

]
mS∗ I∗(P∗)2

(κ + S∗)2(ω + I∗)2 ,

∆∗ = 18d1d2d3 + (d1d2)
2 − 4d3d3

1 − 4d3
2 − 27d2

3.

The co-existence point E∗ = (S∗, I∗, P∗) is locally asymptotically stable if one of the following
statements is satisfied.

(i) ∆∗ > 0, d1 > 0, d3 > 0, and d1d2 > cd3.
(ii) ∆∗ < 0, d1 ≥ 0, d2 ≥ 0, d3 > 0, and 0 < α < (2/3).
(iii) ∆∗ < 0, d1 < 0, d2 < 0, and (2/3) < α < 1.
(iv) ∆∗ < 0, d1 > 0, d2 > 0, d1d2 = d3, and 0 < α < 1.

Proof. The Jacobian matrix of model (12) evaluated at E∗ is,

J(E∗) =


S∗P∗

(κ+S∗)2 − S∗ −(η + 1)S∗ − S∗
κ+S∗

η I∗ mI∗P∗
(ω+I∗)2 − mI∗

ω+I∗[
1− S∗

κ+S∗

]
µP∗

κ+S∗

[
1− I∗

ω+I∗

]
βP∗

ω+I∗ 0

.

The characteristic equation of J(E∗) is λ3 + d1λ2 + d2λ + d3 = 0. Using the Routh–
Hurwitz condition for a fractional-order dynamical system (See Proposition 1 in [72]), the
locally stability conditions of co-existence point E∗ = (S∗, I∗, P∗) are proven.

3.5. Global Stability of Equilibrium Points

The global asymptotic stability of the equilibrium point of model (12) is studied. The
results are presented in the following theorems.

Theorem 10. E1 = (1, 0, 0) is globally asymptotically stable if max
{

η
δ , βκ+µ

κq

}
< 1.

Proof. Consider a Lyapunov function W1(S, I, P) = [S− 1− ln S] + 1+η
η I + 1

µ P. By using
Lemma 4, we get

CDα
t W1(S, I, P) ≤

(
S− 1

S

)
CDα

t S +
1 + η

η
CDα

t I +
1
µ

CDα
t P

= (S− 1)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
1
µ

[
µS

κ + S
+

βI
ω + I

− q
]

P

= − (S− 1)2 − (δ− η)(1 + η)I
η

+
P

κ + S
− (1 + η)mIP

(ω + I)η
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+
βIP

(ω + I)µ
− qP

µ

≤ − (S− 1)2 − (δ− η)(1 + η)I
η

+
P
κ
+

βP
µ
− qP

µ

= − (S− 1)2 − (δ− η)(1 + η)I
η

−
(

q−
(

β +
µ

κ

))P
µ

Thus, CDα
t W1(S, I, P) ≤ 0 when max

{
η
δ , βκ+µ

κq

}
< 1. According to Lemma 5, it follows that

E1 is globally asymptotically stable.

Theorem 11. If Ŝ < min
{

δ
η , ((1+η)mµ−βη)κ

βη

}
and P̂ < κ2 then the infected prey extinction point

E2 is globally asymptotically stable.

Proof. We define a Lyapunov function

W2(S, I, P) =
[

S− Ŝ− Ŝ ln
S
Ŝ

]
+

1 + η

η
I +

κ + Ŝ
µκ

[
P− P̂− P̂ ln

P
P̂

]
.

Based on Lemma 4, we have

CDα
t W2(S, I, P) ≤

(
S− Ŝ

S

)
CDα

t S +
1 + η

η
CDα

t I +
κ + Ŝ

µκ

(
P− P̂

P

)
CDα

t P

= (S− Ŝ)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
κ + Ŝ

µκ
(P− P̂)

[
µS

κ + S
+

βI
ω + I

− q
]

= (S− Ŝ)

[
−(S− Ŝ)− (1 + η)I − (κ + Ŝ)(P− P̂)− P̂(S− Ŝ)

(κ + S)(κ + Ŝ)

]

+
1 + η

η

[
ηS− δ− mP

ω + I

]
I

+
κ + Ŝ

µκ
(P− P̂)

[
µκ(S− Ŝ)

(κ + S)(κ + Ŝ)
+

βI
ω + I

]

