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Abstract: I exploit the close connection between the tessellation of space-time in the Regge calculus
and an Eilenberg homology to investigate the deep quantum nature of space-time in a simple bubble
universe of a size consistent with the Planck regime. Following the mathematics allows me to define
this granulated space-time as the embedding space of the skeleton of a computational spin network
inside a quantum computer. This approach can be regarded as a quantum simulation of the equivalent
physics. I can, therefore, define a fundamental characterisation of any high-energy physical process
at the Planck scale as equivalent to a quantum simulation inside a quantum computer.

Keywords: quantum gravity; quantum computing

1. Introduction
1.1. Quantum Theory as a Black Box Model of Reality

Quantum Theory is a guess at (or a prediction of) how an experiment at the quantum
level relates inputs and outputs as real numbers shown on displays in the realm of classical
mechanics. Good guesses are those which are consistent with all the existing experimen-
tal data (the facts) and have high predictive power, within their domain of application.
Our currently accepted theory is the simplest of the good guesses, because the simplest
explanation consistent with the facts is, we assume, nearest to the truth, (due to Occam’s
Razor). Finally, the more abstract the quantum theory, the more broadly relevant it is to the
real world.

Quantum gravity is the quantum theory of space-time thus will have the following
characteristics which I call Axioms.

Axiom 1. It will have an elegant and abstract mathematical structure, since this is
the simplest way of expressing its logic (Occam’s Razor again) and it should be widely
applicable to the real world.

Axiom 2. It will be a theory based on the transformation of existing information (input
values) into new information (the real or predicted output values).

Axiom 3. We require that for a given set of inputs, the outputs are correct (i.e., consistent
with the facts), within its domain of application. The theoretical prediction correctly
computes the output values but the mechanism by which this process is achieved is hidden
from us. I call this quantum censorship.

Such a theory is a black box model of reality. We can predict the values of the output
displays given the inputs, but we are forbidden, by quantum censorship, from seeing most
of the connections inside the box.

An example of quantum censorship is the process called quantum tunnelling in the
non-relativistic theory. This occurs for a particle trapped in a finite potential well (such as
an atomic nucleus). The Born probability integrated over the part of the wave function
lying outside the well gives the chance of finding the particle outside—but how did it get
there? We are not allowed to even ask.

The mathematics of this black box theory of reality are best expressed in the language
of linear operators as first pointed out by Born, Jordan and Heisenberg. This approach
was initially systematised by Dirac and later by J von Neumann, see for example [1]. von
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Neumann’s conceptual model of a * algebra (A *-algebra in this context is an algebraic ring
of operators closed under the operator adjoint mapping A→ A∗. All algebras of operators
mentioned in this paper are assumed to be *-algebras) (now called a von Neumann algebra)
consisting of a ring (topologically closed for the ultraweak operator topology) of operators
with an identity element acting on a Hilbert space still holds good. However, in an excellent
discussion [2] Wald points out the clear advantages to thinking of this structure from the
point of view of an abstract algebra A, closed in the ultraweak operator topology, with
identity, called a W*-algebra [3] since the representation theory of A is then unbiased. I
can then interpret any quantum theory (including quantum gravity) as follows: a quantum
state ρ is a positive element of the dual space A* of A with ρ(I) = 1. A representation π is
a homomorphism from A to a von Neumann subalgebra of the set of all bounded linear
operators B(H) acting on a Hilbert space H. The Hilbert space is either finite dimensional
or separable. Each quantum state ρ gives rise to a representation in which it is equivalent
to a Dirac ket |x> of the Hilbert space with norm one; this is the Gelfand-Naimark-Segal
(GNS) construction [1]. An irreducible GNS representation corresponds to ρ being a pure
state. Since the state space is a weak*-convex, compact subset of the dual space, it is
the closed convex hull of its extreme points These extreme points are the pure states. A
finite system observable, such as the total system energy, corresponds to a bounded linear
operator acting on this Hilbert space. The subset of states continuous for the ultraweak
operator topology on A is the predual A∗. The Gelfand transform mapping applied to an
abstract W*-algebra A shows that A is (isomorphic to) the dual space of the linear hull of
its predual, whch turns out to be a Banach space. More formally, we have

• An abstract W*-algebra A is a C*-algebra which is (isomorphic to) the dual space of a
Banach space [3];

• Observations/measurements of a quantum system such as the total energy in a
GNS representation correspond to discrete eigenvalues of the corresponding matrix
operator. This implies that the set of observables corresponds to the subset of self-
adjoint operators (with real eigenvalues).

