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Abstract: Numerical optics modeling is an invaluable tool in the design of nanostructures for
nanophotonics applications where diffraction effects often lead to complex dependency between
the nanostructure geometry and its optical properties and response. In order to analyze, design,
and optimize such nanostructures, computationally efficient numerical optics modeling methods
are required. One way to improve the numerical performance is to exploit symmetries found in
many optics problems. By identifying equivalencies and restrictions arising from symmetry, it can
be possible to simplify the problem at hand, which is the essence of symmetry reduction. However,
applying symmetry reduction in optics modeling problems is not trivial. To the best of our knowledge,
symmetry reduction has so-far been applied in finite element method (FEM) optics models only
in those specific cases where an incident plane wave shares symmetries with the nanostructure
geometry. In this work, we show how to extend the symmetry reduction of FEM optics models to the
case of nonsymmetric plane-wave incidence, demonstrate such reduction with numerical examples
of incident plane wave absorption in a single nanowire and a periodic nanowire array, and discuss
the achieved gains in computational efficiency.

Keywords: symmetry reduction; optics modeling; finite element method; nanostructures; nanophotonics

1. Introduction

Numerical optics modeling [1] is an invaluable tool in the design of nanostructures
with the desired optical properties and response, e.g., scattering, absorption, and emission,
for nanophotonics applications including solar cells [2,3], photodetectors [4,5], and LEDs [6].
Such nanostructures typically have feature sizes comparable to the considered wavelength
of light and diffraction effects often lead to complex dependency between the nanostructure
geometry and its optical properties and response [1,2,7–9]. Such problems can rarely be
treated analytically, and experimenting with fabricated device prototypes is costly and time-
consuming. Instead, numerical optics modeling can be used to predict these properties for
the given geometry and materials and to analyze the underlying optical response further,
e.g., by performing modal analysis or inspecting the spatial distribution of the fields inside
the nanostructures. In the design optimization of nanophotonic structures for applications,
optimization algorithms tend to require many iterations where the numerical models are
solved. Overall, there is a clear need for computationally as efficient optics modeling
methods as possible.

One way to enhance the numerical performance with the most popular numerical
modeling methods, including the finite element method (FEM), the finite-difference time-
domain (FDTD) method, and the Fourier modal method (FMM), is to exploit symmetries
found in many optics problems. For example, nanostructures and nanostructure arrays can
have geometries that effectively remain unchanged under certain mirroring and rotation
operations, and the optical response, for given incident fields or for emission from within
the system, can be assumed identical for symmetrical directions. Furthermore, symmetry

Symmetry 2021, 13, 752. https://doi.org/10.3390/sym13050752 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6468-9594
https://orcid.org/0000-0003-2487-4645
https://orcid.org/0000-0002-7626-5107
https://doi.org/10.3390/sym13050752
https://doi.org/10.3390/sym13050752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13050752
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13050752?type=check_update&version=1


Symmetry 2021, 13, 752 2 of 18

can also be used for assessing which optical modes can couple to each other. By identifying
equivalencies and restrictions arising from symmetry, it can be possible to simplify the
problem at hand. This is the essence of symmetry reduction which is a well-known concept
and has been used very successfully in other fields like computational chemistry (see e.g.,
ref. [10]).

However, applying symmetry reduction in optics modeling problems is not trivial.
For example, in a problem with a field incident on a periodic array of nanostructures, the
symmetries of the system depend on the array geometry, the geometry of nanostructures
in the unit cell, and the configuration of the incident field. Inspecting and treating the
symmetry properties of systems in a formal way can be achieved with the well-known tools
found in group theory (see e.g., ref. [10]). Indeed, the properties of Maxwell’s equations
under symmetry transformations [11,12] as well as exploiting point group symmetries in
solving scattering problems, e.g., with boundary integral formulations [13,14], multiple-
scattering formalism [15], discrete dipole approximation [16], and FMM [17], has been
considered in the literature. However, applying symmetry reduction to similar optics
problems in real-space-based FEM or FDTD implementations has so-far been lacking. We
focus specifically on FEM since it is a versatile and popular method to obtain solution to
light scattering problems for both single nanostructures and periodic nanostructure arrays
(note however that the formalism presented below should be directly applicable for FDTD).
To the best of our knowledge, symmetry reduction has so-far been applied in FEM optics
models only in those specific cases where an incident plane wave shares symmetries with
the nanostructure geometry.

In this work, we show how to extend the symmetry reduction of FEM models to
work with nonsymmetric plane-wave incidences. We start with decomposing the field
solution in the full simulation domain (the original problem, OP) into symmetry respecting
modes, found using tools from group theory, as has been done also in the symmetry
reduction of FMM optics modeling [17]. We then translate the symmetry modes to different
boundary conditions in the smaller size, symmetry reduced simulation domain, resulting
in several computationally less demanding subproblems (SPs). Finally, since we consider
the linear Maxwell equations, we can obtain the OP solution by properly adding together
the SP solutions. To demonstrate our symmetry reduction method, we provide numerical
examples of incident plane wave absorption in a single nanowire and a periodic nanowire
array and discuss the achieved gains in computational efficiency compared to models
without symmetry reduction.

2. Methods

In our symmetry reduction method for FEM optics modeling, light is considered as an
electromagnetic field governed by the Maxwell’s equations, and we focus on the case of
scattering and absorption of incident light. More specifically, we assume time harmonic
fields (E(r, t) = <{E(r)eiωt}, where ω = 2πc0/λ0 is the angular frequency, c0 is the speed
of light in vacuum, and λ0 is the wavelength in vacuum), local and linear response, and
media that are nonmagnetic (vacuum permeability µ0) and isotropic, such that they can be
described by a spatially-varying, frequency-dispersive, complex-valued, scalar refractive
index n(r, ω) =

√
εr(r, ω), where εr(r, ω) is the relative permittivity. Furthermore, we

consider source-free regions, i.e., fields far away from charge or current sources that give
rise to the incident light, meaning that the incident light is considered as a boundary
condition. With these assumptions, the Maxwell’s equations yield the well-known wave
equation for the complex-valued electric field:

∇×∇× E(r)− k2(r, ω)E(r) = 0, (1)

where k(r, ω) = n(r, ω)k0 = n(r, ω)2π/λ0 is the wave number. The complex-valued
magnetic field is then connected to the electric field by Maxwell’s equations as H(r) =
−1/(iωµ0)∇× E(r). For the following discussion we note that Equation (1) is linear, i.e.,
any linear combination of solutions E(r) is also a solution, and that the electric field can be
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solved independently from the magnetic field. We omit explicitly writing the frequency
dependence for the rest of our discussion to keep the equations more concise.

