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Abstract: Dynamic models, such as double pendulums, can generate similar dynamics as human
limbs. They are versatile tools for simulating and analyzing the human walking cycle and perfor-
mance under various conditions. They include multiple links, hinges, and masses that represent
physical parameters of a limb or an assistive device. This study develops a mathematical model
of dissimilar double pendulums that mimics human walking with unilateral gait impairment and
establishes identical dynamics between asymmetric limbs. It introduces new coefficients that cre-
ate biomechanical equivalence between two sides of an asymmetric gait. The numerical solution
demonstrates that dissimilar double pendulums can have symmetric kinematic and kinetic outcomes.
Parallel solutions with different physical parameters but similar biomechanical coefficients enable
interchangeable designs that could be incorporated into gait rehabilitation treatments or alternative
prosthetic and ambulatory assistive devices.

Keywords: human motion; dynamic models; impaired gait; asymmetric walking; mathematical
modulation

1. Introduction

Human walking is a complex dynamical system. It involves many internal forces and
torques that are applied through multiple muscles and joints to create a desired walking
trajectory. Developing mathematical models of human walking can play a critical role in
discovering new possibilities for healthcare, rehabilitation, and testing many configurations
that may not be possible in real experiments [1,2].

Gait is affected by both internal and external factors. The internal factors include
parameters such as limb lengths and distribution of mass in the musculoskeletal system.
The external factors can also significantly affect the walking performance, such as the slope
of the ground, assistive devices, or external stimuli.

Dynamic models are mechanisms that convert kinetic and potential energy to each
other in order to create movement. This mechanism is similar to human walking, where the
locomotion is the result of moving the center of gravity (CG) of the body while conserving
the maximum amount of energy and with minimum displacement of CG in vertical or
lateral direction [3]. Dynamic models have been developed in multiple shapes and forms.
Their flexible structure could include different point masses, rigid bodies, additional links,
dampers, and joints, making them a versatile tool in modeling human limb movements as
well as robotic limbs. They typically include two or more connected links or pendulums
with point masses and are capable of creating a periodic motion.

There are wide ranges of designs for dynamic models from Passive Dynamic Walkers
(PDW) to motorized inverted pendulums. In most cases, the system is first developed
and solidified, and then the resultant kinematic and kinetic performance is simulated.
Adjustments to the system are only limited to external factors such as external torques,
the slope of the ground, or initial conditions. Moreover, the majority of the dynamic
models focus on symmetric systems that only imitate healthy gait. Dynamic models have a
vast potential to improve our understanding of impaired walking patterns. Furthermore,
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studying the effects of internal parameters of dynamic models can help answer unknown
aspects of disabled gait and improve designs of prosthetics or rehabilitation techniques.
Many rehabilitation methods use added weight to one side in order to retrain gait in a
symmetrical pattern [4,5]. Finding the optimal distribution of weight in the design of a
prosthetic leg can also help create similar dynamics as the healthy leg [6,7].

The two legs of an impaired gait can be considered as two dissimilar double pendulum
systems (Figure 1), where each system typically has a different trajectory leading to an
asymmetric pattern between the steps. In this research, we hypothesize that two double
pendulums with different physical parameters can have identical dynamic (motion tra-
jectories and internal forces) outcomes. In other word, inherently asymmetric (dissimilar)
double pendulum systems can be kinetically and kinematically matched. This research
aims to determine the requirements for perfect symmetry in asymmetric systems.
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the performance of bipedal robotics, and create mechanisms (such as controllers) that im-
prove walking. Xiang et al. [8] summarized all these methods into five categories, includ-
ing pendulums, passive dynamic walkers, zero-momentum-point, optimization-based, 
and control-based. The authors derived the conclusion that the first three methods can be 

Figure 1. Dynamic model of an asymmetric human gait with double pendulums: (a) Modeling of an impaired gait with two
different double pendulum systems; (b) different mass distributions on each leg represented by mpros for the prosthetic side
and m f ooti for the healthy side with i = {1a, 1b, 2a, or 2b}. The hypothesis in this study evaluates whether the two different
legs can be made to move symmetrically.

To test the hypothesis, we first rederive and extend the equations of motion for a
double pendulum with various walking events. We use the mathematical equations to
introduce a new set of coefficients that determine the biomechanical equivalence between
any two systems. The effects of changing physical parameters (such as weight, link length,
and center of mass) on these coefficients are studied. Then, we numerically calculate a
grouping of systems with similar coefficients and therefore similar kinematics and/or
kinetic performance.

