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Abstract: In this article, we also introduced two well-known computational techniques for solving
the time-fractional Fornberg–Whitham equations. The methods suggested are the modified form
of the variational iteration and Adomian decomposition techniques by ρ-Laplace. Furthermore, an
illustrative scheme is introduced to verify the accuracy of the available methods. The graphical
representation of the exact and derived results is presented to show the suggested approaches
reliability. The comparative solution analysis via graphs also represented the higher reliability and
accuracy of the current techniques.

Keywords: ρ-Laplace variational iteration method; ρ-Laplace decomposition method; partial differ-
ential equation; caputo operator; fractional Fornberg–Whitham equation (FWE)

1. Introduction

With engineering and science development, non-linear evolution models have been
analyzed as the problems to define physical phenomena in plasma waves, fluid mechanics,
chemical physics, solid-state physics, etc. For the last few years, therefore, a lot of interest
has been paid to the result (both numerical and analytical) of these significant models [1–4].
Different methods are available in the literature for the approximate and exact results of
these models. In current years, fractional calculus (FC) applied in many phenomena in
applied sciences, fluid mechanics, physics and other biology can be described as very
effective using mathematical tools of FC. The fractional derivatives have occurred in many
applied sciences equations such as reaction and diffusion processes, system identification,
velocity signal analysis, relaxation of damping behaviour fabrics and creeping of polymer
composites [5–8].

The investigation of non-linear wave models and their application is significant in
different areas of engineering. Travelling wave notions are between the most attractive
results for non-linear fractional-order partial differential equations (NLFPDEs). NLFPDEs
are usually identified as mechanical processes and complex physical. Therefore, it is impor-
tant to get exact results for non-linear time-fractional partial differential equations [9–12].
Overall, travelling wave results are between the exciting forms of products for NFPDEs. On
the other hand, other NLFPDEs, such as the Camassa–Holm or the Kortewegde–Vries equa-
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tions, have been well-known to have some moving wave solutions. These are non-linear
multi-directional dispersive waves in shallow water design problems [13–16].

The FWE study is of crucial significance in different areas of mathematical physics.
The FWEs [15,16] is defined as

Dδ
=µ− Dϕϕ=µ + Dϕµ =µDϕϕϕµ− µDϕµ + 3DϕµDϕϕµ. (1)

The quantities performance of wave deformation, a non-linear dispersive wave model,
is shown in the investigation. The FWE is presented as a mathematical model for limiting
wave heights and wave breaks, allowing peakon results as a numerical model. In 1978,

Fornberg and Whitham achieved a measured outcome of the form µ(ϕ, η) = Ce(
−ϕ
2 −

4=
3 ),

where C is constant. The investigation of FWEs has been carried out by several analyti-
cal and numerical techniques, such as Adomian decomposition transform method [17],
variational iteration technique [18], Lie Symmetry [19], new iterative method [20], differ-
ential transformation method [21], homotopy analysis transformation technique [22] and
homotopy-perturbation technique [23].

Recently, Abdeljawad and Fahd [24] introduced the Laplace transformation of the
fractional-order Caputo derivatives. We suggested a new iterative technique with ρ-Laplace
transformation to investigate fractional-order ordinary and partial differential equations
with fractional-order Caputo derivative. We apply this novel method for solving many
fractional-order differential equations such as linear and non-linear diffusion equation,
fractional-order Zakharov–Kuznetsov equation and Fokker–Planck equations. We ana-
lyzed the impact of δ and ρ in the process. The Variational iteration method (VIM) was
first introduced by He [25,26] and was effectively implemented to the autonomous or-
dinary differential equation in [27], to non-linear polycrystalline solids [28], and other
areas. Similarly, this technique is modified with ρ-Laplace transformation, so the modified
method is called the ρ-Laplace variational iteration method. Many types of differential
equations and partial differential equations have solved VITM. For example, this technique
is analyzed for solving the time-fractional differential equation (FDEs) in [27]. In [28],
this technique is applied to solve non-linear oscillator models. Compared to Adomian’s
decomposition process, VITM solves the problem without the need to compute Adomian’s
polynomials. This scheme provides a quick result to the equation, whereas the [29] mesh
point techniques provide an analytical solution. This method can also be used to get a close
approximation of the exact result. G. Adomian, an American mathematician, developed
the Adomian decomposition technique. It focuses on finding series-like results and de-
composing the non-linear operator into a sequence, with the terms presently computed
using Adomian polynomials [30]. This method is modified with ρ-Laplace transform, so
the modified approach is the ρ-Laplace decomposition method. This technique is used for
the non-homogeneous FDEs [31–36].

This paper has implemented the ρ-Laplace variational iteration method and ρ-Laplace
decomposition method to solve the time-fractional Fornberg–Whitham equations with the
Caputo fractional derivative operator. The ρ-LDM and ρ-LVIM achieve the approximate
results in the form of series results.