2.1. Symmetries in Single Nanostructures and Periodic Arrays

In this work, we consider nanostructures on top of a semi-infinite substrate. Therefore,
regardless of the nanostructure geometry, the system can have at most a single axis of
rotational symmetry that is normal to the substrate surface. We choose the z-axis of our
coordinate system to be parallel to this single principal axis of rotational symmetry (as is
the usual convention). Note that, in the absence of the nanostructures, the system with a
single interface between the semi-infinite superstrate and substrate media is continuously
rotational symmetric with respect to this axis (the rotational symmetry axis is of order
infinity). We also define the substrate–superstrate interface to coincide with the z = 0
plane. Furthermore, the considered geometries can obviously only have vertical mirror
symmetry planes, that is, planes with normal perpendicular to the z-axis, and cannot have
the inversion symmetry (except for the specific case of a homogeneous surrounding where
the substrate material is the same as the material on top of the substrate).

In the case of a single nanostructure, the symmetries can be determined by con-
sidering the xy cross-section (note that the nanostructure geometry does not need to be
translation invariant along the z-axis as long as the cross-section maintains its symme-
tries for varying z). In our numerical examples, we consider nanowire structures with
regular hexagon cross-section as illustrated in Figure 1. The system consisting of the
nanowire and the substrate hence belongs to the C6v point group with the following
symmetry elements [10]: the six-fold rotational axis C6, three mirror planes coinciding
with the hexagon vertices (σ1

v , σ2
v , and σ3

v), and three mirror planes coinciding with the
hexagon edge midpoints (σ1

d, σ2
d, and σ3

d). These symmetry elements are illustrated in
Figure 1b. The point group can be expressed with the corresponding symmetry operations
as C6v = {Ê, Ĉ1

6, Ĉ1
3, Ĉ2, Ĉ2

3, Ĉ5
6, σ̂1

v , σ̂2
v , σ̂3

v , σ̂1
d, σ̂2

d, σ̂3
d}, where Ê denotes the identity opera-

tion, Ĉm
n denotes the operation of rotation by m times the angle 2π/n around the rotational

symmetry axis, and σ̂1
v , σ̂2

v , σ̂3
v , σ̂1

d, σ̂2
d and σ̂3

d denote the operations of mirroring across the
mirror symmetry planes. We also define the x- and y-axis such that σ̂1

v = σ̂xz and σ̂2
d = σ̂yz,

meaning the operation of mirroring around the xz- and yz-plane, respectively.

(a)

x y

z

(b)

x

y

C6

σ1v

σ2vσ3v

σ1d

σ2d

σ3d
L

D

Figure 1. Model geometry of a hexagonal nanowire on a semi-infinite substrate. (a) Tilted view
with the nanowire height L indicated. (b) Cross-section view with the nanowire diameter D and the
symmetry elements C6, σ1

v , σ2
v , σ3

v , σ1
d, σ2

d, and σ3
d indicated.

Other examples of high-symmetry cross-sections include regular polygons and a circle.
The nanostructures with regular polygon cross-sections belong to the point groups CNv,
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where N ≥ 3 is the number of vertices in the polygon. These point groups have the N-fold
rotational symmetry axis and similarly defined vertical mirror symmetry planes as the
hexagonal cross-section. For our symmetry reduction in the FEM modeling, it is important
to note that all these point groups have the Cs = {Ê, σ̂xz} as a subgroup and, with even
N, also the C2v = {Ê, Ĉ2, σ̂xz, σ̂yz} group. Since Ĉ2 = σ̂xzσ̂yz = σ̂yzσ̂xz, these groups are
defined by the xz and yz mirror symmetry planes. Furthermore, there exist a multitude
of other cross-sections that also have the Cs or C2v either as their point group or as a
subgroup thereof. For example, a rectangular or elliptical cross-section would have the
C2v point group. The circular cross-section, on the other hand, is a special case as it has
continuous rotational symmetry (rotational symmetry axis of order infinity). It is certainly
possible to freely rotate the Cartesian coordinate system around the z-axis (the rotational
symmetry axis) and consider the σxz and σyz mirror symmetries. However, in order to take
full advantage of the rotational invariance, one should rather be able to symmetry reduce
to the xz-plane with x ≥ 0 and expand the fields in cylindrical harmonics. However, such
symmetry reduction is not the focus of our work.

In the case of periodic arrays of nanostructures, symmetries of the geometry are
defined by both the single nanostructure geometry and the 2D lattice to which they are
arranged on the substrate surface. However, if the nanostructures have circular cross-
section, the symmetries are defined entirely by the lattice arrangement. There are five
distinct 2D Bravais lattices: monoclinic, tetragonal (square), hexagonal, orthorhombic
(rectangular), and orthorhombic centered (rectangular centered). These lattices and their
unit cells are illustrated in Figure 2. With the monoclinic lattice, we can only have the C2
symmetry element, but with all the other lattices, we can find primitive or non-primitive
rectangular unit cells with both xz and yz mirror symmetry plane, provided that the
nanostructure geometry also has these symmetries. Single nanostructure point groups and
the five Bravais lattices combined result in a total of 17 distinct plane groups (see ref. [17]
and the references therein for details). It is often possible to find rectangular unit cells in
the resulting geometries that have the xz or yz mirror symmetry plane or both.

(a) (b) (c)

(d) (e)

Figure 2. The five 2D Bravais lattices and their unit cells: (a) monoclinic, (b) tetragonal (square),
(c) hexagonal, (d) orthorhombic (rectangular), and (e) orthorhombic centered (rectangular centered).
The primitive cells are lined with red and the non-primitive, rectangular unit cells with blue. Dashed
lines indicate mirror symmetry planes within the cells. Note that the monoclinic lattice does not have
mirror symmetry planes and that the orthorhombic centered lattice primitive cell is not bounded by
mirror symmetry planes.

2.2. Well-Known Symmetry Reduction Methods with FEM

We find that in FEM optics modeling, exploiting symmetry to reduce the simulation
domain size and hence the computational cost is generally applied only to a limited extent.
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In periodic structures with discrete translational symmetry, the structure can be reduced
to a single unit cell with periodic boundary conditions. Typically, Floquet-type periodic
boundary conditions are used when the unit cell has pairs of opposing boundaries and the
field solution on these boundaries is known, due to the periodicity, to differ only by a phase
factor, as given by the Floquet vector kF. In the case of an incident plane wave, the Floquet
vector is given by the in-plane components of the wave vector ki = kixux + kiyuy + kizuz
of the incident plane wave: kF = kixux + kiyuy, where ux, uy, and uz are the unit vectors
in x-, y-, and z-direction. This type of symmetry reduction is routinely applied to most
problems with periodicity (with the exception of, e.g., periodic structures that extend over
only a few periods). However, exploiting mirror symmetries for a single nanostructure, or
for the unit cell, is less often utilized.

A mirror symmetry plane corresponds to either a perfect magnetic conductor (PMC)
or perfect electric conductor (PEC) condition when the electric field of the light is symmetric
or antisymmetric with respect to the plane, respectively. The mirror symmetry operation
corresponding to the plane will leave the electric field vector components parallel to the
plane unchanged while reversing the sign of the component perpendicular to the plane.
Therefore, if the electric field is symmetric with respect to the plane, then on the plane it
must be parallel to the plane and, following from Maxwell’s equations, the magnetic field
must be perpendicular to the plane. Hence, the PMC condition is fulfilled. Similarly, if
the electric field is antisymmetric with respect to the plane, then on the plane it must be
perpendicular to the plane with the magnetic field parallel to the plane, thus fulfilling the
PEC condition. It is common in optics modeling based on Maxwell’s equations to first
solve only for the electric field in the system and then obtain the magnetic field from that
solution. Therefore, it is sufficient to consider the symmetries only for the electric field.

