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Abstract: While black-box-based machine learning algorithms have high analytical consistency
in manufacturing big data analysis, those algorithms experience difficulties in interpreting the
results based on the manufacturing process principle. To overcome this limitation, we present
a Self-Adaptive Genetic Programming (SAGP) for manufacturing big data analysis. In Genetic
Programming (GP), the solution is expressed as a relationship between variables using mathematical
symbols, and the solution with the highest explanatory power is finally selected. These advantages
enable intuitive interpretation on manufacturing mechanisms and derive manufacturing principles
based on the variables represented by formulas. However, GP occasionally has trouble adjusting the
balance between high accuracy and detailed interpretation due to an incommensurable symmetry of
the solutions. In order to effectively handle this drawback, we apply the self-adaptive mechanism
into GP for managing crossover and mutation probabilities regarding the complexity of tree structure
solutions in each generation. Our proposed algorithm showed equal or superior performance
compared to other machine learning algorithms. We believe our proposed method can be applied in
diverse manufacturing big data analytics in the future.

Keywords: manufacturing big data analysis; genetic programming; self-adaptive genetic programming

1. Introduction

Big data analysis is making a huge impact on large-scale industries. Following the
release of a report on the impact of big data on the economy by McKinsey in 2011, big
data was selected as one of the five game changers that would give the United States an
opportunity for growth and re-leap in 2013. Utilizing big data analysis has meaningful
advantages in a variety of manufacturing industries such as production cost reduction,
productivity increase, company welfare improvement, and profit growth. McKinsey stated
that the GDP of the US would be increased to about $610 billion by 2020 through big data
technology. In this respect, many companies in the existing manufacturing industries that
have accumulated large amounts of data in production and supply chain management are
already taking advantage of big data [1].

With the strong potential of big data analysis, it can be applied to various industries.
Internet of Things (IoT) technology, for instance, is a new field for big data application
based on vast data of sensors attached to parts or finished products. The amount of daily
feed generated by Twitter is 80 GB, while the amount of data a single sensor on the wing of
a gas turbine engine manufactured by GE collects 520 GB per day, which is less than seven
times as much per day [2]. In addition, as many companies continue to sell software in
relation to manufacturing products, the service industry can also take advantage of big
data analysis on data such as the number of customers, cooperators, transaction frequency,
and others.

Large global manufacturing companies that have proclaimed the significance of big
data have already started to invest in big data analysis. As an example, GE achieved
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$45 billion in operating income in 2012 through automation in manufacturing, optimization
in production, reduction of facility downtime, and forecasting production failures [3]. Also,
Intel had employed big data-driven predictive analytics on expanding one chip production
line to another chip production line in 2013–2014. With a cost reduction of 3 million dollars
on one production line in 2012, Intel achieved an additional cost reduction of 30 million
dollars in 2014 [4]. The analysis of big data collected from the manufacturing environment
has promoted the efficiency and effectiveness of production in manufacturing industries.

In real business, despite knowing the significant advantage of big data analysis, it is
challenging to apply its methodologies and algorithms to the actual field, since they are
less likely to be explainable. In order to overcome the limitations of previous methods,
this study investigates an automatic programming based on evolutionary techniques (i.e.,
genetic programming: GP). By adding the self-adaptive method into GP, this paper aims
to achieve well-balanced interpretation and complexity of tree structure expression by
handling probabilities of genetic operators (i.e., crossover and mutation). Through four real
manufacturing data sets, we compare and analyze its performance with other analytical
algorithms. As a result, our proposed method showed equal or superior performances
compared to others.

The rest of this paper is organized as follows. Section 2 describes a brief overview of
well-known manufacturing big data analysis methodologies. The proposed algorithm is
presented in Section 3, and comparative studies are performed in Section 4. This paper
concludes with a brief summary in Section 5.

2. Literature Survey

This section explains big data analysis in the manufacturing field in detail through
various literature research. In general, big data analysis in the manufacturing industry is
divided into two methods: a classification method for selecting good or defective products
in production, and a prediction method on equipment status or product demand. Firstly,
the classification method is widely used in quality control, which is crucial for a company’s
credibility and the relationship with the customers in the market. Through classification
methods, it is possible to guarantee the quality of final products by determining whether the
product is good or not. In the case of prediction methods, the main goal is to secure continuous
and stable productivity by diagnosing precautionary measures for manufacturing facilities
through collecting real-time data. Prediction methods minimize the loss of opportunity cost
through the improvement of facility utilization rate based on predictive analysis of the facility
condition, and through the optimal replacement of parts in the periodic facility maintenance.
The next section describes big data analysis methods in detail.