= − (S− Ŝ)2 +
P̂(S− Ŝ)2

(κ + S)(κ + Ŝ)
−
(

δ

η
− Ŝ

)
(1 + η)I

−
(
(1 + η)m

η
− (κ + Ŝ)β

µκ

)
IP

ω + I

≤ −
(

1− P̂
κ2

)
(S− Ŝ)2 −

(
δ

η
− Ŝ

)
(1 + η)I

−
(
(1 + η)m

η
− (κ + Ŝ)β

µκ

)
IP

ω + I

It is clear that CDα
t W2(E2) ≤ 0 if Ŝ < min

{
δ
η , ((1+η)mµ−βη)κ

βη

}
and P̂ < κ2. Conse-

quently, Lemma 5 says that E2 is globally asymptotically stable.

Theorem 12. If q > β + µS̃
κ + (1+η)µmĨ

ηω then the predator-free point E3 is globally asymptoti-
cally stable.
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Proof. We first write Ĩ = 1−S̃
1+η and define a Lyapunov function

W3(S, I, P) =
[

S− S̃− S̃ ln
S
S̃

]
+

1 + η

η

[
I − Ĩ − Ĩ ln

I
Ĩ

]
+

1
µ

P.

By using Lemma 4, we obtain

CDα
t W3(S, I, P) ≤

(
S− S̃

S

)
CDα

t S +
1 + η

η

(
I − Ĩ

I

)
CDα

t I +
1
µ

CDα
t P

= (S− S̃)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η

(
I − Ĩ

)[
ηS− δ− mP

ω + I

]
+

1
µ

[
µS

κ + S
+

βI
ω + I

− q
]

P

= (S− S̃)
[

S̃ + (1 + η) Ĩ − S− (1 + η)I − P
κ + S

]
+

1 + η

η

(
I − Ĩ

)[
ηS− ηS̃− mP

ω + I

]
+

1
µ

[
µS

κ + S
+

βI
ω + I

− q
]

P

= − (S− S̃)2 +
S̃P

κ + S
−
(
(1 + η)m

η
− β

µ

)
IP

ω + I
+

(1 + η)mĨP
(ω + I)η

− qP
µ

≤ − (S− S̃)2 +
S̃P
κ

+
βP
µ

+
(1 + η)mĨP

ηω
− qP

µ

= − (S− S̃)2 −
(

q
µ
− β

µ
− S̃

κ
− (1 + η)mĨ

ηω

)
P

If q > β + µS̃
κ + (1+η)µmĨ

ηω , then we have CDα
t W3(S, I, P) ≤ 0. It follows from Lemma 5

that E3 is globally asymptotically stable.

Theorem 13. Suppose that

ϕ1 =
qP∗

µ
+

(1 + η)δI∗

η
,

ϕ2 = min
{

I∗ + η I∗ − 1,
δ

η
,

qηω− (1 + η)mκ I∗

ηω

}
.

The co-existence point E∗ is globally asymptotically stable if µ > β
m and ϕ1 < S∗ < ϕ2.

Proof. Consider a positive Lyapunov function

W4(E∗) =
[

S− S∗ − S∗ ln
S
S∗

]
+

1 + η

η

[
I − I∗ − I∗ ln

S
I∗

]
+

1
µ

[
P− P∗ − P∗ ln

P
P∗

]
.

By utilizing Lemma 4, one has

CDα
t W4(E∗) ≤

(
S− S∗

S

)
CDα

t S +
1 + η

η

(
I − I∗

I

)
CDα

t I +
1
µ

(
P− P∗

P

)
CDα

t P

= (S− S∗)
[

1− S− (1 + η)I − P
κ + S

]
+

1 + η

η
(I − I∗)

[
ηS− δ− mP

ω + I

]
+

1
µ
(P− P∗)

[
µS

κ + S
+

βI
ω + I

− q
]

= − S2 − ((1 + η)I∗ − (1 + S∗))S−
(

δ

η
− S∗

)
(1 + η)I +

S∗P
κ + S

+
(1 + η)δI∗

η
−
(
(1 + η)m

η
− β

µ

)
IP

ω + I
+

(1 + η)mI∗P
η(ω + I)

− qP
µ
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− P∗S
κ + S

− βP∗ I
µ(ω + I)

− S∗ +
qP∗

µ

≤ − ((1 + η)I∗ − (1 + S∗))S−
(

δ

η
− S∗

)
(1 + η)I −

(
m− β

µ

)
IP

ω + I

−
(

q
µ
− S∗

κ
− (1 + η)mI∗

ηω

)
P−

(
S∗ − qP∗

µ
− (1 + η)δI∗

η

)
.