To the best of our knowledge, mirror symmetry reduction in FEM modeling has so-far
been restricted to using PMC or PEC boundaries when the electric field (either incident
or emitted) fulfills these conditions, i.e., when the field shares these mirror symmetries of
the geometry. There are two common situations when this applies. First, when a plane
wave is incident on a single nanostructure such that the plane of incidence coincides with a
mirror symmetry plane of the geometry, the simulation domain can be cut in half along
this mirror symmetry plane. Note that any incident polarization can be decomposed into
two components that are parallel and perpendicular to this plane, respectively. Second,
when a plane wave is normally incident on a nanostructure such that the field vector (or
its components) are parallel to one mirror symmetry plane and perpendicular to another,
the simulation domain can be cut to one quarter along these two perpendicular mirror
symmetry planes [2]. In the case of a periodic unit cell, it is additionally required that
such mirror planes bisecting the unit cell need to be parallel with the unit cell boundaries,
i.e., the unit cell needs to be rectangular (not necessarily the primitive cell, however). The
remaining boundaries opposite to the cut-planes are then assigned the same PMC or PEC
boundary conditions. In the case of a single nanostructure, such a restriction does not
apply and the remaining boundaries are typically terminated with perfectly matched layers
(PMLs) to represent open boundaries extending to infinity.

An additional symmetry reduction applies in certain cases when considering the
absorption of a normally incident plane wave. First, with a single nanostructure having
a circular or a regular polygon cross-section, the absorption becomes independent of the
incident field polarization. Second, similar polarization independence can be found for
nanostructures arranged in a tetragonal or hexagonal lattice when the nanostructures have
the corresponding symmetries or circular cross-section. In both cases, the polarization in-
dependence is simply due to there being two (or more) non-collinear, symmetry-equivalent
directions to which any incident polarization can be decomposed. In general, however,
single nanostructures and nanostructure arrays show varying scattering and absorption
depending on the polarization and direction of the incident plane wave.
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2.3. FEM Model Symmetry Reduction with Symmetry Modes

In the following, we will discuss how it is actually possible to similarly reduce the FEM
model simulation domain to one half or one quarter with mirror symmetry planes of the
geometry also in such cases when the electric field does not coincide with these geometry
symmetries and hence does not fulfill the assigned PMC or PEC boundary conditions. This
is achieved by expressing the electric field as a linear combination of symmetry modes
which by themselves are solutions to Equation (1) and fulfill the boundary conditions of
the reduced simulation domain (by virtue of the symmetry). Therefore, instead of solving
the OP, we can solve SPs with each symmetry mode in the reduced simulation domain and
combine the solutions from these to obtain the OP solution.

2.3.1. The Method

By selecting a suitable basis and using well-known results from group theory (the
reduction formula and the projection operator method [10]), it is possible to find the
symmetry modes and perform the decomposition. Such a procedure in the case of the Cs
and C2v point groups has already been carried out in detail elsewhere [17,18], so we will
not include the derivations here. With the C2v point group, one can take as a basis the
set {ÊE(x, y, z), Ĉ2E(x, y, z), σ̂xzE(x, y, z), σ̂yzE(x, y, z)}, where the symmetry operations in
C2v have been applied to the electric field solution E(x, y, z) in the geometry (the set of
functions spanning a 4-dimensional function space). Clearly, E(x, y, z) can be trivially
expressed on this basis, and performing any symmetry operation in C2v to any function in
this basis yields one of the other functions in the same basis due to the closure of the group.
With this starting point, the following un-normalized symmetry modes

E1(x, y, z) = (Ê + Ĉ2 + σ̂xz + σ̂yz)E(x, y, z)
E2(x, y, z) = (Ê + Ĉ2 − σ̂xz − σ̂yz)E(x, y, z)
E3(x, y, z) = (Ê− Ĉ2 + σ̂xz − σ̂yz)E(x, y, z)
E4(x, y, z) = (Ê− Ĉ2 − σ̂xz + σ̂yz)E(x, y, z)

(2)

can be obtained (see ref. [18] for details) and the decomposition becomes

E(x, y, z) =
1
4
(E1(x, y, z) + E2(x, y, z) + E3(x, y, z) + E4(x, y, z)). (3)

Similarly, with the Cs point group, the following un-normalized symmetry modes{
E1(x, y, z) = (Ê + σ̂xz)E(x, y, z)
E2(x, y, z) = (Ê− σ̂xz)E(x, y, z)

(4)

can be obtained (see ref. [18] for details) and the decomposition becomes

E(x, y, z) =
1
2
(E1(x, y, z) + E2(x, y, z)). (5)

For the FEM implementation, it then remains to determine which of the symmetry
modes correspond to which combination of PMC and PEC boundary conditions for the
mirror symmetry planes in the corresponding SPs. First, we consider the effect of the
symmetry operations on E(x, y, z):

ÊE(x, y, z) = (uxux + uyuy + uzuz) · E(x, y, z)
Ĉ2E(x, y, z) = (−uxux − uyuy + uzuz) · E(−x,−y, z)
σ̂xzE(x, y, z) = (uxux − uyuy + uzuz) · E(x,−y, z)
σ̂yzE(x, y, z) = (−uxux + uyuy + uzuz) · E(−x, y, z)

, (6)

where uxux, uyuy, and uzuz are the unit vector dyads in the Cartesian coordinate system
(this notation is adopted here to keep the expressions concise). Applying Equation (6)
to the C2v symmetry modes of Equation (2) allows us to find the relation between these
modes and the boundary conditions on the xz and yz planes as summarized in Table 1.
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Similarly, applying Equation (6) to the Cs symmetry modes of Equation (4) allows us to
find the relation between these modes and the boundary conditions on the xz plane as
summarized in Table 2.

Table 1. Finding the xz and yz plane boundary conditions for each symmetry mode corresponding to the C2v point group.

Mode E(x, 0, z)× uy E(x, 0, z) · uy E(0, y, z)× ux E(0, y, z) · ux xz Plane yz Plane

E1(x, y, z) 6= 0 = 0 6= 0 = 0 PMC PMC
E2(x, y, z) = 0 6= 0 = 0 6= 0 PEC PEC
E3(x, y, z) 6= 0 = 0 = 0 6= 0 PMC PEC
E4(x, y, z) = 0 6= 0 6= 0 = 0 PEC PMC

Table 2. Finding the xz plane boundary condition for each symmetry mode corresponding to the Cs

point group.