2.1. Big Data Analysis Algorithms in Manufacturing Industries

In general, the main purpose of data analysis in manufacturing industries is to derive
meaningful information from various input and output data such as numbers, documents,
images, audio, and video. For instance, data analysis can be used for preventing defects in
advance through analysis on the cause of abnormalities for defective products. Before data
analysis, companies in the manufacturing industry performed periodic facility maintenance
which did not reflect the substantial conditions of the facility. In recent years, research
on productivity improvement through predictive facility maintenance has been actively
progressing through the analysis on the relationship among factors collectible in the facility.
Predictive analysis on product demand and inventory management can reduce unnecessary
storage and enable efficient resource management. Furthermore, big data analysis in
manufacturing industries plays the role of finding major factors for product defects through
quality assurance analysis. These advantages allow manufacturing companies to efficiently
manage the supply chain, as well as manufacturing processes, and to gain additional profit
in the production line. Representative machine learning algorithms below are used for
such analysis in manufacturing industries.
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Firstly, the stepwise linear regression is a method of linearly modeling the relationship
among variables when the dependent variable is numerical. When one explanatory variable
is used, it is called simple linear regression; and when two or more explanatory variables
are used, it is called multivariate linear regression. In stepwise linear regression, it is easy
to check the relationship between the dependent variable and the explanatory variable,
because it is described as a function of linear relationship. Yet, there is a limit to improving
accuracy because the algorithm only considers a linear relationship between the dependent
variable and the explanatory variable [5].

There are methods that supplement linear regression analysis. The Least Absolute
Shrinkage and Selection Operator (Lasso) regression method minimizes the sum of the
absolute values of weights and a constraint is added in order to find the appropriate
weight and bias from the linear regression. However, if there is a strong correlation among
variables, the algorithm has a characteristic that only one variable is adopted, and the
coefficients of other variables are changed to 0. This has a drawback of inferior accuracy as
information about the original data is lost [5]. Then, the Ridge regression model adds an
additional constraint to minimize the sum of squares of weights to the linear regression
model. The coefficient value can be reduced while utilizing all the variables. Even though
the explanatory variable increases in the regression model, the number of variables is
maintained as it is, and this affects the performance degradation [5]. The Elastic Net is a
combination of Lasso and Ridge regression methods. Elastic Net has both the absolute
value of the weight and the sum of squares as constraints. Here, when the input variables
are independently configured, Elastic Net first forms a group consisting of correlated
variables. If one of the variables in the group has a strong relationship with the dependent
variable, the entire group is included in the model. If all other variables belonging to the
same group but not one of the strong predictors are removed, information loss occurs in
the analysis, resulting in poor model performance [5].

In principal component regression, the independent variable is moved to a new
coordinate axis using principal component analysis. The relationship with the dependent
variables is analyzed using multiple regression using the compressed independent variable.
After the independent variable undergoes principal component analysis, several principal
components among the transformed coordinates are subjected to multiple regression as
independent variables [6]. In other words, regression analysis is performed by selecting
only the necessary principal components as independent variables through principal
component analysis. Here, the technique uses principal component analysis to solve the
problem of multiple collinearities, because highly correlated variables are composed of the
same principal component. If only the upper variables are selected among the principal
component variables transformed through the principal component analysis technique, a
normalization effect can be provided like the Lasso regression analysis, thereby reducing
the overfitting phenomenon of the model. On the contrary, each principal component
variable partially reflects the total influence of the actual independent variables, and
through this, it is impossible to grasp the influence of each condition, so it is impossible to
interpret the derived model.

