# Analysis of an Electrical Circuit Using Two-Parameter Conformable Operator in the Caputo Sense

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Definitions

## 3. Conformable Operator in the Caputo Sense

**Theorem**

**1.**

**Proof.**

## 4. Fractional Electrical Circuit and General Description of the Problem

_{αβ}have to be found based on measurements and fitting algorithms. Three series of measurements were taken and the average value of the results are presented in Table 1.

## 5. Conclusions

_{1}and C

_{2}, respectively.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Kaczorek, T. Selected Problems in Fractional Systems Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Luft, M.; Szychta, E.; Nowocień, A.; Pietruszczak, D. Application of differential-integral calculus of incomplete orders in mathematical modeling of pressure transducer. Coaches. Oper. Tests
**2016**, 6, 972–976. (In Polish) [Google Scholar] - Ostalczyk, P. Epitome of Fractional Calculus: Theory and Aplications in Automatics; Lodz Technical University Publishing: Lodz, Poland, 2008. (In Polish) [Google Scholar]
- Liouville, J. Mémoire sur quelques quéstions de géometrie et de mécanique, et sur un noveau genre pour résoudre ces quéstions. J. École Polytech.
**1832**, 13, 1–69. [Google Scholar] - Alsaedi, A.; Nieto, J.J.; Venktesh, V. Fractional electrical circuits. Adv. Mech. Eng.
**2015**, 7, 1–7. [Google Scholar] [CrossRef] - Grünwald, A.K. Über “begrenzte” Derivationen und deren anwendung. Z. Angew.Math. Phys.
**1867**, 12, 441–480. [Google Scholar] - Cioć, R. Grünwald-Letnikov derivative—Analyse in space of first order derivative. In Frontiers in Fractional Calculus, Book Series: Current Developments in Mathematical Sciences; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2018; Volume 1. [Google Scholar]
- Naeem, I.; Khan, M.D. Symmetry classification of time-fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul.
**2017**, 42, 560–570. [Google Scholar] [CrossRef] - Leo, R.A.; Sicuro, G.; Tempesta, P. A theorem on the existence of symmetries of fractional PDEs. C. R. Math.
**2014**, 352, 219–222. [Google Scholar] [CrossRef][Green Version] - Hashemi, M.S.; Inc, M.; Bayram, M. Symmetry properties and exact solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation. Rev. Mex. Fıs.
**2019**, 65, 529–535. [Google Scholar] [CrossRef][Green Version] - Caponetto, R.; Dongola, G.; Fortuna, L.; Petráś, I. Fractional Order Systems. Modeling and Control Applications; World Scientific: Singapoure, 2010. [Google Scholar]
- Dzieliński, A.; Sierociuk, D. Ultracapacitor modeling and control using discrete fractional order state-space model. Acta Montan. Slovaca
**2008**, 13, 136–145. [Google Scholar] - Jesus, I.S.; Tenreiro Machado, J.A. Comparing Integer and Fractional Models in some Electrical Systems. In Proceedings of the 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain, 18–20 October 2010. [Google Scholar]
- Kaczorek, T. Analysis of fractional electrical circuits in transient states. Logistyka
**2010**, 2, CD-ROM. [Google Scholar] - Piotrowska, E.; Rogowski, K. Analysis of fractional electrical circuit using caputo and conformable derivative definitions. In Non-Integer Order Calculus and its Applications; Ostalczyk, P., Sankowski, D., Nowakowski, J., Eds.; RRNR 2017. Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 496. [Google Scholar]
- Sikora, R. Fractional derivatives in electrical circuit theory—Critical remarks. Arch. Electr. Eng.
**2017**, 66, 155–163. [Google Scholar] [CrossRef][Green Version] - Yavuz, M.; Ozdemir, N. A different approach to the European option pricing model with new fractional operator. Math. Model. Nat. Phenom.
**2018**, 13, 1–12. [Google Scholar] [CrossRef][Green Version] - Yavuz, M.; Ozdemir, N. New numerical techniques for solving fractional partial differential equations in conformable sense. In Non-Integer Order Calculus and its Applications; Ostalczyk, P., Sankowski, D., Nowakowski, J., Eds.; RRNR 2017. Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 496. [Google Scholar]
- Yavuz, M.; Yaşkıran, B. Approximate-analytical solutions of cable equation using conformable fractional operator. New Trends Math. Sci.
**2017**, 4, 209–219. [Google Scholar] [CrossRef] - Yavuz, M.; Yaşkıran, B. Conformable derivative operator in modelling neuronal dynamics. Appl. Appl. Math.
**2018**, 13, 803–817. [Google Scholar] - Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math.
**2015**, 279, 57–66. [Google Scholar] [CrossRef] - İskender Eroğlu, B.B.; Avcı, D.; Özdemir, N. Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol.
**2017**, 132, 658–662. [Google Scholar] [CrossRef] - Khalil, R.; Al Horani, A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math.
**2014**, 264, 65–70. [Google Scholar] [CrossRef] - Martínez, L.; Rosales, J.J.; Carreño, C.A.; Lozano, J.M. Electrical circuits described by fractional conformable derivative. Int. J. Circ. Theor. Appl.
**2018**, 46, 1091–1100. [Google Scholar] [CrossRef] - Kaplan, M.; Bekir, A.; Ozer, M.N. A simple technique for constructing exact solutions to nonlinear differential equations with conformable fractional derivative. Opt. Quant. Electron.
**2017**, 49, 266. [Google Scholar] [CrossRef] - Piotrowska, E. Analysis of fractional electrical circuit with rectangular input signal using Caputo and conformable derivative definitions. Arch. Electr. Eng.
**2018**, 67, 789–802. [Google Scholar] - Piotrowska, E. Analysis of fractional electrical circuit with sinusoidal input signal using Caputo and conformable derivative definitions. Pozn. Univ. Technol. Acad. J. Electical Eng.
**2019**, 97, 155–167. [Google Scholar] - Piotrowska, E. Analysis of linear continuous-time systems by the use of the Conformable Fractional Calculus and Caputo. Arch. Electrical Eng.
**2018**, 67, 629–639. [Google Scholar] - Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Taneco-Hernandez, M.A. Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense. Int. J. Electron. Commun.
**2018**, 85, 108–117. [Google Scholar] [CrossRef] - Piotrowska, E. Positive continuous—Time linear electrical circuit. Pozn. Univ. Technol. Acad. J. Electical Eng.
**2018**, 93, 299–309. [Google Scholar] [CrossRef] - Kaczorek, T.; Rogowski, K. Fractional Linear Systems and Electrical Circuits; Springer: Cham, Switzerland, 2014. [Google Scholar]
- AbdelAty, A.M.; Radwan, A.G.; Ahmed, W.A.; Faied, M. Charging and discharging RCα circuit under Riemann-Liouville and Caputo fractional derivatives. In Proceedings of the 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–4. [Google Scholar]
- Jiang, Y.; Zhang, B. Comparative study of riemann–liouville and caputo derivative definitions in time-domain analysis of fractional-order capacitor. IEEE Trans. Circuits Syst. II Express Briefs
**2020**, 67, 2184–2188. [Google Scholar] [CrossRef] - Elwakil, A.S.; Radwan, A.G.; Freeborn, T.J.; Allagui, A.; Maundy, B.J.; Fouda, M. Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: A case study. IET Circuits Devices Syst.
**2017**, 11, 189–195. [Google Scholar] [CrossRef]