Mode E(x, 0, z)× uy E(x, 0, z) · uy xz Plane

E1(x, y, z) 6= 0 = 0 PMC
E2(x, y, z) = 0 6= 0 PEC

We use the background-field-scattered-field formulation in our FEM models, where
the OP is defined by the geometry, refractive indices, boundary conditions, and a back-
ground field solution in the absence of the nanostructures. The electric field solution
can therefore be expressed as E(x, y, z) = Ebg(x, y, z) + Es(x, y, z), where Es(x, y, z) is the
scattered field solved in the FEM process. This means that, due to the linearity of Maxwell’s
equations, we can actually apply the symmetry mode decomposition (Equation (3) or
Equation (5)) to the known background field solution Ebg(x, y, z) when we set up the
SPs. Therefore, as long as we know the OP background field solution, we can apply the
symmetry reduction and obtain fully defined SPs. Note that we have assumed here that
the symmetry modes obtained for the background field as described above are solutions to
Equation (1) themselves. This assumption is, indeed, true when the incident field is a plane
wave or, more generally, can be expressed as a plane wave series expansion, since applying
the considered symmetry operators (Equation (6)) to plane wave components satisfying
Equation (1) produces other plane waves that still satisfy Equation (1).

When the SPs have been solved, the OP solution in the reduced simulation domain
is obtained with either Equation (3) or Equation (5) in the case of C2v or Cs symmetry,
respectively. However, the solution is needed in the full OP simulation domain. Since
the solutions of each SP show different combinations of symmetric and antisymmetric
fields with respect to the mirror planes (symmetric with PMC and antisymmetric with PEC
boundary condition, see Tables 1 and 2), care must be taken with the signs when summing
them to construct the OP solution in the full domain. If we take the reduced domain to
be the first quadrant (x ≥ 0, y ≥ 0) with the C2v symmetry or half (y ≥ 0) with the Cs
symmetry, the full domain OP solution can be expressed as

E(x, y, z) =


1
4 (E1(x, y, z) + E2(x, y, z) + E3(x, y, z) + E4(x, y, z)) , x ≥ 0, y ≥ 0
1
4
(
σ̂yzE1(x, y, z)− σ̂yzE2(x, y, z)− σ̂yzE3(x, y, z) + σ̂yzE4(x, y, z)

)
, x < 0, y ≥ 0

1
4
(
Ĉ2E1(x, y, z) + Ĉ2E2(x, y, z)− Ĉ2E3(x, y, z)− Ĉ2E4(x, y, z)

)
, x < 0, y < 0

1
4 (σ̂xzE1(x, y, z)− σ̂xzE2(x, y, z) + σ̂xzE3(x, y, z)− σ̂xzE4(x, y, z)) , x ≥ 0, y < 0

(7)

or as

E(x, y, z) =
{ 1

2 (E1(x, y, z) + E2(x, y, z)) , y ≥ 0
1
2 (σ̂xzE1(x, y, z)− σ̂xzE2(x, y, z)) , y < 0

, (8)

respectively. Note that these expressions (and subsequent computations) for each quartile
or half can actually still be evaluated in the reduced domain mesh, i.e., it is not necessary
to construct the full domain mesh to process the OP solution (depending on the specifics of
the FEM implementation, this may or may not simplify the postprocessing).
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2.3.2. Plane Wave Incidence

We restrict our discussion here to models with an incident plane wave field. As illus-
trated in Figure 3, we define the plane wave incidence with three angles: polar angle θi
(from z-axis), azimuth angle φi (from x-axis), and electric field polarization rotation angle
ψi (with ψi = 0 and ψi = π/2 corresponding to p- and s-polarization, i.e., parallel and
perpendicular to the plane of incidence, respectively). We also define the normal incidence
as θi = 0 and φi = 0 such that the polarization rotation is always defined solely by ψi. The
incident electric field can then be expressed as

Ei(x, y, z) = Eie−i(kix x+kiyy+kizz), (9)

with the wave vector

ki = −n1k0

 sin(θi) cos(φi)
sin(θi) sin(φi)

cos(θi)

 (10)

and electric field vector

Ei = E0

cos(ψi)

 cos(θi) cos(φi)
cos(θi) sin(φi)
− sin(θi)

+ sin(ψi)

 − sin(φi)
cos(φi)

0

, (11)

where n1 is the refractive index of the incidence medium, k0 is the wave number in free
space, E0 is the electric field amplitude, and the column vectors represent the x-, y-, and
z-components.

In a general stratified background medium, the incident plane wave results in a field
solution of the form

Ebg =

 Ex(z)
Ey(z)
Ez(z)

e−i(kix x+kiyy), (12)

where the z-dependence can be solved with the transfer matrix method (see e.g., ref. [19]
and the references therein). As with plane wave components in a homogeneous medium,
applying the considered symmetry operators (Equation (6)) to the stratified medium
background field solution (Equation (12)) produce fields that still satisfy Equation (1), and
the obtained background field symmetry modes are hence solutions to Equation (1) also
in this case. In our numerical examples, we consider the simple case of a single interface
between the superstrate and substrate (with refractive indices n1 and n2, respectively)
resulting in a single reflected and transmitted plane wave component with the well-known
Fresnel reflection and transmission coefficients.
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x

y

z

ψi

E i

k i

θi

φi

Figure 3. Schematic of the coordinates defining the incident plane wave: polar angle θi (from z-axis),
azimuth angle φi (from x-axis), and electric field Ei polarization rotation angle ψi (from the plane of
incidence, defined by z-axis and the wave vector ki, indicated with gray dashed lines).

2.3.3. Periodic Nanostructure Array

In the case of a single nanostructure, the above considerations apply with a general
plane wave incidence, but additional restrictions arise when we try to apply this method to
symmetry reduce a unit cell of a periodic nanostructure array. With the unit cell, we need to
consider not only the xz and yz mirror plane symmetries but also the discrete translational
symmetry of the lattice. We take the unit cell to be centered at the origin and the lattice
period to be px in x-direction and py in y-direction. In the case of C2v symmetry, in order
to use the previous symmetry reduction of the simulation domain to the first quadrant
{0 ≤ x ≤ px/2, 0 ≤ y ≤ py/2} and apply the same boundary conditions on opposite
boundaries, we find that the plane wave incidence must fulfill the conditions{

kix = − 2π
px

mx , mx ∈ Z
kiy = − 2π

py
my , my ∈ Z (13)

for the boundary conditions on the x = px/2 and y = py/2 boundaries also to be satisfied.
These incidence conditions result since, for a plane wave background, the symmetry modes
consist of plane wave components which then need to have zero or multiple of 2π phase
difference on these boundaries in order for the resultant sum field to satisfy the PMC or
PEC boundary conditions. In the case of Cs symmetry with the simulation domain reduced
to the half {−px/2 ≤ x ≤ px/2, 0 ≤ y ≤ py/2}, Floquet boundary conditions can still be
applied on the x = ±px/2 boundaries and only the condition kiy = − 2π

py
my is required

for the PMC or PEC boundary condition on the y = 0 and y = py/2 boundaries to be
satisfied. It is also important to note here that, for lattices where the primitive cell is not
rectangular, the smallest rectangular unit cell required for this symmetry reduction method
is larger than the primitive cell and the obtained benefit is reduced, especially since using
the primitive cell and Floquet boundary conditions allows for arbitrary incidence. For
example, in a hexagonal lattice (see Figure 2c), the smallest rectangular unit cell is twice the
size of the primitive cell and the symmetry reduction to one quarter reduces the simulation
domain size by only a factor of 2 compared to the primitive cell.