There are three popular black-box-based machine learning techniques. First, the
Support Vector Machine (SVM) learns through dividing the data into two groups. By
measuring the distance between data in two groups, SVM finds the optimal hyperplane
from the center point [6,7]. If it can be divided by a straight line, a linear classification
model is applied; and if it cannot be divided by a straight line, a nonlinear classification
model is used. Although it is more accurate than other algorithms in binary classification
of the given data, SVM has the disadvantage of slow operation speed due to increasing
complexity depending on the size of the data set. Second, the Random Forest (RF) is an
algorithm that predicts or classifies based on the mode after making two or more decision
trees [8,9]. If only one decision tree is used, the probability of overfitting is high. In order
to solve this problem efficiently, one randomly constructs several trees, sees what results
each have, and collects the results of each tree to predict the results. This technique has
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high consistency in analysis. However, it is difficult to produce the same results repeatedly,
and it does not work well for high dimensional and sparse data, such as text data. Last, the
Neural Network (NN) is a statistical learning algorithm inspired by the biological neural
networks of animal brains, especially the brain in the central nervous system of animals.
NN refers to the overall problem-solving models that learns through artificial neurons
by changing the strength of synaptic bonding. Those models are specialized in solving
problems that are challenging to solve with rule-based programming, such as computer
vision or speech recognition [7,9–13].

2.2. Genetic Programming (GP)

In the case of linear regression analysis, it is possible to interpret the relationship
between manufacturing factors as a linear function, but there is a disadvantage that it
is impossible to interpret the nonlinear relationship between complex variables. Black-
box-based machine learning algorithms can derive highly consistent results. However,
it is difficult to explain the relationship among complex variables, that those algorithms
require demanding reinterpretation based on manufacturing principles. In order to resolve
these restrictions, this study employs the GP based predictive modeling method that
can formulate the relationship between input and output variables collected during the
manufacturing process [14].

GP is a probabilistic search algorithm which finds an optimal solution through a
global search on a population, based on natural selection or survival of the fittest of an
ecosystem [15,16]. It is a kind of a stochastic search algorithm. Natural selection or survival
of the fittest means that the chromosome of the dominant trait is transferred to the next
generation, and the gene of the recessive trait cannot be transferred to the next generation
and is left behind. This evolutionary algorithm includes a chromosome encoding, a fitness
function, and an operational process that evolves through these stages to obtain a final
convergent solution. The genetic operator consists of three operating processes: selection
or reproduction, crossover or mating, and mutation. GP used for manufacturing data
analysis explains the relationship between input and output variables in a tree structure. By
encoding the relationship among input variables using mathematical symbols, it gets more
feasible for intuitive interpretation. Here, mathematical operation symbols are assigned to
the root node and the middle node of the tree structure, and input variables are assigned to
the leaf nodes. Through this method of expressing the solution, it is possible to interpret
the result based on the manufacturing principle. This feature makes the analytical result
more capable to apply to the real manufacturing field. In Figure 1, the tree expression of
the chromosome describes coded mathematical symbols as (x4 + x5)−

(
x1 × x2

x3

)
.
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In order to secure the diversity of solutions, genetic operators play an important role.
Based on Darwin’s principle of survival of the fittest, the selection or reproduction operators
improve the average quality of the population by increasing the likelihood that high-
quality chromosomes are passed on to the next generation. The selection technique aims to
intensively search the area where the optimal solution exists on the solution-surface. In this
paper, many different chromosomes were selected from the population using tournament
selection without replacement, and the chromosome with the best fit was selected as
the parent chromosome for the next generation. Then, the crossover operator generates
offspring chromosomes with superior traits by exchanging partial chromosomes of two
parent chromosomes. In other words, the hybridization technique is a method to search
the solution-surface of a specific region where the possibility of the existence of an optimal
solution is high. In this paper, a hybridization method that does not depend on the location
of the gene is used. Regardless of the location of the genes of the two selected chromosomes,
a set of locus pairs of genes containing the same node (allele) is formed [15,16]. And the
mating operation of the proposed algorithm is illustrated in Figure 2. The last genetic
operator, mutation, mutates a gene on a chromosome to another allele to maintain the
genetic diversity of the population. The purpose of this operation is to prevent the GP from
converging to a quasi-optimal solution, and to search all solution-surfaces for the most
optimal solution. However, convergence and optimal performance may be poor when
a large number of chromosomes are mutated, because chromosomes may be randomly
distributed on the large solution-surface of the population. Mutation creates a modified
form of chromosome, which searches the solution-surface of a region that cannot be
reached by the existing population. Although the mutation behavior may slightly reduce
the convergence performance of GP, it alleviates the possibility of convergence to quasi-
optimal solution by preserving the genetic diversity of the population and by creating
new partial input variable relationships [15,16]. Figure 3 depicts the process of mutation
behavior. Due to these strengths of GP, we are able to discover explainable solutions in
big data sets of manufacturing industries. The solution expressed by the tree structure is
fairly intuitive for explaining the relationship between input and output variables. As the
generation evolves, the length of the tree will be much longer than previous generations,
because it generally tends to find solutions with higher accuracy.
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In the next section, we propose a manufacturing data analysis technique under a
new genetic programming with self-adaption for acquiring more explainable and accurate
solutions in high-dimensional manufacturing data. The main operation in our proposed
method is to manage the probabilities of crossover and mutation; that is, the length of each
solution. Our method overcomes the limitations of previous manufacturing data analysis
methods that cannot interpret the analysis results profoundly.