Obviously, CDα
t W4(E∗) ≤ 0 whenever µ > β

m and ϕ1 < S∗ < ϕ2. Thus, by applying
Lemma 5, we can conclude that E∗ is globally asymptotically stable.

3.6. The Existence of Hopf Bifurcation

One of the interesting phenomena in studying the predator–prey model is the occur-
rence of Hopf bifurcation. This circumstance arises when the stability of an equilibrium
point changes and a limit-cycle appears simultaneously as a parameter is varied [73,74]. In
a system of first order differential equations, the occurrence of Hopf bifurcation is indicated
by the appearance of purely imaginary eigenvalues of the Jacobian matrix. If we vary the bi-
furcation parameter, then the sign of the real part of the complex eigenvalues changes [75];
and therefore the stability properties of the equilibrium point also changes. In a fractional-
order system, this bifurcation also occurs when the order of fractional derivative (α) is
varied [76]. It is shown in [77,78] that a 3rd-dimensional fractional-order system undergoes
a Hopf bifurcation around an equilibrium point if eigenvalues λ1,2,3 of its Jacobian matrix
evaluated at the equilibrium point satisfy the following conditions:

1. λ1 < 0 and λ2,3 = θ ±ωi where θ > 0;
2. m(α∗) = α∗π/2−min1≤i≤3|arg(λi)| = 0;

3. dm(α)
dα

∣∣∣
α=α∗

6= 0.

When α crosses α∗ = (2/π) tan−1(ω/θ), the equilibrium point changes its stability
and is accompanied by the appearance of a stable limit-cycle. Since the fractional-order
system has no periodic orbits [79], the limit-cycle is not a periodic solution, but it is a
nearby solution that converges to periodic signals [76,80].

4. Eco-Epidemic Model in the Atangana–Baleanu Sense

If the fractional-order eco-epidemic model (5) is expressed in the Atangana–Baleanu
derivative in Caputo (ABC) sense, then we obtain

ABCDα
t S =

[
1− S− (1 + η)I − P

κ + S

]
S,

ABCDα
t I =

[
ηS− δ− mP

ω + I

]
I,

ABCDα
t P =

[
µS

κ + S
+

βI
ω + I

− q
]

P.

(16)

By Theorem 1, the solution of model (16) can be expressed in the following Volterra-
type integral equation

S(t)− S(0) =
1− α

B(α)
G1(t, S) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, S) ds,

I(t)− I(0) =
1− α

B(α)
G2(t, I) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, I) ds,

P(t)− P(0) =
1− α

B(α)
G3(t, P) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G3(s, P) ds,

(17)
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where

G1(t, S) =
[

1− S(t)− (1 + η)I(t)− P(t)
κ + S(t)

]
S(t),

G2(t, S) =
[

ηS(t)− δ− mP(t)
ω + I(t)

]
I(t),

G3(t, S) =
[

µS(t)
κ + S(t)

+
βI(t)

ω + I(t)
− q
]

P(t).

The existence and uniqueness of the solutions of model (16) will be investigated in the
following sub-section.

Existence and Uniqueness

To prove the existence and uniqueness of solutions of model (16), we first show that
the kernels Gi(t, S), i = 1, 2, 3 satisfy the Lipschitz condition. Suppose that S, S̄, I, Ī, P
and P̄ are functions that satisfy ‖S‖ ≤ a1,

∥∥S̄
∥∥ ≤ a2, ‖I‖ ≤ b1, ‖ Ī‖ ≤ b2, ‖P‖ ≤ c1 and

‖P̄‖ ≤ c2. For the kernel G1(t, S) =
(

1− S− (1 + η)I − P
κ+S

)
S and two functions S and S̄,

we get∥∥G1(t, S)− G1(t, S̄)
∥∥

=

∥∥∥∥S− S2 − (1 + η)SI − SP
κ + S

−
(

S̄− S̄2 − (1 + η)S̄I − S̄P
κ + S

)∥∥∥∥
=

∥∥∥∥S− S2 − (1 + η)SI − SP
κ + S

− S̄ + S̄2 + (1 + η)S̄I +
S̄P

κ + S̄

∥∥∥∥
=

∥∥∥∥(S− S̄)−
(

S2 − S̄2
)
− ((1 + η)SI − (1 + η)S̄I)−

(
SP

κ + S
− S̄P

κ + S̄

)∥∥∥∥
=

∥∥∥∥(S− S̄)− (S + S̄)(S− S̄)− (1 + η)I(S− S̄)−
(

SP(κ + S̄)− S̄P(κ + S)
(κ + S)(κ + S̄)