2. Basic Definitions

In this section, the fractional generalized derivative, the fractional generalized integral,
the Mittag-Lefller function the ρ-Laplace transform have been discussed.

Definition 1. The generalized fractional-order integral δ of a continuous function f : [0,+∞]→ R
is expressed as [24]

(Iδ,ρ f )(ζ) =
1

Γ(δ)

∫ ζ

0

(
ζρ − sρ

ρ

)δ−1
f (s)ds
s1−ρ

,

the gamma function denote by Γ, ρ > 0, ζ > 0 and 0 < δ < 1.
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Definition 2. The generalized fractional-order derivative of δ of a continuous function f : [0,+∞]→ R
is given as [24].

(Dδ,ρ f )(ζ) = (I1−δ,ρ f )(ζ) =
1

Γ(1− δ)

(
d

dζ

) ∫ ζ

0

(
ζρ − sρ

ρ

)−δ
f (s)ds
s1−ρ

.

where define the gamma function Γ, ρ > 0, ζ > 0 and 0 < δ < 1.

Definition 3. The Caputo fractional-order derivative δ of a continuous function f : [0,+∞]→ R
is expressed as [24]

(Dδ,ρ f )(ζ) =
1

Γ(1− δ)

∫ ζ

0

(
ζρ − sρ

ρ

)−δ

βn f (s)ds
s1−ρ

.

where n = 1, ρ > 0, ζ > 0, β = ζ1−ρ d
dζ and 0 < δ < 1.

Definition 4. The ρ-Laplace transformation of a continuous function f : [0,+∞]→ R is given
as [24]

Lρ{ f (ζ)} =
∫ ∞

0
e−s ζρ

ρ f (ζ)
dζ

ζ1−ρ
.

The Caputo generalized fractional-order ρ-Laplace transform derivative of a continuous func-
tion f is defined by [24].

Lρ{Dδ,ρ f (ζ)} = sδLρ{ f (ζ)} −
n−1

∑
k=0

sδ−k−1(Iδ,ρβn f )(0) n = 1.

3. The General Methodology of ρ-LDM

The ρ-LDM is a combination of the Laplace decomposition method and the ρ-Laplace
transformation. In this section, we solve the ρ-LDM solution of fractional partial differential
equation. The main steps of this method are described as follows:

Dδ,ρ
= ω(ϕ,=) + L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=) = 0, 0 < δ ≤ 1, (2)

where L̄ and N are linear and nonlinear functions,H is the sources function.
The initial condition is

ω(ϕ, 0) = f (ϕ), (3)

Apply ρ-Laplace transform to Equation (2),

Lρ[D
δ,ρ
= ω(ϕ,=)]+Lρ[L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)] = 0. (4)

Applying the ρ-Laplace transformation differentiation property, we get

Lρ[ω(ϕ,=)] = 1
s

ω(ϕ, 0) +
1
sδ

Lρ[H(ϕ,=)]− 1
sδ

Lρ{L̄(ϕ,=) +N (ϕ,=)}]. (5)

ρ-LDM solution of infinite series ω(ϕ,=),

ω(ϕ,=) =
∞

∑
j=0

ωm(ϕ,=). (6)

The N is the nonlinear term defined as

N (ϕ,=) =
∞

∑
j=0
Am. (7)
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So the with the help of Adomian polynomial we can define the nonlinear terms

Am =
1
j!

[
∂m

∂λm

{
N
(

∞

∑
k=0

λkωk

)}]
λ=0

. (8)

Putting Equations (6) and (7) into (5), we get

Lρ

[
∞

∑
j=0

ωm(ϕ,=)
]
=

1
s

ω(ϕ, 0) +
1
sδ

S{H(ϕ,=)} − 1
sδ

Lρ

{
L̄(

∞

∑
j=0

ωm) +
∞

∑
j=0
Am

}
. (9)

Using the inverse ρ-Laplace transform with Equation (9),

∞

∑
j=0

ωm(ϕ,=) = L−1
ρ

[
1
s

ω(ϕ, 0) +
1
sδ

Lρ{H(ϕ,=)} − 1
sδ

Lρ

{
L̄
(

∞

∑
j=0

ωm

)
+

∞

∑
j=0
Am

}]
. (10)

we define the next terms,

ω0(ϕ,=) =L−1
ρ

[
1
s

ω(ϕ, 0) +
1
sδ

Lρ{H(ϕ,=)}
]

, (11)

ω1(ϕ,=) = −L−1
ρ

[
1
sδ

Lρ{L̄1(ω0) +A0}
]

.

For m ≥ 1, is expressed as

ωj+1(ϕ,=) = −L−1
ρ

[
1
sδ

Lρ{L̄(ωm) +Am}
]

.

4. Convergence Analysis

Theorem 1. [37] (Uniqueness theorem) Equation has a unique solution whenever 0 < ε < 1

where ε = (h1+h2+h3)=δ+1

(δ−1)! .