3. Self-Adaptive Genetic Programming (SAGP)

In principle, we propose a predictive analysis method for manufacturing big data
using the newly designed self-adaptive genetic programming (SAGP) that follows all GP
procedures described in Section 2.2. The main purpose of SAGP is to effectively improve
the lack of explanatory power on the result of the analysis algorithm and manufacturing
mechanism. In general, black-box-based algorithms are impossible to describe the relation-
ship among the given variables; therefore, they require demanding reinterpretation based
on manufacturing principles. In order to deal with these constraints, this paper utilizes GP
based predictive modeling method that can formulate the relationship between input and
output variables collected during the manufacturing process. However, GP makes the anal-
ysis between the features of the data difficult due to the symmetric characteristics. In other
words, the tree structured solutions of GP become more complicated to achieve solutions
with higher accuracy through evolution stages [17–23]. In order to achieve symmetrically
balanced solutions between high accuracy and high interpretation, this paper applies the
self-adaptive technique into GP, named SAGP. It mainly aims to mitigate the complexity of
tree expression by managing the probabilities of genetic operators such as crossover and
mutation in each generation. It is operated by comparing the previous and current length
of tree expressions. First, there is the newly designed probability of crossover defined as

Probcrossover = 0.9− 0.15× Lengtht−1

Lengtht
(1)

where Lengtht−1 is the previous average length of solutions and Lengtht is the current average
length of solutions. The maximum probability of crossover is set to 0.75 when the value of
0.15× Lengtht−1

Lengtht
is greater than 0.9. As comparing the lengths of previous and present solutions,

it is able to achieve better interpretation with a more suitable length of tree expression in the
generation. Last, there is the redesigned mutation probability defined as

Probmutation = 0.5− 0.35× Lengtht−1

Lengtht
(2)

where Lengtht−1 is the average length of previous solutions and Lengtht is the average
length of current solutions. The maximum probability of mutation is set to 0.15 if the
value of 0.35× Lengtht−1

Lengtht
is greater than 0.5. With self-adapted probabilities of crossover and

mutation, the proposed method achieved various and superior solutions.
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Next, Figure 4 explains the manufacturing big data analysis method employing the
proposed algorithm. The big data collected at the manufacturing site is converted into input
and output variables through data preprocessing. Then, SAGP algorithm is used to derive
a solution representing the relationship of optimal variables by utilizing the tree expression.
This can be applied in the actual field through analysis based on manufacturing principles.
In addition, it is possible to derive manufacturing principles that could not be interpreted
in the past through other analysis methods. In the next section, we compare and verify the
performance of machine learning algorithm-based data analysis methods and the proposed
SAGP application analysis method using four types of actual manufacturing data.
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4. Comparative Results

In this section, we compare and analyze the performance of the proposed self-adaptive
genetic programming (SAGP) application analysis method and other representative ma-
chine learning algorithm analysis methods using four actual manufacturing data sets. For
performance evaluation, the difference between the predicted value and the measured
value is estimated using the mean squared error. Also, 80% of the total data is used as
training data and the remaining 20% of the total data is used as test data to verify the
performance of the analysis methods. In addition, by repeating the experiment 100 times
under the same conditions, we intend to secure statistical confidence in the results by
utilizing the mean value, standard deviation, and quartile of the repeated experiment. At
first, in GP and SAGP, the size of a population and the generation are set to 1000×

√
Dim

and 10×
√

Dim, respectively. Then, the set of function is defined with {+,−,×,÷, log}. In
case of GP, the crossover and mutation are fixed by 0.9 and 0.01. To inspect the performance
comparisons, Lasso, Ridge, and Elastic Net algorithm used the optimal normalization
method for penalty term control. Support Vector Machine (SVM) used the data normal-
ization of Z-Score (mean = 0 and standard deviation = 1). For Random Forest (RF), the

number of variables in each node was set to
√

Dim
3 and the number of trees to create was

defined as 500. Neural Network (NN) employed the min-max normalization
(

value−min
max−min

)
.