)∥∥∥∥
≤
∥∥S− S̄

∥∥+ (a1 + a2)
∥∥S− S̄

∥∥+ (1 + η)b1
∥∥S− S̄

∥∥+ c1

κ

∥∥S− S̄
∥∥

=
(

1 + a1 + a2 + (1 + η)b1 +
c1

κ

)∥∥S− S̄
∥∥

= g1
∥∥S− S̄

∥∥,

(18)

where g1 = 1 + a1 + a2 + (1 + η)b1 +
c1
κ . Hence, the Lipschitz condition holds for G1(t, S).

In a similar manner, we can show that

‖G2(t, I)− G2(t, Ī)‖ ≤ g2‖I − Ī‖,
‖G3(t, P)− G3(t, P̄)‖ ≤ g3‖P− P̄‖,

(19)

where g2 = a1η + δ + c1m
ω and g3 = a1µ

κ + b1β
ω + q. Hence, the Lipschitz condition also

holds for kernels G2(t, I) and G3(t, P). Furthermore, G2(t, I) and G3(t, P) are contracted if
0 ≤ g2 < 1 and 0 ≤ g3 < 1, respectively.

Now, we investigate the existence of solutions of model (16) by employing the fixed-
point theorem. For this purpose, we start by writing Equation (17) in the following
recursive formulae

Sn(t) =
1− α

B(α)
G1(t, Sn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G1(s, Sn−1) ds,

In(t) =
1− α

B(α)
G2(t, In−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G2(s, In−1) ds,

Pn(t) =
1− α

B(α)
G3(t, Pn−1) +

α

B(α)Γ(α)

∫ t

0
(t− s)α−1G3(s, Pn−1) ds.

(20)
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The associated initial conditions along with Equation (20) are S0(t) = S(0),
I0(t) = I(0), and P0(t) = P(0). Next, from Equation (20), we have the difference ex-
pression of successive terms as follows.

Φ1,n(t) = Sn(t)− Sn−1(t)

=
1− α

B(α)
(G1(t, Sn−1)− G1(t, Sn−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G1(s, Sn−1)− G1(s, Sn−2)) ds,

Φ2,n(t) = In(t)− In−1(t)

=
1− α

B(α)
(G2(t, In−1)− G2(t, In−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G2(s, In−1)− G2(s, In−2)) ds,

Φ3,n(t) = Pn(t)− Pn−1(t)

=
1− α

B(α)
(G3(t, Pn−1)− G3(t, Pn−2))

+
α

B(α)Γ(α)

∫ t

0
(t− s)α−1(G3(s, Pn−1)− G3(s, Pn−2)) ds.

(21)

Based on Equation (21), we have that

Sn(t) =
n

∑
i=1

Φ1,i(t), In(t) =
n

∑
i=1

Φ2,i(t), and Pn(t) =
n

∑
i=1

Φ3,i(t). (22)

By using (18) and (19), we can show that the norm of both sides in (21) fulfill the
following relations

‖Φ1,n(t)‖ ≤
1− α

B(α)
g1‖Φ1,n−1‖+

α

B(α)Γ(α)
g1

∫ t

0
‖Φ1,n−1(s)‖(t− s)α−1 ds,

‖Φ2,n(t)‖ ≤
1− α

B(α)
g2‖Φ2,n−1‖+

α

B(α)Γ(α)
g2

∫ t

0
‖Φ2,n−1(s)‖(t− s)α−1 ds,

‖Φ3,n(t)‖ ≤
1− α

B(α)
g3‖Φ3,n−1‖+

α

B(α)Γ(α)
g3

∫ t

0
‖Φ3,n−1(s)‖(t− s)α−1 ds.

(23)

Now, by applying (23), the existence and uniqueness of model (16) are shown by the
following theorem.