Theorem 2. [37] (Convergence Theorem) The series solution (11) and (12) of the problem (3) using
ρ-LTADM and ρ-LTVIM converges if 0 < ε < 1.

Proof. Let S` be the mth partial sum, i.e., S` = ∑m
j=0 ω`(ϕ,=). We shall prove that S` is a

Cauchy sequence in Banach space E. By using a new formulation of Adomian polynomials
we get [37]

R(S`) = Â` +
m−1

∑
j=0

Âj

ℵ(S`) = Â` +
m−1

∑
n=0

Ân
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||S` − Sm−1|| = max
=∈I
|S` − Sm−1| = max

=∈I

∣∣∣∣∣ m

∑
j=n+1

ω̂j(ϕ,=)
∣∣∣∣∣, j = 0, 1, 2 · · ·

≤ max
=∈I

∣∣∣∣∣∣∣∣
L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 k[ωj−1(ϕ,=)]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 M[ωj−1(ϕ,=)]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1[Aj−1(ϕ,=)]]}

∣∣∣∣∣∣∣∣,

≤ max
=∈I

∣∣∣∣∣∣∣∣
L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 k[ωj(ϕ,=)]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 M[ωj(ϕ,=)]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1[Aj(ϕ,=)]]}

∣∣∣∣∣∣∣∣,

≤ max
=∈I

∣∣∣∣∣∣∣∣
L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 k[Sm1−1 − Sm2−1]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1 M[Sm1−1 − Sm2−1]]}
+L−1

ρ { 1
sδ Lρ{[∑m

j=n+1[Sm1−1 − Sm2−1]]}

∣∣∣∣∣∣∣∣,

≤ max
=∈I

∣∣∣∣∣∣∣∣
L−1

ρ { 1
sδ Lρ{[k[Sm1−1 − Sm2−1]]}

+L−1
ρ { 1

sδ Lρ{[M[Sm1−1 − Sm2−1]]}
+L−1

ρ { 1
sδ Lρ{[[Sm1−1 − Sm2−1]]}

∣∣∣∣∣∣∣∣,
≤ k1 max

=∈I

∣∣∣L−1
ρ { 1

sδ Lρ{[Sm1−1 − Sm2−1]}
∣∣∣,

+ k2 max
=∈I

∣∣∣L−1
ρ { 1

sδ Lρ{[Sm1−1 − Sm2−1]}
∣∣∣,

+ k3 max
=∈I

∣∣∣L−1
ρ

1
sδ Lρ{[Sm1−1 − Sm2−1]}

∣∣∣,
=

(k1 + k2 + k3)=δ−1

(δ− 1)!

∣∣∣∣Sm1−1 − Sm2−1
∣∣∣∣.

Letting m1 = m2 + 1, we get∣∣∣∣Sm2+1 − Sm2

∣∣∣∣ ≤ ε
∣∣∣∣Sm2 − Sm2−1

∣∣∣∣ ≤ ε2∣∣∣∣Sm2−1 − Sm2−2
∣∣∣∣ ≤ · · · ≤ εm2

∣∣∣∣S1 − S0
∣∣∣∣,

where ε = (k1+k2+k3)=δ−1

(δ−1)! similarly, we have from the triangle inequality we get∣∣∣∣Sm1−1 − Sm2−1
∣∣∣∣ ≤ ∣∣∣∣Sm1+1 − Sm2

∣∣∣∣+ ∣∣∣∣Sm1+2 − Sm2+1
∣∣∣∣+ · · ·+ ∣∣∣∣Sm1 − Sm1−1

∣∣∣∣,
≤
[
εm2 + εm2+1 + · · ·+ εm1−1

]
≤
∣∣∣∣S1 + S0

∣∣∣∣,
≤ εm2(

1− εm1−m2

ε
)
∣∣∣∣ω1

∣∣∣∣.
Since 0 < ε < 1 we have 1− εm1−m2 < 1∣∣∣∣Sm1 + Sm2

∣∣∣∣ ≤ εm2

1− ε
≤ max
=∈I

∣∣∣∣ω∣∣∣∣.
However |ω| < ∞ so, as m2 → ∞ then ||Sm1 − Sm2 || → 0, hence Sm1 is a Cauchy

sequence, the series ∑∞
m1=0 ωm1 converges and the proof is complete.

Theorem 3. [37] (Error estimate) The maximum absolute error of the series solution can be given
the following formula

max
=∈I

∣∣ω(ϕ,=)−∑∞
`=1 ω`(ϕ,=)

∣∣ ≤ εm2

1− ε
max
=∈I

∣∣∣∣ω1
∣∣∣∣.
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5. The General Methodology of ρ-Laplace Variational Iteration Method

In this section we show the general methodology of the ρ-Laplace variational iteration
method solution for fractional partial differential equations.