In NN, the number of hidden nodes is set to 1.5× inputs and the maximum iterations are
set to 100×

√
Dim, respectively.

The details of the experiment are as follows. We used PC equipped with an Intel(R)
Core (TM) i7 6700, 340 Hz CPU and 32 GB RAM. GP and SAGP were experimented with
codes written in Python, and the rest of the algorithms were experimented with codes
written in R [9]. Meanwhile, the time complexity of GP, one of meta-heuristic algorithms
for searching global optimal solution, cannot be determined because it does not guarantee
the global optimal solution within a given time limit. However, we carefully speculate that
the average-case complexity of SAGP will be lower than the average-case complexity of
GP due to adjusting probabilities of genetic operators (i.e., crossover and mutation). Big
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data analysis, especially in the manufacturing industry, extracts meaningful values from
large amounts of structured, or unstructured, data sets. For all data sets used in this study,
performance was verified by converting unstructured data into structured data through
various data preprocessing processes.

4.1. Auto MPG Data Set Simulation Result

The first dataset we used is the Auto MPG Data, which was first introduced in 1983
by American Statistical Association Exposition. The cycle fuel consumption (mpg cylinder)
is used as an output variable with a total of 6 input variables including 3 discrete variables
(cylinder, horsepower, model, year) and 3 continuous variables (displacement, weight,
acceleration). The given data consists of a total of 398 rows, but the performance is verified
using only 391 rows through data preprocessing that eliminates missing data [24,25].
Figure 5 shows the distribution of input and output variables and the degree of correlation
between variables. Here, the output variable of mpg, has a positive/negative correlation
with all input variables, and the correlation exists among input variables. Table 1 shows
that all genetic programming application analysis method and black box-based machine
learning techniques (SVM, RF, NN) showed outstanding performance, and the regression
analysis algorithms showed low consistency. It is possible to confirm the limitation of
the regression analysis technique in real data which has complex relationships among
variables. Equations derived from each algorithm are described in Table 2.
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Table 1. Simulation Result of Auto MPG Data Set.

LR Lasso Ridge Elastic PLS SVM RF NN GP SAGP

Mean 13.28 13.24 13.79 13.28 18.9 8.32 8.23 12.40 7.48 6.83

Std 1.32 1.35 1.48 1.37 1.85 1.3 1.19 2.82 1.3 1.54

Q0 9.33 9.16 9.39 9.2 14.51 5.73 6.14 7.16 4.94 4.8

Q1 11.47 11.46 11.83 11.53 18.06 7.47 7.69 10.28 6.06 6.24

Q2 12.17 12.02 12.51 12.06 19.04 8.3 8.39 11.97 6.84 6.83

Q3 13.13 13.19 13.69 13.15 20.27 9.34 9.33 14.26 7.45 7.77

Q4 17.48 17.38 17.26 17.32 25.85 12.3 12.14 19.68 11.92 14.86

95% CI
(Lower) 13.02 12.98 13.5 13.02 18.54 8.06 8.00 11.84 7.22 6.53

95% CI
(Upper) 13.54 13.51 14.08 13.55 19.26 8.58 8.46 12.95 7.73 7.13

95% CI 0.52 0.53 0.58 0.53 0.72 0.51 0.46 1.11 0.51 0.60

Table 2. Example of Performance Results.