C_{1} (1 F) | C_{2} (0.33 F) | |||||
---|---|---|---|---|---|---|

Definition | α_{1} | β_{1} | C_{αβ}_{1} [F/s^{1−αβ}] | α_{1} | β_{1} | C_{αβ}_{2} [F/s^{1−αβ}] |

Classical case | 1.000 | 1.000 | 0.911 | 1.000 | 1.000 | 0.211 |

CFD | 1.000 | 0.761 | 0.424 | 1.000 | 0.761 | 0.091 |

Caputo | 0.857 | 1.000 | 0.431 | 0.857 | 1.000 | 0.062 |

CFD–Caputo | 0.914 | 0.884 | 0.412 | 0.914 | 0.884 | 0.071 |

Definition | C_{1} (1 F) | C_{2} (0.33 F) |
---|---|---|

χ^{2} | ||

Classical case | 47.2 | 46.5 |

CFD | 17.1 | 42.0 |

Caputo | 22.9 | 35.0 |

CFD–Caputo | 12.8 | 23.6 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Piotrowska, E.; Sajewski, Ł.
Analysis of an Electrical Circuit Using Two-Parameter Conformable Operator in the Caputo Sense. *Symmetry* **2021**, *13*, 771.
https://doi.org/10.3390/sym13050771

**AMA Style**

Piotrowska E, Sajewski Ł.
Analysis of an Electrical Circuit Using Two-Parameter Conformable Operator in the Caputo Sense. *Symmetry*. 2021; 13(5):771.
https://doi.org/10.3390/sym13050771

**Chicago/Turabian Style**

Piotrowska, Ewa, and Łukasz Sajewski.
2021. "Analysis of an Electrical Circuit Using Two-Parameter Conformable Operator in the Caputo Sense" *Symmetry* 13, no. 5: 771.
https://doi.org/10.3390/sym13050771