Dδ,ρ
= ω(ϕ,=) + L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=) = 0, 0 < δ ≤ 1, (12)

with the initial condition
ω(ϕ, 0) = f (ϕ), (13)

The using ρ-Laplace transformation to Equation (12),

Lρ[D
δ,ρ
= ω(ϕ,=)]+Lρ[L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)] = 0. (14)

Applying the differentiation property of ρ-Laplace transform, we get

sδLρ[ω(ϕ,=)]− sδ−1ω(ϕ, 0) = −Lρ

[
L̄(ϕ,=) +N (ϕ,=)−H(ϕ,=)

]
. (15)

The Lagrange multiplier is used in the iterative method

Lρ[ωj+1(ϕ,=)] =Lρ[ωj(ϕ,=)] + λ(s)
[
sδLρ[ωj(ϕ,=)]− sδ−1ωj(ϕ, 0)

−Lρ{L̄(ϕ,=) +N (ϕ,=)} − Lρ[H(ϕ,=)]
]
.

(16)

The Lagrange multiplier is

λ(s) = − 1
sδ

, (17)

using inverse ρ-Laplace transform L−1, Equation (16), we get

ωj+1(ϕ,=) =ωj(ϕ,=)− L−1
ρ

[
1
sδ

[
−Lρ{L̄(ϕ,=) +N (ϕ,=)}

]
− Lρ[H(ϕ,=)]

]
, (18)

the initial value can be defined as

ω0(ϕ,=) = L−1
ρ

[
1
sδ

{
sδ−1ω(ϕ, 0)

}]
. (19)

6. Implementation of Techniques

We now proceed to derive an approximate solution to the time-fractional nonlinear
FW equations using suggested techniques with generalized Caputo fractional derivative.

6.1. Problem

Consider the time-fractional nonlinear FWE is given as

Dδ,ρ
= ω− Dϕϕ=ω + Dϕω =ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω, 0 < δ ≤ 1, (20)

the initial condition is
ω(ϕ, 0) = e(

ϕ
2 ). (21)

Taking ρ-Laplace transform of (20),

sδLρ[ω(ϕ,=)]−sδ−1ω(ϕ, 0) = Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]
.

Applying inverse ρ-Laplace transform

ω(ϕ,=) =L−1
ρ

[
ω(ϕ, 0)

s
− 1

sδ
Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]]
.
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Using ADM procedure, we get

ω0(ϕ,=) = L−1
ρ

[
ω(ϕ, 0)

s

]
= L−1

ρ

[
e(

ϕ
2 )

s

]
,

ω0(ϕ, t) = e(
ϕ
2 ), (22)

∞

∑
`=0

ω`+1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
∞

∑
`=0

(Dϕϕ=ω)` −
∞

∑
`=0

(Dϕω)` +
∞

∑
`=0

A` −
∞

∑
`=0

B` + 3
∞

∑
`=0

C`

]]
, ` = 0, 1, 2, · · ·

A0(ωDϕϕϕω) = ω0Dϕϕϕω0,

A1(ωDϕϕϕω) = ω0Dϕϕϕω1 + ω1Dϕϕϕω0,

A2(ωDϕϕϕω) = ω1Dϕϕϕω2 + ω1Dϕϕϕω1 + ω2Dϕϕϕω0,

B0(ωDϕω) = ω0Dϕω0,

B1(ωDϕω) = ω0Dϕω1 + ω1Dϕω0,

B2(ωDϕω) = ω1Dϕω2 + ω1Dϕω1 + ω2Dϕω0,

C0(DϕωDϕϕω) = Dϕω0Dϕϕω0,

C1(DϕωDϕϕω) = Dϕω0Dϕϕω1 + Dϕω1Dϕϕω0,

C2(DϕωDϕϕω) = Dϕω1Dϕϕω2 + Dϕω1Dϕϕω1 + Dϕω2Dϕϕω0,

for ` = 1

ω1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω0 − Dϕω0 + A0 − B0 + 3C0

]]
,

ω1(ϕ, t) = −1
2

L−1
ρ

[
e(

ϕ
2 )

sδ+1

]
= −1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
.

(23)

for ` = 2

ω2(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω1 − Dϕω1 + A1 − B1 + 3C1

]]
,

ω2(ϕ,=) = −1
8

e(
ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(24)

for ` = 3

ω3(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω2 − Dϕω2 + A2 − B2 + 3C2

]]
,

ω3(ϕ,=) =− 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(25)

The ρ-LDM result of Example 1 is

ω(ϕ,=) = ω0(ϕ,=) + ω1(ϕ,=) + ω2(ϕ,=) + ω3(ϕ,=) + ω4(ϕ,=) + · · · ,
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ω(ϕ,=) = e(
ϕ
2 ) − 1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1

32
e(

ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)

+
1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(26)

The simplify we can write Equation (26), we get

ω(ϕ,=) =e(
ϕ
2 )

1−

(
=ρ

ρ

)δ

2Γ(δ + 1)
− 1

8

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

(
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1

32

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

(
=ρ

ρ

)3δ−1

Γ(3δ)
− 1

8

(
=ρ

ρ

)3δ

Γ(3δ + 1)
+ · · ·

. (27)