We note that the incidence conditions of Equation (13) actually appear in the context
of diffraction gratings. Following from the periodicity of the geometry and the incident
plane wave, the wave vector components of the diffracted plane waves (in either the
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superstrate or the substrate) of diffraction order (νx, νy) (with νx and νy integers) need to
satisfy the conditions  k(νx)

x = kix +
2π
px

νx

k
(νy)
y = kiy +

2π
py

νy
(14)

and the incidence condition of Equation (13) can therefore be interpreted as the so-called
Littrow configuration of order (2mx, 2my) (i.e., a configuration where the reflected diffrac-
tion order propagates back to the incidence direction: k(νx ,νy) = −ki). Furthermore, finding
such a restriction is not unique to our FEM approach since similar Littrow configuration
incidence condition requirements were found in ref. [18] with C2v symmetry reduction for
FMM. Indeed, this requirement is rather a result of the symmetry itself than of the chosen
simulation method.

2.3.4. Special Incidence Cases

The symmetry reduction method outlined above has some special plane wave in-
cidence cases including the previously discussed well-known ones of normal incidence
for C2v symmetry and the plane of incidence coinciding with the mirror symmetry plane
for Cs symmetry. With normal incidence and C2v symmetry, E1(x, y, z) = E2(x, y, z) = 0,
E3(x, y, z) = 4uxux ·E(x, y, z), and E4(x, y, z) = 4uyuy ·E(x, y, z), reducing the background
field decomposition and SPs to just consider the two perpendicular polarization compo-
nents separately. With incidence along the symmetry plane (φi = 0) and Cs symmetry,
E1(x, y, z) and E2(x, y, z) become the p- and s-polarized component, respectively, reduc-
ing the background field decomposition and SPs to just consider the two polarization
components separately.

However, in a third special case of symmetry plane incidence (φi = 0 or φi = π/2)
and C2v symmetry, in general, all four symmetry modes are needed but, with the incident
field either fully p- or s-polarized (ψi = 0 or ψi = π/2), only two of the four symmetry
modes are nonzero, reducing the number of SPs to consider to two as listed in Table 3. It is
rather straightforward to set up the symmetry reduced models to identify these special
incidence cases and only solve the needed SPs.

Table 3. SP symmetry modes in the special plane wave incidence cases where the plane of incidence
coincides with either the xz or yz mirror symmetry plane (with C2v symmetry).

Incidence Plane Polarization Nonzero Symmetry Modes

xz p E1 and E3
xz s E2 and E4
yz p E1 and E4
yz s E2 and E3

2.3.5. Expected Performance Increase

From computational cost point of view, we on the one hand reduce the simulation
domain by a factor of four or two with C2v or Cs symmetry, respectively, but on the other
hand we increase the number of problems to solve from the one OP to four or two SPs,
respectively. The degrees of freedom (DOF) and hence the FEM system matrix size are
expected to scale approximately linearly with the simulation domain size. The full FEM
system matrix size actually scales as the square of DOF, but this matrix is sparse since the
Equation (1) is local, connecting only neighboring mesh elements to each other. Therefore,
the number of non-zero matrix elements is proportional to DOF and so is the random
access memory (RAM) use with sparse solvers that store only the non-zero elements. In
our previous numerical simulation benchmarking study [20] we found the maximum
RAM usage to scale approximately linearly with DOF and the solver run time to scale
superlinearly. However, for small DOF, overhead starts to be significant and neither the
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maximum RAM usage nor run time will scale linearly. Additionally, the solver run time, in
general, depends heavily on the number and type of CPU cores utilized.

It is also worth taking into consideration how the simulation domain boundaries affect
the DOF and RAM use. PMLs in non-periodic models are not boundary conditions but
additional domains (within which the fields are absorbed without reflection) and hence
increase the simulation domain size and DOF. Floquet periodic boundary conditions in
periodic models instead connect the field components on opposite boundaries making
the system matrix more dense without increasing DOF. Finally, the PMC and PEC bound-
ary conditions simply set some field components to zero on the boundary, effectively
decreasing the DOF and hence result in the lowest RAM use compared to using other
boundary conditions.

Overall, it is to be expected that our symmetry reduction method, with non-periodic
models, should reduce the memory requirement approximately by a factor of 4 or 2 for
C2v or Cs symmetry, respectively, and to possibly also yield reduced total solver run time,
especially with high DOF. With periodic models, our symmetry reduction method should
additionally reduce the RAM use and total solver time due to changing Floquet boundary
conditions to PMC or PEC. Furthermore, in the special incidence cases mentioned above,
the number of SPs to solve is reduced leading to reduced total solver run time.

3. Numerical Examples

We demonstrate our FEM model symmetry reduction with symmetry modes using
two numerical examples, implemented with COMSOL Multiphysics® 5.6 software with
the Wave Optics Module. First, we consider models of a single hexagonal nanowire
embedded in a semi-infinite superstrate on top of a a semi-infinite substrate for obtaining
the nanowire absorption cross-section as a function of the plane wave incidence direction
and polarization (as opposed to the common practice of modeling at just the normal
incidence for convenience). Such models could be used e.g., in the analysis or design
of a single-nanowire solar cell [3]. Second, we consider models also with semi-infinite
superstrate and substrate but with a periodic array of hexagonal nanowires arranged
in an orthorhombic (rectangular) lattice. In this case, the primitive cell is rectangular,
and we therefore get the full benefit of using the symmetry reduction (as opposed to a
non-rectangular primitive cell).

Due to the restriction on the plane wave incidence angle (Equation (13)), this second
example with symmetry reduced unit cell for the array finds somewhat limited applica-
bility. One application could be to use such an array as a grating and use similar models
to compute the diffraction order efficiencies as a function of the nanowire dimensions
(diameter and length) when the incidence is kept fixed at one of the (2mx, 2my)th Littrow
configurations (for chosen wavelength and period). Alternatively, the array could act as
a photodetector [5] and the models be used to design the nanowire dimensions to max-
imize absorption at the desired wavelengths (again, with a fixed specific incidence that
respects the restrictions). We lean towards the latter application in our example but also
demonstrate an additional aspect of the symmetry reduction.