LR MPG=−11.24−0.01×Weight+0.72×ModelYear

Lasso MPG =
−11.30+ 0.01×HorsePwr− 0.01×Weight+ 0.01× Acceleration+ 0.71×ModelYear

Ridge MPG = −9.32− 0.36× Cylinders− 0.01× Displacement + 0.01× HorsePwr−
0.01× Acceleration + 0.66×ModelYear

Elastic MPG = −11.55 + 0.01× HorsePwr− 0.01×Weight + 0.02× Acceleration +
0.71×ModelYear

GP
MPG = (Cylinders + Accleration)×
{Cylinders− log(log(log(ModelYear)× HorsePwr)) + Displacement)} ×(

Cylinders+ModelYear
Cylinders×Displacement

)
SAGP MPG = Cyliners +

(
HorsePwr×ModelYear

0.007×Horse2
Pwr×Cylinders+1

)

4.2. Combined Cycle Plant Data Set Simulation Result

The second data we employed is the Combined Cycle Plant Data consisting of the
hourly electrical energy output (PE) of the combined cycle power plant over the period
2006–2011, and the average ambient temperature (AT), ambient pressure (AP), relative
humidity (RH), and evacuation vacuum (V) [24,26]. Figure 6 shows the distribution of
input and output variables as well as the degree of correlation among variables. Here, the
energy output variable has strong negative correlations of −0.95 and −0.87 with average
ambient temperature and exhaust vacuum; and positive correlations of 0.52 and 0.39
with ambient pressure and relative humidity. In addition, the time-averaged ambient
temperature variable has various positive or negative correlations with the remaining
input variables. In Table 3, the black box-based machine learning technique (SVM, RF,
NN) showed the best performance compared to the genetic programming-based analysis
algorithm, while linear, Lasso, and Elastic net regression methods showed high consistency.
Equations derived from each algorithm are described in Table 4.
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Table 3. Simulation Result of Cycle Plant Data Set.

LR Lasso Ridge Elastic PLS SVM RF NN GP SAGP

Mean 22.36 22.32 24.82 22.32 60.3 17.53 13.22 17.02 35.16 29.31

Std 0.49 0.48 0.55 0.48 1.42 0.49 0.45 0.28 3.09 3.05

Q0 19.76 19.77 23.03 19.78 55.98 15.08 11.02 16.36 25.79 28.17

Q1 20.58 20.58 23.64 20.57 59.49 16.00 11.77 16.84 31.39 32.24

Q2 20.85 20.86 24.02 20.87 60.17 16.33 12.09 17.01 33.75 33.94

Q3 21.27 21.27 24.42 21.29 61.07 16.64 12.4 17.18 35.71 35.50

Q4 22.36 22.32 25.54 22.32 64.03 17.53 13.22 17.79 40.91 41.75

95% CI
(Lower) 22.26 22.23 24.72 22.22 60.02 17.43 13.14 16.96 34.55 28.71

95% CI
(Upper) 22.45 22.42 24.93 22.41 60.58 17.62 13.31 17.07 35.76 29.91

95% CI 0.19 0.19 0.21 0.19 0.56 0.19 0.17 0.11 1.21 1.20

Table 4. Example of Performance Results.

LR PE=455.14−1.98×AT−0.23×V+0.06×AP−0.16×RH

Lasso PE = 455.14− 1.98× AT − 0.23×V + 0.06× AP− 0.15× RH

Ridge PE = 455.14− 1.40× AT − 0.40×V + 0.23× AP− 0.05× RH

Elastic PE = 448.99− 1.95× AT − 0.24×V + 0.07× AP− 0.15× RH

GP
PE = −(0.774− AP)× log(0.772)−

AP/ log
(

AP
−0.981×V − (0.774 + AP)× AP + log(0.774 + AP)

)
− 0.774× (RH + 0.378)

−log(−(0.774 + AP)× (logRH −V))

SAGP PE =
(

RH + AP
AT

)
− (0.774 + AP)× log(0.702)− 0.019

0.981 ×V
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4.3. CPU Perfoemance Data Set Simulation Result