The analytical result by ρ-LVIM.
The iteration method apply for Equation (20), we get

ω`+1(ϕ,=) = ω`(ϕ,=)−L−1
ρ

[
1
sδ

Lρ

{
sδD=ω` − Dϕϕ=ω` + Dϕω` −ω`Dϕϕϕω` + ω`Dϕω` −3Dϕω`Dϕϕω`

}]
, (28)

where

ω0(ϕ,=) = e(
ϕ
2 ). (29)

For ` = 0, 1, 2, · · ·

ω1(ϕ,=) = ω0(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω0 − Dϕϕ=ω0 + Dϕω0 −ω0Dϕϕϕω0

+ω0Dϕω0 − 3Dϕω0Dϕϕω0
}]

,

ω1(ϕ,=) = −1
2

e(
ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
,

(30)

ω2(ϕ,=) = ω1(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω1 − Dϕϕ=ω1 + Dϕω1 −ω1Dϕϕϕω1

+ω1Dϕω1 − 3Dϕω1Dϕϕω1
}]

,

ω2(ϕ,=) = −1
8

e(
ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(31)

ω3(ϕ,=) = ω2(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω2 − Dϕϕ=ω2 + Dϕω2 −ω2Dϕϕϕω2

+ω2Dϕω2 − 3Dϕω2Dϕϕω2
}]

,

ω3(ϕ,=) = − 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )

(
=ρ

ρ

)3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(32)

ω(ϕ,=) =
∞

∑
m=0

ωm(ϕ) = e(
ϕ
2 ) − 1

2
e(

ϕ
2 )

(
=ρ

ρ

)δ

Γ(δ + 1)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)2δ−1

Γ(2δ)
+

1
4

e(
ϕ
2 )

(
=ρ

ρ

)2δ

Γ(2δ + 1)

− 1
32

e(
ϕ
2 )

(
=ρ

ρ

)3δ−2

Γ(3δ− 1)
+

1
8

e(
ϕ
2 )=

3δ−1

Γ(3δ)
− 1

8
e(

ϕ
2 )

(
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(33)

The exact result of Equation (20) at δ = 1,

ω(ϕ,=) = e(
ϕ
2−

2=
3 ). (34)
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Figure 1 shows the ρ-LDM and ρ-LVIM solution of the fractional Fornberg–Whitham
defined by generalized fractional-order Caputo derivative in the space coordinate and
time 0 < = ≤ 0.5, ρ = 1 and δ = 1. Figure 2, the 3D graph shows approximate and exact
solutions graph at δ = 1 and ρ = 0.9; the figure shows that different fractional-order at δ.
Similarly, in Figure 3, the 2D graph of exact and approximate solutions plot at δ = 1 and
ρ = 0.9 the figure shows that different fractional-order at δ.

Figure 1. The graph of Exact and analytical solutions of δ = 1 and ρ = 1 of problem 1.

Figure 2. The first 3D graph of Exact and analytical solutions graph at δ = 1 and ρ = 0.9 and second
plot of the approximate different fractional-order of δ = 1 of problem 1.
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Figure 3. The first 2D graph of Exact and analytical solutions graph at δ = 1 and ρ = 0.9 and second plot of the approximate
different fractional-order of δ = 1 of problem 1.

6.2. Problem

Consider the time-fractional non-linear FWE given as

Dδ,ρ
= ω− Dϕϕ=ω + Dϕω =ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω, = > 0, 0 < δ ≤ 1, (35)

with the initial condition
ω(ϕ, 0) = cosh2

( ϕ

4

)
. (36)

Taking ρ-Laplace transform of (35),

sδLρ[ω(ϕ,=)]−sδ−1ω(ϕ, 0) = Lρ

[
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

]
.

Applying inverse ρ-Laplace transform

ω(ϕ,=) =L−1
ρ

[
ω(ϕ, 0)

s
− 1

sδ
Lρ

{
Dϕϕ=ω− Dϕω + ωDϕϕϕω−ωDϕω + 3DϕωDϕϕω

}]
.

Using ADM procedure, we get

ω0(ϕ,=) = L−1
ρ

[
ω(ϕ, 0)

s

]
= L−1

ρ

[
cosh2( ϕ

4
)

s

]
,

ω0(ϕ,=) = cosh2
( ϕ

4

)
, (37)

∞

∑
`=0

ω`+1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
∞

∑
`=0

(Dϕϕ=ω)` −
∞

∑
`=0

(Dϕω)` +
∞

∑
`=0

A` −
∞

∑
`=0

B` + 3
∞

∑
`=0

C`

]]
, ` = 0, 1, 2, · · ·
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for ` = 0

ω1(ϕ,=) = L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω0 − Dϕω0 + A0 − B0 + 3C0

]]
,

ω1(ϕ,=) = −11
32

L−1
ρ

[
sinh

( x
2
)

sδ+1

]
= −11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
.