Therefore, in our periodic nanowire array example, we consider the incidence of two
coherent antiphase plane waves at mirror incidence angles (θi2 = θi1, φi1 = 0, φi2 = π, and
ψi2 = π−ψi1) leading to polarization selective absorption in the nanowires (centered at the
origin of the unit cell) with constructive interference for the p-polarization x-components
and destructive interference for the s-polarization y-components (also destructive interfer-
ence for the p-polarization z-components). We note that, with this incidence configuration
and either p- or s-polarization, the background field is actually directly one of the symmetry
modes: E3(x, y, z) for p- and E2(x, y, z) for s-polarization, respectively. Therefore, this is a
simple example of such a case where the symmetry modes themselves could be of interest.
We further note that exploiting such coherent absorption of multiple incident plane waves
has wider interest [21] and similar opportunities for symmetry reduction of models could
arise in this context. With these models, we explore the array absorption as a function of
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the periods px and py, while maintaining the (2, 0) and (−2, 0) Littrow configuration for
the two incident plane waves, i.e., kix = ±2π/px and kiy = 0, meaning that py does not
put restriction on the incidence angle.

3.1. Models

In the first single nanowire absorption cross-section model, we select the substrate
material as Si, the nanowire material as GaAs, the nanowire diameter as D = 380 nm,
and the nanowire length as L = 2500 nm (viz. ref. [3]). The wavelength (in free space)
of the incident plane wave is chosen as λ0 = 800 nm, at which we use the refractive
index n = 3.6750− 0.0054113i for Si [22] and n = 3.6035− 0.091786i for GaAs [23]. For
simplicity, we consider the superstrate medium to be a polymer with a refractive index of
n = 1.4 instead of a more realistic stack of air, transparent conductive oxide, and polymer
(viz. ref [3]). As already mentioned, with this simplification, the general background field
expression of Equation (12) reduces to a total of three plane wave components (incident
and reflected plane wave in the superstrate and transmitted plane wave in the substrate).
We select the simulation domain width (square cross-section), superstrate height, and
substrate height such that they are sufficient to not result in numerical artifacts in the field
solution (approximately one wavelength space between the nanowire and the simulation
domain boundaries). We then cut the simulation domain with the xz and yz planes to
one quarter with x ≥ 0 and y ≥ 0. All the remaining original boundaries are terminated
with PMLs, while for each SP, the background field is set as one of the symmetry modes
of Equation (2) and the cut plane boundaries are assigned either PMC or PEC boundary
condition according to Table 1. The simulation domain is meshed with a free tetrahedral
mesh using the Fine preset settings in the software and adjusting the maximum mesh
element size to check convergence of the results with mesh refinement. The PMLs are
meshed with a swept mesh of six elements across. We selected the tightest maximum mesh
element size as λ0/(12n), where λ0 is the free space wavelength and n is the refractive index
(real part) in each domain, and found sufficient convergence in the obtained absorption
cross-section values with maximum mesh element size of λ0/(3n). The electric field in the
model is solved using a Wavelength Domain study at λ0 = 800 nm and the direct MUMPS
solver with the default settings, except for turning off the out-of-core functionality to avoid
swapping data from RAM to hard drive storage if the system matrix becomes too large,
which would lead to erroneous extracted values of maximum RAM use. We opted to use a
direct solver instead of an iterative one since, although iterative solvers tend to use less
RAM, direct solvers are more robust and reliable. For comparison, we also consider a
second model without the symmetry reduction having the OP background field and all
boundaries terminated with PMLs. In the following, we refer to these two models as “Sym.
red. 1/4” and “No sym. red.”, respectively.

In the first periodic nanowire array absorption model, we select the substrate as
Si, the nanowire material as In0.52Ga0.48As, the nanowire diameter as D = 260 nm, and
the nanowire length as L = 1400 nm (viz. ref. [5], but we choose a thicker nanowire
for increased absorption, although not optimized [8]). The wavelength (in free space)
of the incident plane wave is chosen as the popular telecom wavelength λ0 = 1550 nm,
at which we use the refractive index n = 3.4757 for Si [24] and n = 3.5307− 0.076399i
for In0.52Ga0.48As [23]. Again, for simplicity, we consider the superstrate medium to
be a polymer with a refractive index of n = 1.4 instead of a more realistic stack of air,
transparent conductive oxide, and polymer (viz. ref [5]). We select the superstrate and
substrate heights such that they are sufficient to not result in numerical artifacts in the field
solution (approximately one wavelength space between the nanowire and the simulation
domain boundaries above and below). We then cut the simulation domain with the xz
and yz planes to one quarter with x ≥ 0 and y ≥ 0. The top and bottom boundaries
are terminated with PMLs, and the background field with the two incident plane waves
is, as mentioned, the symmetry mode E3(x, y, z) for p- and E2(x, y, z) for s-polarization
(Equation 2 and the cut plane boundaries are assigned either PMC or PEC boundary
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condition according to Table 1). The simulation domain is meshed with a free tetrahedral
mesh using the Fine preset settings and adjusting the maximum mesh element size to
check convergence of the results with mesh refinement. The PMLs are meshed with a
swept mesh of six elements across. We selected the tightest maximum mesh element size
as λ0/(12n), where λ0 is the free space wavelength and n is the refractive index (real
part) in each domain, and found sufficient convergence in the obtained absorption values
with maximum mesh element size of λ0/(6n), except for small py. The electric fields in
the model are solved using a Wavelength Domain study at λ0 = 1550 nm and the direct
MUMPS solver with the default settings, except for turning off the out-of-core functionality.
For the periodic models, iterative solvers are not even a practical option since they, in
general, tend to not work well with Floquet boundary conditions. Therefore, we use the
selected direct MUMPS solver throughout. In the following, this first periodic model is
referred to as “APMI sym. red. 1/4”.

For comparison, we also consider four additional models: one with the same back-
ground field but without the symmetry reduction and three single plane wave background
field (kix = −2π/px and kiy = 0) models: without symmetry reduction, with symmetry
reduction to one half, and with symmetry reduction to one quarter, respectively. In the
following, we refer to these four models as “APMI no sym. red.”, “SI no sym. red.”,
“SI sym. red. 1/2”, and “SI sym. red. 1/4”, respectively. The model “APMI no sym.
red.” has the original simulation domain with Floquet boundaries at the sides. Note that,
since the wave vector x-components of the two incident plane waves differ only in sign
and the y-components are zero, kF = kixux and the Floquet condition on the boundaries
y = ±py/2 reduces to field continuity. The only difference between the models “SI no
sym. red.” and “APMI no sym. red.” is the background field. These two models without
symmetry reduction serve as the reference point for the symmetry reduced models. The “SI
sym. red. 1/2” model uses the symmetry modes of Equation (4) which simply reduce to the
p- and s-polarized component of the background field. Boundary conditions for the y = 0
and y = py/2 planes are determined from Table 2 while the x = −px/2 and x = px/2
planes have the Floquet boundary condition. This model actually corresponds to the
aforementioned conventional mirror plane incidence symmetry reduction case where the
incident light is along the mirror plane. Finally, background field in the “SI sym. red. 1/4”
corresponds to the aforementioned special case of the symmetry modes of Equation (2),
where E2(x, y, z) = E4(x, y, z) = 0 for p-polarization and E1(x, y, z) = E3(x, y, z) = 0 for
s-polarization, reducing the SPs to two for each polarization. Otherwise, the four models
are set up the same as the “APMI sym. red. 1/4” model. For clarity, we have summarized
the SPs solved with each model in Table 4.