The CPU Performance data consists of total 6 integer input variables including Ma-
chine cycle time (MYCT), minimum main memory (MMIN), maximum main memory
(MMAX), cache memory (CACH), minimum channels in units (CHMIN), maximum chan-
nels in units (CHMAX) in order to predict the dependent variable, estimated relative
performance (ERP) [24,27]. Figure 7 shows the distribution of input and output variables,
and the mean is skewed to the left in all variables. There is a positive correlation of 0.82,
0.90, 0.65, 0.61, and 0.59 between the predictor variable (ERP) and the input variables
MMIN, MMAX, CACH, CHMIN, and CHMAX, respectively. In addition, only the MYCT
variable has a negative correlation with all other variables, whereas all other variables have
a positive correlation reciprocally. Table 5 shows the results of comparing the data-based
performance. The genetic programming-based analysis showed the best performance, and
the black-box-based machine learning technique, Random Forest, showed the second-best
performance. Regression analysis showed significant performance, but SVM showed the
lowest consistency. In the case of integer data, SVM may have limit in securing consistency.
Among representative machine learning techniques on actual manufacturing data, the
difference in performance occurs according to the complexity of the data. In general, the
black-box-based machine learning technique, Random Forest, showed excellent perfor-
mance. However, since the analysis result lacks explanatory power for derivation, an
additional manufacturing process-based analysis process is required in order to apply
to the actual manufacturing field. In addition, for data with a linear relationship, the
regression analysis technique showed outstanding performance, but the analysis results are
derived with linear equations that the explanatory power is monotonous. However, linear
equations show significant consistency with respect to the linear or nonlinear analysis
results. Equations derived from each algorithm are described in Table 6.
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Table 5. Simulation Result of CPU Performance Data Set.

LR Lasso Ridge Elastic PLS SVM RF NN GP SAGP

Mean 8917.41 8781.47 8581.84 8766.61 6360.73 13,783.18 7424.47 30,523.62 2629.84 1637.18

Std 2822.74 2779.28 2741.89 2787.66 2413.88 8311.6 4717.28 11,305.88 1677.42 1583.52

Q0 1811.6 1752.54 1645.4 1720.66 2928.26 1227.97 638.22 1024.10 892.00 892.00

Q1 4147.05 4206.36 3932.02 4124.51 5563.24 5002.22 1576.33 21,434.54 1902.12 2086.18

Q2 5376.54 5522.51 5306.33 5489.76 6523.14 10,947.52 3444.87 31,349.62 2746.01 2545.12

Q3 6855.99 6785.07 6905.27 6736.14 7788.72 17,058.42 6815.02 36,768.88 4024.56 3976.83

Q4 14,367.02 14,390.59 14,853.25 14,967.82 15,519.83 36,188.42 20,530.4 54,896.24 8326.26 8785.96

95% CI
(Lower) 8364.15 8236.73 8044.43 8220.23 5887.61 12,154.11 6499.89 28,307.66 2301.06 1326.81

95% CI
(Upper) 9470.67 9326.21 9119.25 9319.99 6833.85 15,412.26 8349.06 32,739.57 2958.61 1947.55

95% CI 1106.52 1089.48 1074.82 1099.76 946.24 3258.15 1849.17 4431.91 657.55 620.74

Table 6. Example of Performance Results.

LR ERP=−59.82+0.05×MYCT+0.01×MMIN+0.01×MMAX+0.59×CACH+1.41×CHMAX

Lasso ERP =
−58.04+ 0.05×MYCT + 0.01×MMIN + 0.01×MMAX + 0.58×CACH + 1.39×CHMAX

Ridge ERP = −59.82 + 0.05×MYCT + 0.01×MMIN + 0.01×MMAX + 0.58× CACH + 0.91×
CHMIN + 1.33× CHMAX

Elastic ERP = −54.80 + 0.04×MYCT + 0.01×MMIN + 0.01×MMAX + 0.57× CACH + 0.03×
CHMIN + 1.37× CHMAX

GP ERP = CHMAX/
(

CHMIN2

2CACH2+log(log(MYCT)) + 1
)
+ (1.967)×MMIN

SAGP ERP = CACH + MMIN
CHMIN+MYCT + 2× CHMAX

4.4. Real Manufacuring Process Data Set Simulation Result

In general, data collected and utilized in the manufacturing process is composed of
multidimensional input data. However, it is difficult to intuitively analyze the relationship
between various factors. To solve this problem, a preliminary analysis is performed on
collected data based on the domain knowledge of the manufacturing process, but it is still
almost impossible to analyze the relationship between factors. Also, classification and
prediction analysis were not so different that the results were barely available for inter-
pretation on the relationship between factors. The main difficulty is that it is implausible
to derive an accurate result through classification or prediction based on the performed
analysis. This section attempts to verify the performance of the algorithm by using 20
process factors and quality result data collected from a specific manufacturing company.
Detailed explanations on the data, however, are excluded due to security issues in the
manufacturing process of the company that provided the data. (see Figure 8)
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The performance of each company was verified for a total of 20 process factors affecting
the main quality factors. In Table 7, our proposed technique shows superior performance
compared to regression analysis methods and SVM, while it showed poor performance
compared to RF. Here, in the case of RF, there is a disadvantage that it is impossible to
interpret the results derived by the black-box-based machine learning algorithm. However,
in the case of our proposed algorithm, it is possible to analyze the relationship between the
key quality factors and 20 process factors. It can classify factors that have high influence
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and analyze the relationship among factors. The equations derived from each algorithm
are described in Table 8.