(38)

for ` = 1

ω2(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω1 − Dϕω1 + A1 − B1 + 3C1

]]
,

ω2(ϕ,=) =− 11
28

sinh
( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(39)

for ` = 2

ω3(ϕ,=) =L−1
ρ

[
1
sδ

Lρ

[
Dϕϕ=ω2 − Dϕω2 + A2 − B2 + 3C2

]]
,

ω3(ϕ,=) =− 11
512

sinh
( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

) (
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(40)

The ρ-LDM result for problem 2 is

ω(ϕ,=) = ω0(ϕ,=) + ω1(ϕ,=) + ω2(ϕ,=) + ω3(ϕ,=) + ω4(ϕ,=) + · · · ,

ω(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)

− 11
512

sinh
( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

) (
=ρ

ρ

)3δ

Γ(3δ + 1)
· · · .

(41)

The analytical solution by ρ-LVIM.
The iteration method is apply by Equation (35), we get

ω`+1(ϕ,=) = ω`(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω` − Dϕϕ=ω` + Dϕω` −ω`Dϕϕϕω` + ω`Dϕω` − 3Dϕω`Dϕϕω`

}]
, (42)

where

ω0(ϕ, t) = cosh2
( ϕ

4

)
. (43)

For ` = 0, 1, 2, · · ·

ω1(ϕ,=) = ω0(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω0 − Dϕϕ=ω0 + Dϕω0 −ω0Dϕϕϕω0 + ω0Dϕω0 − 3Dϕω0Dϕϕω0

}]
,

ω1(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
,

(44)
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ω2(ϕ,=) = ω1(ϕ,=)− L−1
ρ

[
1
sδ

Lρ

{
sδD=ω1 − Dϕϕ=ω1 + Dϕω1 −ω1Dϕϕϕω1 + ω1Dϕω1 − 3Dϕω1Dϕϕω1

}]
,

ω2(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
,

(45)

ω3(ϕ,=) = ω2(ϕ,=)−L−1
ρ

[
1
sδ

Lρ

{
sδD=ω2 − Dϕϕ=ω2 + Dϕω2 −ω2Dϕϕϕω2 + ω2Dϕω2 − 3Dϕω2Dϕϕω2

}]
,

ω3(ϕ,=) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
,

− 11
512

sinh
( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

) (
=ρ

ρ

)3δ

Γ(3δ + 1)
,

(46)

ω(ϕ,=) =
∞

∑
m=0

ωm(ϕ) = cosh2
( ϕ

4

)
− 11

32
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
− 11

28
sinh

( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
1024

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
,

− 11
512

sinh
( ϕ

4

) (=ρ

ρ

)δ

Γ(δ + 1)
+

121
2048

cosh
( ϕ

4

) (
=ρ

ρ

)2δ

Γ(2δ + 1)
− 1331

49152
sinh

( ϕ

4

) (
=ρ

ρ

)3δ

Γ(3δ + 1)
− · · · .

(47)

The exact result of Equation (35) at δ = 1,

ω(ϕ,=) = cosh2
(

ϕ

4
− 11=

24

)
. (48)

Figure 4 shows the ρ-LDM and ρ-LVIM solution of the fractional Fornberg–Whitham
defined by generalized Caputo fractional-order derivative in the space coordinate and
time 0 < = ≤ 0.5, ρ = 1 and δ = 1. Figure 5, the 3D graph shows exact and approximate
solutions plot at δ = 1 and ρ = 0.9; the figure shows that different fractional-order at δ.
Similarly, in Figure 6, the 2D graph of exact and approximate solutions plot at δ = 1 and
ρ = 0.9 the figure shows that different fractional-order at δ.

Figure 4. The graph of Exact and approximate solutions of δ = 1 and ρ = 1 of Example 2.
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Figure 5. The first 3D graph of Exact and approximate solutions plot at δ = 1 and ρ = 0.9 and second
plot of the approximate different fractional-order of δ = 1 of Example 2.

Figure 6. The first 2D graph of Exact and approximate solutions plot at δ = 1 and ρ = 0.9 and second plot of the approximate
different fractional-order of δ = 1 of Example 2.

7. Conclusions

In this article, different semi-analytical techniques are implemented to solve time-
fractional Fornberg–Whitham equation. The approximate solution of the equations is
evaluated to confirm the validity and reliability of the proposed methods. Graphs of
the solutions are plotted to display the closed relation between the obtained and exact
results. In addition, the suggested techniques provide easily computable components for
the series-form tests. It is investigated that the results achieved in the series form have a
higher convergence rate towards the exact results. The proposed methods have a small
number of calculations to achieve the approximate solution. In conclusion, it is found that
the proposed technique is a sophisticated method for solving other NLFPDEs. In the future,
the analytical result of non-linear fractional-order boundary values problems achieved
using this technique is in the form of uniform convergence series.