1.2. The Big Bang: Everything from Nothing?

The evolution of space-time is governed by the laws of thermodynamics. The universe
is the ultimate example of a closed system. Thus, the entropy of the universe increases over
time from a low-entropy initial state [4]. This gives time its direction [5]. Data from the
Planck satellite surveys of the Cosmic Microwave Background show that the Universe was
logically simple near its beginning, which is compatible with having low entropy (a special
baby). The Planck satellite data analysis implies that the power spectrum (the Fourier
Transform of the spatial autocorrelation function) is close to scale invariant. Turok [6]
argues on this basis for a simple beginning, which is in line with my axioms for quantum
gravity. Within this context, I define a bubble universe to be a possibly unique simple
bubble of space-time developing within the Planck regime over a few atto-seconds after
the big bang.

1.3. Gravity

In the pre-quantum world, gravity is a classical theory of space-time as a smooth
curved manifold, with the Ricci measure of local curvature equal to the local system
mass-energy (neglecting constants). This corresponds to equating two covariant tensors
Rµν = Eµν of equal rank. This in turn, following the mathematics of Riemann, makes the
subsequent expression covariant relative to a change of generalised coordinate systems
(thus known as General Relativity or GR). Einstein’s non-quantum theory of gravity (GR)
is very dependent on general covariance [7]. This theory is not consistent with Occam’s
Razor; it brings too much baggage which must be cut away. For example, at the beginning
of the big bang, Einstein’s theory implies that the curvature of the universe and the
energy density are both infinite, which makes no sense. It is also impossible to measure
intervals in space smaller than the Planck length using a standard measuring rod (such
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as a laser beam and a mirror). To make the measurement requires inserting at least one
wavelength of monochromatic light into such an interval. The energy of such a photon
E = hν = hc

λ > hc
lp

which is extremely high, leading to local collapse into a black hole.
Attempting to discriminate further by increasing the energy of the photon, simply increases
the size of the black hole. There are more problems; creating two such black holes which are
entangled leads to a wormhole in our ‘apple’ of space-time. This comes from the thought
experiments of Maldacena and Susskind (Known as ‘ER = EPR’).

A simpler quantum-based theory, based indeed on the elegant idea of small finite
increments of space-time, is adequate to the task, as we will show. The point of these
quantum assumptions is to impose a granularity on space-time at the Planck scale; as
is implied by most theories of quantum gravity; see for example [8] (Chapter 2). This
corresponds to a lower limit to measurement and a finite theory in the sense of Dirac. For
a closed and bounded (compact) subset of a granular space-time, the vacuum energy is
always finite. A renormalisation which is based on convergence of neighbouring events,
has a lower limit at the Planck scale.

We take forward the fusion of space and time into a single entity and the representation
of gravity as a set of oriented, locally bounded, compact double-cones. The discrete nature
of a computational spin network X implies that only at most a countable number of these
double cones are required; each one attached to an embedded node of X.

These act like waymarks, directing the local discrete movements through the embed-
ded network embdX from node to node by the action of the translation subgroup of the
relativistic Poincare group [8] (Chapter 2). From this perspective, flat space-time is a very
special case in which each of the local double-cones has the exact same orientation as its
neighbours. Thus, the existence of a gravitational field is the generic case. This is similar
to one of the key ideas behind special relativity (The other being the invariance of the
speed of light in vacuo): that a moving frame of reference is the generic case, not requiring
further justification.

2. Computational Spin Networks

Consider now the dynamics of the Dirac quantum state of a spin 1
2 fermion in a way

which is consistent with the requirements of special relativity. This quantum state is four
dimensional, with the first two components’ corresponding to the particle and the second
two components corresponding to the anti-particle, each corresponding to a Weyl 2-spinor.
With planar isotopy, it is possible to associate various locally deformable lines in the plane
with Weyl 2-spinor calculations, giving rise to topological structures called spin networks.
The motivation for Penrose in developing spin network theory was as part of his belief
that discreteness was a fundamental part of a unification of general relativity and Quantum
theory. Penrose’s approach has links to the Jones polynomials of knot theory (a favourite of
E. Witten) via the Reidemeister moves which connect two isomorphic 3-dimensional knots.

I exploit such network ideas, together with the work of T. Regge on tessellation limits
as 4-dimensional manifolds in general relativity [9–11] which I reimagine. General relativity
is now the ‘poor relation’, as a mere approximation to a quantum tessellated space-time at
the Planck scale. I also note that the dynamics of a tessellated space-time are the limit of
the smooth system dynamics [10,11].

I define a computational spin network to be a finite or countable quiver consisting of a
directed graph, where the nodes represent entangled spin inputs, and a directed random
link between two nodes corresponds to a quantum gate such as the Controlled-NOT Gate,
with entangled state inputs. I assume in what follows that the number of nodes n is finite.