2. Background

Reviewing the field of simulating human walking reveals different physical-based
methods that have been developed to better understand the walking dynamics, optimize
the performance of bipedal robotics, and create mechanisms (such as controllers) that
improve walking. Xiang et al. [8] summarized all these methods into five categories,
including pendulums, passive dynamic walkers, zero-momentum-point, optimization-
based, and control-based. The authors derived the conclusion that the first three methods
can be more efficiently used for robotic motions while the two latter can better simulate the
complexity of human walking [8].
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However, double pendulum systems have shown great potential for simulating hu-
man motions [9–14]. Simple models with even linear equations of motion can create
trajectories similar to human walking and with reasonable accuracy [9]. The presence
of gait parameters in the equations improves our understanding of physical movements.
Dynamic models also provide a flexible foundation for simulating human walking, where
a model outcome can improve through easily upgrading the original equations by adding
extra masses to the links or putting external forces to different joints.

While the behavior of a healthy symmetric gait has been studied through symmetric
dynamic models, very few of them have been developed to simulate a pathological gait
trajectory with asymmetry [15–18]. One of the limited studies in this area is Asymmetric
Passive Dynamic Walkers (APDW) [17,18]. The two-link APDW simulation indicated stable
and periodic behavior up to 5% change in the mass and length ratios between the two
links [18]. The APDW, with the addition of the knee, was able to walk with a stable pattern
over a slope with up to 15% asymmetry between the two links [17]. The follow-up research
demonstrated a simulation of lighter prosthetic legs with an asymmetric proportion from
the healthy leg that produced a symmetric walking trajectory [6]. Comparing the simulation
result with human experiments with asymmetric gait (adding extra weight to one leg)
indicated a similar pattern and Ground Reaction Forces (GRF) between the model and
human data [19].

However, achieving a symmetric trajectory within an asymmetric dynamic model
is not possible with every configuration. Handžić et al. [20] demonstrated that having
only one mass on each link of a double pendulum system couples the moments of inertia.
Therefore, any change in the system parameters would mean a change in the motion
trajectory or force reactions since not enough parameters (masses, moments, or moments
of inertia) exist to compensate for the change. However, adding a second point mass to
each link creates an underdetermined system that would allow for a change in parameters
without a change in kinematics. The authors derived kinematically matched coefficients
(KMC) that determine for kinematically matching systems.

Dissimilar systems yielding similar motion can have a hugely beneficial effect in
our understanding of pathologic limb movements and consequently, the rehabilitation of
the asymmetric gait. Prosthetic limb users, crutch walkers, and stroke survivors all have
asymmetrical movements and can benefit from the alternative gait pattern that produces
symmetric motions. In this research, we analyze the motion of double pendulum systems
under different conditional constraints and study both the kinetic and kinematic outcomes.

This research develops on the KMC concept and extends it to include human-like
events such as ground strike and knee-lock. It also investigates the kinetic outcomes of
dissimilar systems and introduces new sets of coefficients for a comprehensive analysis.
The goal of the current research is to answer the research question of whether “kinematic
and kinetic symmetry can be achieved within an inherently asymmetric system?”

3. Mathematical Modeling

In this section, we rederive kinematic and kinetic equations of a double pendulum
system. The double pendulum has four masses (two per link) with hinge joints at the top
(hip) and between the two links (knee). Figure 2 shows the double pendulum parameters,
including mass locations, links lengths, and the angle of each link at a given time. Two
local polar coordinate systems were attached at the hinge of each link.



Symmetry 2021, 13, 705 4 of 21
Symmetry 2021, 13, 705 4 of 20 
 

 

 
Figure 2. Double pendulum system with four masses. Each link includes two masses at different 
locations. The top and bottom links replicate shank and thigh motion, respectively. The top and 
middle hinges represent hip and knee joints, respectively. 

3.1. Kinematic Measurments 
In order to derive the equations of motion using Lagrangian mechanics, total kinetic, 

and potential energies of the system are calculated.  and  are the angle of the first link 
with vertical line and the angle of the second link with the first link, respectively.  and 

 are the angular velocities with respect to time.  and  are the angular accelerations. 
Step-by-step details of calculating the equations of motion are depicted in Appendix A. 