Symmetry 2021, 13, 784 14 of 15

Author Contributions: onceptualization, R.S. and M.I.; methodology, R.S.; software, P.S. and A.M.Z.;
validation, R.S.; formal analysis, M.I. and P.S.; data curation, R.S.; writing—original draft preparation
R.S.; writing—review and editing, A.M.Z.; supervision, M.I.; project administration, A.M.Z.; funding
acquisition, S.-W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China (No. 71601072), Key Scientific Research
Project of Higher Education Institutions in Henan Province of China (No. 20B110006) and the
Fundamental Research Funds for the Universities of Henan Province (No. NSFRF210314).

Data Availability Statement: Not applicable.

Acknowledgments: One of the Co-authors (A. M. Zidan) extend his appreciation to the Deanship
of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work
through research groups program under grant number R.G.P.1/30/42.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qureshi, S.; Yusuf, A.; Shaikh, A.A.; Inc, M.; Baleanu, D. Fractional modeling of blood ethanol concentration system with real

data application. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013143. [CrossRef]
2. Yusuf, A.; Qureshi, S.; Inc, M.; Aliyu, A.I.; Baleanu, D.; Shaikh, A.A. Two-strain epidemic model involving fractional derivative

with Mittag-Leffler kernel. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 123121. [CrossRef] [PubMed]
3. Kilic, B.; Inc, M. The first integral method for the time fractional Kaup-Boussinesq system with time dependent coefficient. Appl.

Math. Comput. 2015, 254, 70–74. [CrossRef]
4. Inc, M.; Akgul, A.; Kilicman, A. Numerical solutions of the second-order one-dimensional telegraph equation based on reproduc-

ing kernel Hilbert space method. Abstr. Appl. Anal. 2013, 2013, 768963. [CrossRef]
5. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35, pp. 87–130.
6. Cesarano, C.; Pierpaolo, N.; Paolo, E.R. Pseudo-Lucas Functions of Fractional Degree and Applications. Axioms 2021, 10, 51.

[CrossRef]
7. Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007;

Volume 4.
8. Al-luhaibi, M.S. An analytical treatment to fractional Fornberg-Whitham equation. Math. Sci. 2017, 11, 1–6. [CrossRef]
9. Agarwal, P.; Ahs, S.; Akbare, M.; Nawaz, R.; Cesarano, C. A Reliable Algorithm for solution of Higher Dimensional Nonlinear

(1+1) and (2+1) Dimensional Volterra-Fredholm Integral Equations. Dolomites Res. Notes Approx. 2021, 14, 18–25.
10. Zakarya, M.; Altanji, M.; AlNemer, G.; Abd, El-Hamid, H.A.; Cesarano, C.; Rezk, H.M. Fractional Reverse Coposn’s Inequalities

via Conformable Calculus on Time Scales. Symmetry 2021, 13, 542. [CrossRef]
11. Ahmad, I.; Ahmad, H.; Thounthong, P.; Chu, Y.-M.; Cesarano, C. Solution of Multi-Term Time-Fractional PDE Models Arising in

Mathematical Biology and Physics by Local Meshless Method. Symmetry 2020, 12, 1195. [CrossRef]
12. Bazighifan, O.; Cesarano, C. A Philos-type oscillation criteria for fourth-order neutral differential equations. Symmetry 2020, 12, 379.

[CrossRef]
13. Camacho, J.C.; Rosa, M.; Garias, M.L.; Bruzon, M.S. Classical symmetries, travelling wave solutions and conservation laws of a

generalized Fornberg-Whitham equation. J. Comput. Appl. Math. 2017, 318, 149–155. [CrossRef]
14. Bruzon, M.S.; Marquez, A.P.; Garrido, T.M.; Recio, E.; de la Rosa, R. Conservation laws for a generalized seventh order KdV

equation. J. Comput. Appl. Math. 2019, 354, 682–688. [CrossRef]
15. Whitham, G.B. Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1967, 299, 6–25.
16. Fornberg, B.; Whitham, G.B. A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond.

Ser. A Math. Phys. Sci. 1978, 289, 373–404.
17. Kumar, D.; Singh, J.; Baleanu, D. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with

Mittag-Leffler-type kernel. Eur. Phys. J. Plus 2018, 133, 1–10. [CrossRef]
18. Lu, J. An analytical approach to the Fornberg-Whitham type equations by using the variational iteration method. Comput. Math.

Appl. 2011, 61, 2010–2013. [CrossRef]
19. Hashemi, M.S.; Haji-Badali, A.; Vafadar, P. Group invariant solutions and conservation laws of the Fornberg-Whitham equation.