Table 7. Simulation Result of Real Manufacturing Process Data Set.

LR Lasso Ridge Elastic PLS SVM RF NN GP SAGP

Mean 1.29 1.21 1.31 1.22 1.17 1.53 1.02 3.92 1.82 1.18

Std 0.12 0.12 0.12 0.12 0.11 0.14 0.09 0.80 0.26 0.26

Q0 1.08 1.06 1.14 1.04 1.07 1.37 0.83 2.59 1.06 1.08

Q1 1.40 1.36 1.43 1.37 1.31 1.60 0.98 3.34 1.43 1.44

Q2 1.49 1.43 1.49 1.44 1.36 1.71 1.03 3.91 1.58 1.60

Q3 1.55 1.51 1.57 1.51 1.45 1.80 1.09 4.33 1.76 1.77

Q4 1.89 1.77 1.83 1.82 1.69 2.07 1.24 6.23 2.39 2.33

95% CI
(Lower) 1.27 1.19 1.29 1.19 1.15 1.50 1.01 3.76 1.77 1.13

95% CI
(Upper) 1.31 1.24 1.34 1.24 1.2 1.56 1.04 4.07 1.87 1.23

95% CI 0.04 0.05 0.05 0.05 0.05 0.06 0.03 0.31 0.10 0.10

Table 8. Example of Performance Results.

LR
CTQ=0.103−0.096×Para3−0.159×Para5+0.495×Para7−0.126×Para8
+0.274×Para9−0.159×Para10+0.214×Para13+0.295×Para17
+0.106×Para18

Lasso CTQ = 0.144− 0.002× Para2 − 0.078× Para5 + 0.488× Para7 − 0.017× Para8 + 0.264× Para9 −
0.090× Para10 + 0.118× Para13 + 0.256× Para17 + 0.013× Para18

Ridge

CTQ = 0.148 + 0.056 × Para1 + 0.0722 × Para2 − 0.080 × Para3 + 0.033 × Para4 − 0.153 × Para5
− 0.024 × Para6 + 0.425 × Para7 − 0.118 × Para8 + 0.291 × Para9 − 0.151 × Para10
− 0.47 × Para12 + 0.187 × Para13 − 0.004 × Para14 − 0.051 × Para15 − 0.090
× Para16 + 0.330 × Para17 + 0.098 × Para18 + 0.044 × Para19 − 0.049 × Para20

Elastic
CTQ = 0.139 + 0.028 × Para2 − 0.029 × Para3 − 0.105 × Para5 + 0.469 × Para7 − 0.054 × Para8 +
0.272 × Para9 − 0.116 × Para10 + 0.147 × Para13 − 0.032 × Para16 + 0.286
× Para17 + 0.047 × Para18

GP CTQ = (0.611 + Para6)× 0.704

SAGP CTQ = (0.347 + Para6)× 0.704

5. Conclusions

In this study, we propose a genetic programming-based analysis method to overcome
the limitations of the black-box-based machine learning algorithms. Existing machine
learning algorithms have high predictive consistency, but especially in the manufacturing
industry, it is important to verify the basis of the results and the validity of derivation
through analysis based on the manufacturing process principle. In the case of our proposed
analysis method, intuitive analysis based on manufacturing principles is plausible through
formulating the relationship of input and output variables. It is also possible to derive
manufacturing principles that could not be interpreted in the past, by using the analysis
result which formulates the input and output variables. As a result, SAGP showed excellent
performance on manufacturing data compared to other analysis methods and machine
learning algorithms. Nevertheless, our proposed method did not search for the optimal
tree depth according to the problem size. Further studies on finding the optimal tree depth
will enhance the performance of our proposed method, as the length of tree depth seriously
affects the symmetry between interpretation and accuracy of tree expression. In the future,
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we plan to conduct further research on improving the explanatory power and analytical
consistency for manufacturing big data analysis.
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