Theorem 14. Model (16) has a unique solution if we can find tmax such that

(1− α)gi
B(α)

+
tα
maxgi

B(α)Γ(α)
< 1, i = 1, 2, 3 (24)

Proof. We assume that S(t), I(t) and P(t) are bounded functions, and hence the Lipschitz
condition is satisfied. From Equation (23) we can get the following inequalities.

‖Φ1,n(t)‖ ≤ ‖S0‖
(
(1− α)g1

B(α)
+

tαg1

B(α)Γ(α)

)n
,

‖Φ2,n(t)‖ ≤ ‖I0‖
(
(1− α)g2

B(α)
+

tαg2

B(α)Γ(α)

)n
,

‖Φ3,n(t)‖ ≤ ‖P0‖
(
(1− α)g3

B(α)
+

tαg3

B(α)Γ(α)

)n
.

(25)
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Therefore, the existence and smoothness of the solution presented in Equation (22) are
proven since ‖Φ1,n(t)‖ → 0, ‖Φ2,n(t)‖ → 0 and ‖Φ3,n(t)‖ → 0 as n→ ∞ and t = tmax. To
show that the functions which satisfy Equation (17) are the solutions of Equation (16), we
suppose that

S(t)− S(0) = Sn(t)− Υ1,n(t),

I(t)− I(0) = In(t)− Υ2,n(t),

P(t)− P(0) = Pn(t)− Υ3,n(t),

(26)

where Υi,n(t), i = 1, 2, 3 are the remainder terms of series solutions. The norm of Υ1,n(t) satisfies

‖Υ1,n(t)‖ ≤
1− α

B(α)
‖G1(t, S)− G1(t, Sn−1)‖

+
α

B(α)Γ(α)

∫ t

0
‖G1(s, S)− G1(s, Sn−1)‖(t− s)α−1 ds,

≤‖S− Sn−1‖
(

1− α

B(α)
+

tα

B(α)Γ(α)

)
g1.

(27)

By applying this relation iteratively, we get at t = tmax

‖Υ1,n(t)‖ ≤ a1

(
1− α

B(α)
+

tα
max

B(α)Γ(α)

)n+1
gn+1

1 . (28)

For n → ∞, we obtain ‖Υ1,n(t)‖ → 0. Applying the similar manner, we have
‖Υ2,n(t)‖ → 0 and ‖Υ3,n(t)‖ → 0. Hence, the functions which satisfy Equation (17)
are the solutions of Equation (16).

Now, we show the uniqueness of solutions of Equation (16). For this aim, we suppose
that S∗(t), I∗(t) and P∗(t) are another solution of Equation (16). Then, we have

S(t)− S∗(t) =
1− α

B(α)
(G1(t, S)− G1(t, S∗))

+
α

B(α)Γ(α)

∫ t

0
(G1(s, S)− G1(s, S∗))(t− s)α−1 ds.

(29)

Taking the norm for both sides and using the same procedures as in (23) and (25),
we obtain

‖S(t)− S∗(t)‖
(

1− (1− α)g1

B(α)
− tαg1

B(α)Γ(α)

)
≤ 0. (30)

For t = tmax, we have (24). Hence, ‖S(t)− S∗(t)‖ = 0 and consequently S(t) = S∗(t).
In the same way, we can show that I(t) = I∗(t) and P(t) = P∗(t). Hence, the uniqueness
of the solution of Equation (16) is proven.

5. Numerical Simulations

In this section, we present some results of our numerical simulations for the fractional-
order eco-epidemic models in both Caputo sense (12) and ABC sense (16). For this aim,
we solve the model in Caputo sense (12) using the predictor–corrector scheme developed
by Diethelm et al. [81], while the model in ABC sense (16) is solved by applying the
predictor–corrector scheme proposed by Baleanu et al. [82]. Since the field data are not
available, the simulations are performed by using some hypothetical parameter values.