Given two input qubit quantum states the basic NOT quantum gate corresponds to a
2 × 2 unitary matrix with U|1 > = |0 > , etc. The Hadamard quantum gate rotates each
such spin eigenvector into a quantum superposition. All quantum gates in a quantum
computer correspond in this way to multiplying the input state vector by a unitary matrix
mapping, usually of the form SU(2) when considering just qubits. In the following we
denote the joint tensor product state of |x> and |y> as |x y>.
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I can now perform a set of steps from one node to the next neighbouring node through
the network, and we can interpret this process in physics terms as a set of transitions,
such as |y2 > →|y3 > as steps across our computational spin network. We need to show
that the initial state |y0 > is retrievable from the end state |y3 > . For this last part, we
ask our avatar scientists Alice and Bethe to help. Assume that Alice prepared both the
network and the initial quantum state |y0 > and wishes to send this state to Bethe. She
constructs the pathway |y0 > →|y1 >→ |y2 > →|y3 > ending at Bethe. She then per-
forms a measurement across the tensor product eigenstates which form the basis states (as
shown in [8]) |00 > ; |10 > ; |01 > and |11 > . She texts the result to Bethe as ‘00’, ‘10’, ‘01’
or ‘11’. Bethe then applies the appropriate 2 × 2 unitary matrix to the state supplied by the
network to turn it into the state |y0 > . For example, suppose the text message ‘01’ is sent,
travelling at the speed of light. When Bethe receives the message, she applies a matrix such
as U(01)−1 = U(01) = σ1, one of the Pauli spin matrices to convert her ‘travelled’ state
back to the original state. This general process is called quantum teleportation and forms a
key part of quantum computing.

3. The Homology Invariants of Space-Time

I now give a proof of the result (similar in spirit to Maldacena’s musings on the
connection between a quantum field and an anti-de Sitter space) that this transport from
node to node of the computational spin network is equivalent to the action of a sequence of
discrete relativistic translations of space-time from one node to the next neighbouring node.

Homology Invariants of the Network Structure

Homology is concerned with the classification of topological spaces through decom-
position of the space into geometric objects such as triangles, which tesselate the surface of
the structure, just as in the Regge theory. In Loop Quantum Gravity, this is closely related
to Rovelli’s idea of an area operator whose eigenvalues correspond to the discrete mea-
surement of area. For both these reasons we choose to focus on the homological invariants
of a computational spin network. From this analysis we will show that the ‘machinery’
of such algebraic approaches is fully available to us at this fundamental network level. It
allows us to develop the desired mathematical linkage between transport across nodes of
this spin network and discrete transitions in embedded space-time [8] (Chapter 2). The
contravariant dual to a homology is a cohomology. In a similar way the Gromov-Witten
invariants of string theory [12,13] exploit this machinery to provide a topologically based
classification of the landscape of Calabi-Yau topological manifolds.

Network nodes represent quantum computational gates. Following a suggestion
of references [14,15], I assume that the network topology is that of an evolving random
network, of class (n, pr) derived from a fixed probability pr of a link between two randomly
chosen nodes.

I now consider a computational spin network X defined as a finite quiver consisting of
a directed graph with a set of nodes n corresponding to entangled spin inputs and directed
links between these nodes, with an upper bound of n(n−1)

2 links. Percolation theory [16]
applied to this structure implies a critical value of pr denoted pc for which the network
becomes path connected. The value pr = 1 corresponds to a fully connected graph.

In the usual way, I can consider this graph as the skeleton of a simplicial tessellated
surface when embedded in a dimensioned topological space. For pc < pr ≤ 1 we have a
range of units of tessellation, including 3-simplexes (tetrahedra) and potentially higher
dimensional generalisations. We can use these basic properties to develop the structures,
including simplicial complexes, of an Eilenberg singular homology [17,18] associated with
a given computational spin network. I cannot in principle resolve the embedding space
into minimal subunits of space-time smaller than triangles (2-simplexes) with finite 1-
dimensional edges. I define such a topological space as a discrete embedding space. This is
consistent with increments of space and time which can be traded off against each other
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as part of a more fundamental unit; the space-time vector forming the 1-dimensional
boundaries of a triangular 2- simplex.

Given a dimensioned embedding of X, we assume that the resultant topological space
embdX is both finite dimensional and discrete in the sense discussed above. For the set of
p-simplexes ∆p

i forming part of the structure of our abstract computational network, we

can then define a set of embedding functions
{

ep
i : ∆p

i → embdX; p ≥ 2
}

. The p-simplex

∆p
i has p + 1 boundary faces, each forming a (p − 1)-simplex; and each of these has a lift

function f p−1
ij : ∆p−1

ij → ∆p
i ◦ f p−1

ij : ∆p−1
ij → embdX .