Table 4. Summary of the SPs to solve in each periodic nanowire array absorption model depending on the polarization of
the OP incident plane wave (see the main text for the definitions of the models and the symmetry modes Ej for Cs and
C2v symmetry).

Model P-Polarized OP S-Polarized OP General OP

APMI sym. red. 1/4 E3 (C2v) E2 (C2v) E3 and E2 (C2v)
APMI no sym. red. OP OP OP

SI no sym. red. OP OP OP
SI sym. red. 1/2 E1 (Cs) E2 (Cs) E1 and E2 (Cs)
SI sym. red. 1/4 E1 and E3 (C2v) E2 and E4 (C2v) E1, E2, E3, and E4 (C2v)

With the field solutions from the solved models, we compute the single nanowire
absorption cross-section and nanowire array absorption results. The nanowire absorption
cross-section is computed as Acs = Pnw/Ii, where Pnw is the power absorbed in the
nanowire (<{J(x, y, z) · E(x, y, z)} integrated over the nanowire volume, where J(x, y, z) is
the induced current density) and Ii is the incident intensity (Ii = n1/(2η0)E2

0, where η0 is
the free space impedance). The nanowire array absorption is computed as A = Pnw/Pi,
where Pi is the incident power into the unit cell and Pnw is the power absorbed in the
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nanowire in the unit cell. Note that there is no power flow between the unit cells, so the
incident power in one unit cell is given by integrating the incident field Poynting vector
z-component over the cross-section area (Pi = px py Ii cos(θi)). In the “APMI” models, the
incident power is doubled with two plane waves incident instead of one (the interference
does not alter the total power, only its distribution). We perform the computation of Pnw in
the symmetry reduced domain with Equation (7) or Equation (8) and sum the results to
obtain the value in the full domain.

3.2. Simulation Results

With the two single nanowire absorption cross-section models “Sym. red. 1/4” and
“No sym. red.”, we considered both p- and s-polarization and swept the polar incidence
angle θi from 0◦ to 88◦ with 2◦ step and the azimuth incidence angle φi from 0◦ to 30◦

with 1◦ step (due to our definition of normal incidence, φi = 0◦ when θi = 0◦ in the
sweep). These ranges for the incidence angles covered all unique incidences from the upper
half-space, due to the hexagonal nanowire cross-section (C6v symmetry). Figure 4 shows
the nanowire absorption cross-section for φi = 30◦ obtained from the simulations and the
maximum DOF, total solver time and maximum RAM used for the whole sweep. These
reported results were obtained with a local desktop computer Dell Precision 3640 MT with
Intel Core i7-10700 8-core CPU and 128 GB RAM. As seen in Figure 4a, the good agreement
in the absorption cross-section values between the two models indicates that the used
symmetry reduction was set up correctly.
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Figure 4. Simulation results with the “No sym. red.” and “Sym. red. 1/4” models. (a) Nanowire absorption cross-section
as a function of θi with φi = 30◦. (b) The maximum DOF, total solver time and maximum RAM use for the whole θi and
φi sweep.

The results shown in Figure 4b were in line with our expectations. Since the symmetry
reduced domain in the “Sym. red. 1/4” model was a factor of 4 smaller than the full domain
in the “No sym. red.” model, the DOF was also approximately a factor of 4 smaller and so
was the maximum RAM use, accordingly. Interestingly, a superlinear dependence of the
solver time on the system matrix size showed up in the results yielding also a much smaller
total solver time for the “Sym. red. 1/4” model. We did take into account the special
incidence angle cases in the sweep where only part of the SPs needed to be solved, but this
concerned only the normal incidence and φi = 0◦ (which constituted only approximately
1/30 of the steps in the sweep) and was hence not the reason for the observed reduced total
solver time with symmetry reduction. We noticed that the overhead from setting up the
solver was increased for the “Sym. red. 1/4” model when several SPs were solved instead
of the one OP. However, as long as the overhead time was small compared to the actual
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solver time, as is likely to be the case with tight mesh for good convergence, this was not
an issue for obtaining performance increase with the symmetry reduction.

With the periodic nanowire array absorption models “APMI sym. red. 1/4”, “APMI
no sym. red.”, “SI no sym. red.”, “SI sym. red. 1/2”, and “SI sym. red. 1/4”, we
considered both p- and s-polarization and swept the period px such that, with the (2,0)
Littrow configuration, the corresponding polar incidence angle θi was swept from 10◦ to
60◦ with 0.5◦ step. We first also considered different py periods from 300 nm (less than
one diameter D space between the nanowires) to 1107 nm, corresponding to λ0/n1, with
coarser steps and meshing and then selected py = 950 nm for this example due to good
convergence in the absorption results with the maximum mesh element size of λ0/(6n).
Figure 5 shows the periodic nanowire array absorption obtained from the simulations with
the models “APMI sym. red. 1/4” and “APMI no sym. red.” and the maximum DOF, total
solver time, and maximum RAM used for the sweep. Figure 6 shows the periodic nanowire
array absorption obtained from the simulations with the models “SI no sym. red.”, “SI sym.
red. 1/2”, and “SI sym. red. 1/4” and the maximum DOF, total solver time, and maximum
RAM used for the px (or equivalently θi) sweep. These reported results were also obtained
with the local desktop computer Dell Precision 3640 MT with Intel Core i7-10700 8-core
CPU and 128 GB RAM. The good agreement in the absorption values between the models
in both sets (as seen in Figures 5a and 6a) indicated that the used symmetry reductions
were set up correctly. Furthermore, the expected difference in the polarization dependence
of the absorption between the case of two antiphase plane waves at mirror incidence and
the case of a single plane wave incidence was also demonstrated.

10 15 20 25 30 35 40 45 50 55 60

i [°]

0

5

10

15

A 
[%

]

p-pol APMI no sym. red.
s-pol APMI no sym. red.
p-pol APMI sym. red. 1/4
s-pol APMI sym. red. 1/4

5.76 3.86 2.92 2.37 2.00 1.74 1.56 1.41 1.31 1.22 1.15

n1px / 0

1.34 106

3.53 h

29.47 GB

3.41 105

0.33 h

5.21 GB
Max RAM

Total solver time

Max DOF

APMI no sym. red. APMI sym. red. 1/4

(a) (b)

Figure 5. Simulation results with the “APMI no sym. red.” and “APMI sym. red. 1/4” models. (a) Nanowire array
absorption as a function of px (or equivalently θi) with py = 950 nm. (b) The maximum DOF, total solver time, and
maximum RAM use for the px (or equivalently θi) sweep.