We first perform simulation by setting the parameter values as follows:

η = 0.25, κ = 0.5, δ = 0.3, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4, q = 0.3, α = 0.9. (31)

Using these parameter values, the eco-epidemic model with fractional-order derivative
in both Caputo sense (12) and ABC sense (16) have two equilibrium points, i.e., E0 and
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E1. Based on the analysis for the model in Caputo sense (12), it is shown that E0 is a
saddle point and E1 is asymptotically stable. This behavior is confirmed by our numerical
simulation shown in Figure 2. If we modify the parameter values in (31) such that η = 0.35
and q = 0.2, then, in addition to E0 and E1, the model also has equilibrium points E2 and
E3. All of these equilibrium points are unstable except E2. The stability of E2 is clearly
observed in Figure 3. Now, some parameter values in (31) are replaced by η = 0.95, δ = 0.2
and q = 0.4. Under these parameter values, the model has three equilibrium points, i.e., E0,
E1 and E3. The previous analysis for the model in Caputo sense shows that E0 and E1 are
unstable, while E3 is asymptotically stable. Such stability behavior can be seen in Figure 4.
Furthermore, in Figures 2–4, the numerical solutions of model in the Caputo sense are
compared to those of models in ABC sense. It is observed that the phase portraits and
time series of both models have similar dynamical behavior. To see the difference between
the solutions of the two models, we perform some simulations using the same parameter
values as in Figures 2–4, but with varying value of α. The time series of solutions obtained
from those simulations are plotted in Figures 5–7. In these simulations, although the value
of α does not affect the stability of the equilibrium point, Figures 5–7 show that the value
of α greatly affects the rate of convergence in reaching the equilibrium point. Indeed, when
α = 1, the eco-epidemic model with fractional derivative in the Caputo sense and model
with fractional derivative in the ABC sense have solutions that coincide with each other.
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Figure 2. Numerical simulation of the eco-epidemic model with parameter values: η = 0.25, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4, q = 0.3 and α = 0.9.
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Figure 3. Numerical simulation of the eco-epidemic model with parameter values: η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4, q = 0.2 and α = 0.9.
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Figure 4. Numerical simulation of the eco-epidemic model with parameter values: η = 0.95, κ = 0.5,
δ = 0.2, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4, q = 0.4 and α = 0.9.
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Figure 5. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4 and q = 0.2.
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Figure 6. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.35, κ = 0.5,
δ = 0.3, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4 and q = 0.2.
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Figure 7. Time series of solutions of the eco-epidemic model (5) with fractional derivative in the
Caputo sense and fractional derivative in ABC sense. The parameter values are η = 0.95, κ = 0.5,
δ = 0.2, m = 0.6, ω = 0.6, µ = 0.4, β = 0.4 and q = 0.4.

Next, we perform simulation using the following parameter values:

η = 0.8, κ = 0.01, δ = 0.17, m = 0.7, ω = 0.1, µ = 0.2, β = 0.27, q = 0.3. (32)

Here, the model has equilibrium points: E0, E1, E3 and E∗. By applying the stability
analysis for the model in the Caputo sense, it can be shown that E0, E1 and E3 are unstable;
while the stability of E∗ is determined by α. If α < α∗ ≈ 0.85662 then E∗ is asymptotically
stable. On the other hand, E∗ becomes unstable if α > α∗, where in this case, the solution
is convergent to a limit-cycle. In other words, there occurs a Hopf bifurcation controlled
by α where the bifurcation point is at α = α∗. The Hopf bifurcation is indeed verified by
our bifurcation diagram shown in Figure 8. We confirm numerically that both models with
Caputo sense and ABC sense undergo the Hopf bifurcation, but with different bifurcation
points. The bifurcation point of model with Caputo sense has smaller value of α than
that of the model with ABC sense. To describe their dynamics, we select three values of
α = 0.79, 0.86, 0.9, each of which is denoted by the labels [a], [b], [c] in Figure 8, respectively.
When α = 0.79, both models with Caputo sense and ABC sense are convergent to E∗ as
in Figure 9a. From the time series in Figure 10a, the solution of model with ABC sense
converges faster than model with Caputo sense. For α = 0.86, E∗ of model with Caputo
sense losses its stability and the solution goes to the limit-cycle while E∗ of model with
ABC sense still maintains its stability, see Figures 9b and 10b. This circumstance confirms
that the model with Caputo sense has undergone the Hopf bifurcation while model with
ABC sense has not. When α = 0.9, E∗ of model with ABC sense losses its stability via
Hopf bifurcation as in Figure 9c. The solution of both models converge to the limit-cycle
where the diameter of limit-cycles obtained by model in ABC sense is smaller than those
obtained by model in Caputo sense, see Figure 10c. To see the evolution of limit-cycle in
more detail, we perform simulations using parameter values in (32) and α ∈ (0.8, 0.94). In
Figure 11, we show the stable equilibrium point or limit-cycle in (I, P)−plane as function
of α. As mentioned before the stable limit-cycle appears if α > α∗. It can be seen that
the diameter of limit-cycle obtained by both models in Caputo sense and ABC sense are
getting bigger when α is increased. We notice from Figure 8 that the model with Caputo
sense has a smaller critical value of α. Therefore, there are situations where the model with
Caputo sense has an α that passes its critical value (α∗) while the model with ABC sense
does not. This situation shows that the model with the two fractional derivative operators
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have different biological interpretations in determining the density of prey and predators.
On one hand, the density of prey and predator obtained by the model with Caputo sense
fluctuates periodically, whereas those obtained by the model with ABC sense converge to a
constant value.
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Figure 8. Bifurcation diagram of the eco-epidemic model with parameter values η = 0.8, κ = 0.01,
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Finally, we take the following parameter values:

η = 0.8, κ = 0.6, δ = 0.17, m = 0.7, ω = 0.1, µ = 0.5, β = 0.3, q = 0.4. (33)

For this case, the model has five equilibrium points, namely E0, E1, E3, E∗1 and E∗2 .
Using the results of a previous stability analysis, it is shown that E0, E1 and E∗2 are unstable,
while E3 is asymptotically stable regardless of the value of α. We also check that there exists
Hopf bifurcation around E∗1 . In the latter case, E∗1 is stable for α < α∗1 ≈ 0.84730. If α > α∗1
then E∗1 loses its stability and there appears a limit-cycle. Hence, the model exhibits a
bistability phenomenon for α < α∗1 , where, in this case, E3 and E∗1 are locally asymptotically
stable. To illustrate the dynamics of eco-epidemic model with parameter values in (33), we
plot numerical solutions with two slightly different initial values in Figure 12. When we
take α = 0.83 < α∗1 the solutions of both models are respectively convergent to different
equilibrium points, namely E3 and E∗1 , see Figure 12a,b. Furthermore, when we increase
the order of fractional derivative to α = 0.95 then E3 remains stable but the stability of E∗1
vanishes via Hopf bifurcation as in Figure 12c,d. Thus, a captivating circumstance has been
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shown, where the initial condition is very sensitive in determining the limiting behavior of
the system.
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m = 0.7, ω = 0.1, µ = 0.2, β = 0.27 and q = 0.3.
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Figure 12. Numerical simulation of the eco-epidemic model with parameter values: η = 0.8, κ = 0.6,
δ = 0.17, m = 0.7, ω = 0.1, µ = 0.5, β = 0.3 and q = 0.4.

6. Conclusions

We have presented the dynamics of fractional-order Rosenzweig–MacArthur eco-
epidemic model using fractional derivative in both Caputo sense and ABC-sense. We
have determined conditions for the existence and uniqueness of solutions for models in
both Caputo sense and ABC sense. It is also shown that all solutions are non-negative
and bounded in R3

+. The model has at most five types of equilibrium points, i.e., the
origin, the extinction of infected prey and predator point, the infected prey free point, the
predator-free point and the co-existence point. Based on the stability analysis for the model
in the Caputo sense, it is found that the origin is a saddle point, meaning that the extinction
of all populations will never happen. We also found that the other equilibrium points
are conditionally asymptotically stable. Furthermore, the conditions for the existence of
Hopf bifurcation have been established, where the bifurcation is driven by the order of the
fractional derivative. Our theoretical results have been confirmed by numerical solutions of
the model in the Caputo sense. In this article, the eco-epidemic model in the ABC sense has
also been solved numerically. The comparison of our numerical results shows that model
with both Caputo sense and ABC sense have the same dynamical behavior except around
the interior equilibrium point. In other words, the dynamical behavior of the proposed
model with both senses are symmetric around axial equilibrium points, but it is asymmetric
around the interior point when a Hopf bifurcation occurs. We confirm numerically that the
interior point of both models has a different bifurcation point when Hopf bifurcation occurs.
For some values of the order−α, the interior point of model with ABC sense is stable while
the interior point of model with Caputo sense is unstable. Our numerical simulations also
show that the proposed models may exhibit a bistable phenomenon. We finally notice that
our simulations are based on some hypothetical parameter values. For further studies, it is
recommended to compare the performance of both models, namely with Caputo sense and
with ABC sense, by using real data of selected eco-epidemiological case.
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