I define space-time in the Planck regime as this unique geometric embedding of the
singular homology induced by the computational spin network.

I now define, following the math, the boundary function ∂p, for p ≥ 2, acting on the
embedded p-simplex ∆p

i in terms of its p + 1 boundary surfaces as the alternating sum of
the boundary face embedding functions

∂p ◦ ep
i =

j=p

∑
j=0

(−1)jep
i ◦ f p−1

ij

The alternating sum definition ensures that the boundary of a boundary is trivial. This
enables the creation of the chain complex, defining the pth-homology module Hp as

Hp =
Ker∂p

Im∂p+1

If X and Y are elements of the same topological equivalence class, there is a homeo-
morphism ϕ : X → Y, with an inverse σ = ϕ−1 : Y → X. The boundary function on Y is
given by;

∂̂p = ∂p ◦ σ =
j=p

∑
j=0

(−1)j f p−1
ij ◦ σ

We now follow the Alexander-Kolmogorov (A-K) construct for a cohomology dual to
this homology. The topological invariant Cp consisting of elements of the form nie

p
i is the

freely generated abelian group on the set of all p-embeddings ep
i . Define HOM

(
Cp, T

)
to be

the set of all homomorphisms ϕ : Cp → T where T is the abelian translational subgroup of
the relativistic Poincare group. Following the A-K construct, HOM(∗, T) is a contravariant
functor transforming the homology chain complex into a cohomology chain complex. For
if ϕ ∈ HOM

(
Cp−1, T

)
, then ∂p(ϕ) ≡ ϕ ◦ ∂p ∈ HOM

(
Cp, T

)
.

Identifying embdX as tessellated space-time, let S be a step across the computational
spin network from one node to another. S is the vector sum of a set of minimal steps from
a node to some neighbouring node of the random network. Each such minimal step s is a
translation t from node n(k) to the node n(l) along the boundary edge of a p-simplex ∆p

i for
some value of p ≥ 2. Thus, we can choose a local homomorphism ϕ in the cochain complex
HOM

(
Cp−1, T

)
with ϕ(s) = t, with t an element of the relativistic abelian translational

group T. Gluing these local homomorphisms together gives us the desired mapping.
This result implies a fundamental characterisation of any high-energy physical process at the

Planck scale as equivalent to a quantum simulation inside a quantum computer.
A discrete path in space-time at the Planck scale, as we have so far generated it, can

be considered as a set of linked causally directed vectors in the embedding space of the
skeleton of an Eilenberg homology. Even more formally, we define the path as a series of n
linked increments a(j) each with varying direction within their local forward light cones,
such that the path begins at x(0) and ends at x(1), with T(a(j)) : x → x + a(j) elements of
the relativistic translation subgroup T. The total path is then generated by the ordered
product ∏

j=n
j=1 T(a(j))x(0) with the final end point x(1) = x(0) + ∑

j=n
j=1 a(j). For a fixed

initial point x(0) we can identify this path with the finite group product ∏
j=n
j=1 T(a(j)) ∈ T.
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If all the increments point in the same direction, and the local light cones have the same
orientation, one to another, this gives a straight path in space-time. If, however, the local
light cones are rotated one to another, then the path will be piecewise curved. The choice
of settings for the light cones constrains the trajectory of the resultant path in the same
way that the gravitational field in Einstein’s theory constrains a geodesic path between two
space-time events to be of the form

d2xτ

ds2 + Γτ
µν

dxµ

ds
dxν

ds
= 0

where, in Christoffel notation, Γτ
µν = {µν, τ}, the Christoffel symbol. For the quantum

case a reorientation of the locally compact light cones, resulting in a different curvature,
corresponds to an isomorphism between a path and a finite set of such orientations, one
for each node of our network.

The orientation of these locally compact light cones in classical space-time corresponds
to the definition of three angles; pitch, roll and yaw (θ, ϕ, ρ), as a function of time t. We can
capture these parameters by the general quaternion x = t + iθ + jϕ + kρ. For the quantum
case we can write this using the Dirac quantum quaternion matrices (so-called because
they satisfy the axioms of a Clifford algebra).

4. Discussion and Conclusions

I start this discussion from the reasonable assumption that space-time is granular in a
bubble universe of a size consistent with the Planck regime. From this beginning many
destinations are possible, including the Jones polynomials of knot theory. I focus in this
paper on the close relationship between a Regge tessellated space-time and an Eilenberg
homology allows me to define granulated space-time as the embedding space of the
skeleton of a computational spin network inside a quantum computer. This leads me to the
following conclusion, by following the math. I can define a fundamental characterisation of
any high-energy physical process at the Planck scale as equivalent to a quantum simulation
inside a quantum computer.
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