Calculating Lagrange’s equations for the variables of the system and reorganizing 
the order of parameters will result in two equations of motion as Equations (1) and (2): [ + ( + ) + ( + + 2 cos ) + (+ ( + ) + 2 ( + ) cos )]+ [ ( + cos ) + (( + ) + (+ ) cos ]− 2[ sin + ( + ) sin ]− [ sin + ( + ) sin ]+ [ + ( + ) + + ] sin+ [ + ( + )] sin( + ) = 0 

(1) 

[ ( + cos ) + ( + )( + + cos )]+ [ + ( + ) ]+ [ sin + ( + ) sin ]+ [ + ( + )] sin( + ) = 0 

(2) 

Nine ( , , , , , , , , ) out of the ten physical parameters with the 
exception of  are used in the derivation of Equations (1) and (2). However, when the 
equations are reorganized, only a limited number of combinations of these parameters 
show up. Here, we define five new coefficients for replacing the physical parameters in 
Equations (1) and (2) using the KMCs developed in [20,21]. These combinations are shown 
in Equations (3)–(7). , , , , and  represent new combinations of parameters. =  + ( + )  (3) =  [ + ( + )] ×  (4) =  + ( + ) (5) 

Figure 2. Double pendulum system with four masses. Each link includes two masses at different
locations. The top and bottom links replicate shank and thigh motion, respectively. The top and
middle hinges represent hip and knee joints, respectively.

3.1. Kinematic Measurments

In order to derive the equations of motion using Lagrangian mechanics, total kinetic,
and potential energies of the system are calculated. θ1 and θ2 are the angle of the first link
with vertical line and the angle of the second link with the first link, respectively.

.
θ1 and

.
θ2 are the angular velocities with respect to time.

..
θ1 and

..
θ2 are the angular accelerations.

Step-by-step details of calculating the equations of motion are depicted in Appendix A.
Calculating Lagrange’s equations for the variables of the system and reorganizing the

order of parameters will result in two equations of motion as Equations (1) and (2):

[m1al2
1a + m1b(l1a + l1b)

2 + m2a(l2
1 + l2

2a + 2l1l2a cos θ2) + m2b(l2
1

+(l2a + l2b)
2 + 2l1(l2a + l2b) cos θ2)]

..
θ1

+[m2a(l2
2a + l1l2a cos θ2) + m2b((l2a + l2b)

2 + l1(l2a

+l2b) cos θ2]
..
θ2

−2[m2al1l2a sin θ2 + m2bl1(l2a + l2b) sin θ2]
.
θ1

.
θ2

−[m2al1l2a sin θ2 + m2bl1(l2a + l2b) sin θ2]
.
θ

2
2

+[m1al1a + m1b(l1a + l1b)+m2al1 + m2bl1]g sin θ1
+[m2al2a + m2b(l2a + l2b)]g sin(θ1 + θ2) = 0

(1)

[m2al2a(l2a + l1 cos θ2) + m2b(l2a + l2b)(l2a + l2b + l1 cos θ2)]
..
θ1

+[m2al2
2a + m2b(l2a + l2b)

2]
..
θ2

+[m2al1l2a sin θ2 + m2bl1(l2a + l2b) sin θ2]
.
θ

2
1

+[m2al2a + m2b(l2a + l2b)]g sin(θ1 + θ2) = 0

(2)
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Nine (m1a, l1a, m1b, l1b, m2a, l2a, m2b, l2b, l1) out of the ten physical parameters with the
exception of l2 are used in the derivation of Equations (1) and (2). However, when the
equations are reorganized, only a limited number of combinations of these parameters
show up. Here, we define five new coefficients for replacing the physical parameters in
Equations (1) and (2) using the KMCs developed in [20,21]. These combinations are shown
in Equations (3)–(7). a, b, d, e, and f represent new combinations of parameters.

a = m2al2
2a + m2b(l2a + l2b)

2 (3)

b = [m2al2a + m2b(l2a + l2b)]× l1 (4)

d = m2al2a + m2b(l2a + l2b) (5)

e = m1al1a + m1b(l1a + l1b) + (m2a + m2b)l1 (6)

f = m1al2
1a + m1b(l1a + l1b)

2 + (m2a + m2b)l2
1 (7)

The equations of motions can be rewritten as:[
f + a + 2b cos θ2 a + b

a + b cos θ2 a

][ ..
θ1..
θ2

]
−
[

0 b sin θ2
b sin θ2 0

][ .
θ1

2
.
θ2

2

]

−
[

b sin θ2 b sin θ2
0 0

][ .
θ1

.
θ2.