Interestingly, the results shown in Figures 5b and 6b were much better than what
could be expected based on the DOF reduction alone: although the DOF scaled as expected,
the maximum RAM use and total solver time with all the symmetry reduced models
were much smaller than that would entail. With the “APMI sym. red. 1/4” model the
maximum RAM use was approximately a factor of six smaller and the total solver time
was approximately a factor of 10 smaller than with the “APMI no sym. red.” model. With
the “SI sym. red. 1/2” model the maximum RAM use was approximately a factor of three
smaller and the total solver time was approximately a factor of five smaller than with the
“SI no sym. red.” model. Finally, with the “SI sym. red. 1/4” model the maximum RAM
use was approximately a factor of nine smaller and the total solver time was approximately
a factor of seven smaller than with the “SI no sym. red.” model. We attribute this result
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to the aforementioned effect of Floquet (or field continuity) boundary conditions making
the system matrix more dense than the simpler PMC or PEC boundary conditions. Indeed,
the symmetry reduced periodic array models having the additional benefit of not only
making the system matrix smaller but also less dense, clearly could exhibit strongly reduced
computational cost.

10 15 20 25 30 35 40 45 50 55 60

i [°]

0

5

10

15

A 
[%

]

p-pol SI no sym. red.
s-pol SI no sym. red.
p-pol SI sym. red. 1/2
s-pol SI sym. red. 1/2
p-pol SI sym. red. 1/4
s-pol SI sym. red. 1/4

5.76 3.86 2.92 2.37 2.00 1.74 1.56 1.41 1.31 1.22 1.15

n1px / 0

1.34 106

5.05 h

49.19 GB

6.74 105

1.09 h

16.35 GB

3.41 105

0.72 h

5.73 GB

Max RAM

Total solver time

Max DOF

SI no sym. red. SI sym. red. 1/2 SI sym. red. 1/4

(a) (b)

Figure 6. Simulation results with the “SI no sym. red.”, “SI sym. red. 1/2”, and “SI sym. red. 1/4” models. (a) Nanowire
array absorption as a function of px (or equivalently θi) with py = 950 nm. (b) The maximum DOF, total solver time, and
maximum RAM use for the px (or equivalently θi) sweep.

4. Discussion

In summary, we have shown how to symmetry reduce an FEM optics model with
nanostructures on top of a substrate and incident plane waves as the excitation by using
the xz and yz mirror symmetry planes of the geometry and the associated symmetry modes
to decompose the OP to SPs with reduced simulation domain size and computational
cost. This symmetry reduction method can be applied when the model geometry either
belongs to the Cs or C2v point group or when it belongs to a point group that has one or
both of these groups as a subgroup. It is then possible to solve the OP in the background-
field-scattered-field formulation by taking the OP background field that does not need
to coincide with the symmetries of the geometry, decompose it to the symmetry modes,
separately solve the resulting SPs with reduced simulation domain size and simple PEC or
PMC boundary conditions added or replacing the OP boundary conditions, and finally
construct the OP solution by correctly summing the SP solutions.

We further demonstrated the symmetry-reduction method with two numerical ex-
amples considering the absorption cross-section of a single hexagonal nanowire with an
incident plane wave and the absorption in a periodic nanowire array for a single incident
plane wave or two interfering incident plane waves. The simulation results verified the
approximately linear scaling of maximum RAM use with the size of the symmetry re-
duced simulation domain (the size mostly dictates the DOF in the system and hence the
system matrix size) and also the reduced total solver time due to the superlinear scaling
of the solver process with the reduced system matrix size. We also pointed out how, in
the periodic array models, replacing the periodic Floquet boundary conditions in the OP
full domain with PMC or PEC boundary conditions in SPs with the symmetry reduced
domain additionally results in an even less dense system matrix and hence further reduced
maximum RAM use and total solver time.

To give more perspective to these results, we can compare them with the computa-
tional cost gains in the similar symmetry reduction for FMM models of periodic arrays [18].
The FMM symmetry reduction method starts with the same concept of decomposing the
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OP to SPs with the symmetry modes, but then proceeds quite differently as the properties
of the symmetry modes are used to find a reduced basis with which to solve the SPs (i.e.,
symmetry-adapted bases with fewer basis functions). The authors of those FMM studies
demonstrated maximum RAM use reduction by a factor of 4 and 16 in the case of Cs and
C2v, respectively, and computation time reduction by a factor of 4–64 depending on the
symmetry and specific incidence configuration. In our case, with the models “SI no sym.
red.”, “SI sym. red. 1/2” and “SI sym. red. 1/4”, the RAM use is reduced by approximately
a factor of three and nine in the case of Cs and C2v, respectively. Moreover, if tuned properly,
iterative solvers could also work for those models with no Floquet boundary conditions,
which would likely reduce the maximum RAM use even further. On the other hand, even
our largest reduction in solver time by a factor of approximately 10, with the “APMI sym.
red. 1/4” model (with only one SP per polarization) compared to the “APMI no sym.
red.” model, is much more modest than the factor of 64 reported for the FMM (for normal
incidence and x- or y-direction polarization). However, we would like to point out that
there are several other factors to consider when determining which modeling method is
the fastest and most efficient for the given problem at hand to begin with [20], and the
symmetry reduction gains in FEM and FMM are hence not necessarily directly comparable.
It is also worth noting that both our FEM and the FMM symmetry reduction approach also
lead to the same restrictions for the allowed incidence directions in periodic models.

We would like to point out that our method is quite straightforward to implement
for the case of a homogeneous background medium as well. First, it is possible to use our
method as is but, if the nanostructure also has the xy-plane mirror symmetry in addition to
the xz- and yz-plane mirror symmetries, this additional symmetry is not exploited. Second,
taking all three mirror symmetry plane operations into account results in the D2h point
group symmetry, where all the symmetry operations can be expressed as combinations
of the three mirror plane symmetry operations, like is the case with the C2v point group
symmetry and xz- and yz-plane mirror symmetry operations as discussed above. The D2h
point group can then similarly be used to find the relevant symmetry modes and each
can be assigned a different combination of PMC and PEC boundary conditions on the xy-,
xz-, and yz-plane boundaries in the SPs with 1/8 of the OP simulation domain. Note that
the above discussed restrictions on incidence angles in the case of periodicity along the
xy-plane would also apply.

In this work, we concentrated on the simple perpendicular mirror symmetry planes
but it would be interesting to see if the other symmetries could be exploited in FEM
modeling as well, like is the case with FMM [17]. The issue here is that the above FEM
symmetry reduction relies on the use of PMC and PEC boundary conditions and, in a
simulation domain cut with non-perpendicular mirror symmetry planes, the different
combinations of PMC and PEC boundary conditions do not necessarily correspond to the
symmetry modes. For example, the single hexagonal nanowire could be symmetry reduced
with the σ1

v and σ1
d mirror symmetry planes (see Figure 1b) and the third side-boundary

would be terminated with a PML. However, the boundary conditions would give only
four different combinations, while there are 12 symmetry modes in the C6v symmetry
(see ref. [25] for details). On the other hand, the symmetry reduced primitive cell in a
hexagonal lattice would be bounded by three mirror symmetry planes (see Figure 2c)
leading to eight different combinations of PEC and PMC boundary conditions. It could be
possible that different linear combinations of the symmetry modes would correspond to
the boundary conditions in these cases (instead of just one symmetry mode) and it would
still be possible to find proper SPs from the OP decomposition. Therefore, this issue could
be worth further research.
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