Z. Naturforschung A 2014, 69, 489–496. [CrossRef]
20. Ramadan, M.A.; Al-luhaibi, M.S. New iterative method for solving the fornberg-whitham equation and comparison with

homotopy perturbation transform method. J. Adv. Math. Comput. Sci. 2014, 4, 1213–1227. [CrossRef]
21. Merdan, M.; Gokdogan, A.; Yildirim, A.; Mohyud-Din, S.T. Numerical simulation of fractional Fornberg-Whitham equation by

differential transformation method. Abstr. Appl. Anal. 2012, 2012, 965367. [CrossRef]
22. Wang, K.; Liu, S. Application of new iterative transform method and modified fractional homotopy analysis transform method

for fractional Fornberg-Whitham equation. J. Nonlinear Sci. Appl. 2016, 9, 2419–2433. [CrossRef]
23. Abidi, F.; Omrani, K. Numerical solutions for the nonlinear Fornberg-Whitham equation by He’s methods. Int. J. Mod. Phys. B

2011, 25, 4721–4732. [CrossRef]

http://doi.org/10.1063/1.5082907
http://dx.doi.org/10.1063/1.5074084
http://www.ncbi.nlm.nih.gov/pubmed/30599538
http://dx.doi.org/10.1016/j.amc.2014.12.094
http://dx.doi.org/10.1155/2013/768963
http://dx.doi.org/10.3390/axioms10020051
http://dx.doi.org/10.1007/s40096-016-0198-5
http://dx.doi.org/10.3390/sym13040542
http://dx.doi.org/10.3390/sym12071195
http://dx.doi.org/10.3390/sym12030379
http://dx.doi.org/10.1016/j.cam.2016.11.017
http://dx.doi.org/10.1016/j.cam.2018.11.019
http://dx.doi.org/10.1140/epjp/i2018-11934-y
http://dx.doi.org/10.1016/j.camwa.2010.08.052
http://dx.doi.org/10.5560/zna.2014-0037
http://dx.doi.org/10.9734/BJMCS/2014/8534
http://dx.doi.org/10.1155/2012/965367
http://dx.doi.org/10.22436/jnsa.009.05.42
http://dx.doi.org/10.1142/S0217979211059516


Symmetry 2021, 13, 784 15 of 15

24. Jarad, F.; Abdeljawad, T. A modifi ed Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018,
1, 88–98.

25. He, J.H. Approximate solution of nonlinear differential equations with convolution product nonlinearities. Comput. Methods Appl.
Mech. Eng. 1998, 167, 69–73. [CrossRef]

26. He, J.H. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 2000, 114, 115–123.
[CrossRef]

27. Wu, G.C.; Baleanu, D. Variational iteration method for fractional calculus-a universal approach by Laplace transform. Adv. Differ.
Equ. 2013, 2013, 18. [CrossRef]

28. Anjum, N.; He, J.H. Laplace transform: Making the variational iteration method easier. Appl. Math. Lett. 2019, 92, 134–138.
[CrossRef]

29. Dehghan, M. Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices.
Math. Comput. Simul. 2006, 71, 16–30. [CrossRef]

30. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers: Boston, MA, USA, 1994.
31. Khalouta, A.; Kadem, A. A New Method to Solve Fractional Differential Equations: Inverse Fractional Laplace Transform Method.

Appl. Appl. Math. 2019, 14, 926–941.
32. Bokhari, A.; Baleanu, D.; Belgacem, R. Application of Laplace transform to Atangana-Baleanu derivatives. J. Math. Comput. Sci.

2019, 20, 101–107. [CrossRef]
33. Belgacem, R.; Baleanu, D.; Bokhari, A. Laplace Transform and Applications to Caputo-Fractional Differential Equations. Int. J.

Anal. Appl. 2019, 17, 917–927.
34. Machado, J.; Baleanu, D.; Chen, W.; Sabatier, J. New trends in fractional dynamics. J. Vib. Control 2014, 20, 963. [CrossRef]
35. Baleanu, D.; Guvenc, Z.; Machado, J. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht,

The Netherlands, 2010.
36. Maitama, S.; Zhao, W. New integral transform: Laplace transform a generalization of Sumudu and Laplace transform for solving

differential equations. arXiv 2019, arXiv:1904.11370.
37. El-Kalla, I.L. Convergence of the Adomian method applied to a class of nonlinear integral equations. Appl. Math. Lett. 2008, 21,

372–376. [CrossRef]

http://dx.doi.org/10.1016/S0045-7825(98)00109-1
http://dx.doi.org/10.1016/S0096-3003(99)00104-6
http://dx.doi.org/10.1186/1687-1847-2013-18
http://dx.doi.org/10.1016/j.aml.2019.01.016
http://dx.doi.org/10.1016/j.matcom.2005.10.001
http://dx.doi.org/10.22436/jmcs.020.02.03
http://dx.doi.org/10.1177/1077546313507652
http://dx.doi.org/10.1016/j.aml.2007.05.008

	Introduction
	Basic Definitions
	The General Methodology of -LDM
	Convergence Analysis
	The General Methodology of -Laplace Variational Iteration Method
	Implementation of Techniques
	Problem
	Problem

	Conclusions
	References