θ2
.
θ1

]
+

[
g(e sin θ1 + d sin(θ1 + θ2)

gd sin(θ1 + θ2)

]
= 0

(8)

Equation (8) represents the kinematic motion of a double pendulum with two point-
masses on each link at any given time. Further details of this analysis can be found
in [20,21]. To represent the straight leg system with the knee hinge locked, θ2 is set to
zero which results in a single pendulum system with four masses. This single pendulum
system can partially be derived from Equation (8), but also needs to consider the Lagrange
equations of motion. The first Lagrange equation described above is determined by taking
the derivative with respect to θ1 and the second includes the derivation with respect to
θ2. θ1 continues to represent the hip angle; however, θ2 represents a locked knee with a
constant value. For the single pendulum using the above double pendulum model, θ2 and
the corresponding derivatives need to be set to zero, which means the system only has one
degree of freedom. Thus, there is no second variable to use in a second Lagrange equation
of motion. Even if the derivative was taken with respect to θ2, all of the terms would go to
zero because θ2 does not appear (i.e., it is set to zero). Thus, the second row in Equation (8)
does not have meaning nor a mathematical basis in the single pendulum system. Therefore,
the first row in Equation (8) is the only equation of motion for a single pendulum with
four mass system. Equation (9) can be derived by either setting θ2 = 0 in the first row of
Equation (8) or by deriving from the Lagrange equation:

( f + a + 2b)
..
θ1 + g(e + d) sin θ1 = 0 (9)

Equations (8) and (9) indicate the kinematics for a double and single pendulum with
four masses and no external force, respectively. They demonstrate that only the defined
biomechanical coefficients need to be matched between two systems to have the same
motion trajectories and not the full set of physical parameters. In the following section, we
derive mathematical equations for knee-lock and ground-strike during walking. We model
these events using the collision principle. We also introduce new kinetically matched
coefficients to describe the internal forces of hip and knee joints.
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3.2. Collisions

Collision or impact is the sudden change of motion between two or more bodies that
happens due to the objects colliding and alters internal forces within them. Two types of
collisions can be defined in dynamic models that mimic human walking [22]. The first one
is the knee-lock event and happens when the bent leg straightens out. In terms of dynamic
models, during the knee-lock event, the double pendulum switches to a single pendulum
by locking the hinge between the two links and preventing the second link from moving
toward the opposite side. The second event is the contact with outside surfaces such as
hitting the ground during heel strike or impact with an obstacle.

Collisions can be defined from perfectly elastic to perfectly inelastic depending on
the loss of kinetic energy and the coefficient of restitution (E) [23]. A collision with no loss
of kinetic energy and E = 1 is a perfectly elastic collision, and a collision with maximum
kinetic energy loss and E = 0 is perfectly inelastic. No matter of the collision type, angular
momentum during a collision is always conserved if no external force or impulse is applied.
During impact (collision with external force), on the other hand, an external impulse is
applied to the system. The change in angular momentum before and after an impact will
be equal to the angular impulse applied during the time of contact with the external object.

3.2.1. Knee-Lock

As a result of a knee-lock event, equations of motion for the system switches from
Equations (8) and (9). However, angles and angular velocities change due to this collision.
The new values can be calculated based on the before collision condition. In a leg with
two links, θ2 is always bigger or equal to zero; meaning the knee cannot bend backward.
Therefore, at θ2 = 0, the middle hinge (knee) is locked, and the double pendulum is turned
into a single pendulum. The dynamic model right before and after the knee collision is
depicted in Figure 3.
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The before and after conditions are shown with + and − superscripts, and since no
external force is involved, conservation of angular momentum is applicable:

∆P = ∑ P+ −∑ P− = 0 (10)

n

∑
i=0

→
ri
−
×mi

→
Vi

−
=

n

∑
i=0

→
ri
+
×mi

→
Vi

+
(11)

The total angular momentums before and after knee-lock are shown in Equations (12)
and (13).

∑ P− = [m1al2
1a + m1b(l1a + l1b)

2 + (m2a + m2b)l2
1 + m2al2

2a + m2b(l2a + l2b)
2

+2l1 cos θ−2 (m2al2a + m2b(l2a + l2b))]
.
θ
−
1

+[m2al2
2a + m2b(l2a + l2b)

2 + l1 cos θ−2 (m2al2a + m2b(l2a

+l2b))]
.
θ
−
2

(12)

∑ P+ = [m1al2
1a + m1b(l1a + l1b)

2 + m2a(l1 + l2a)
2 + m2b(l1 + l2a + l2b)

2]
.
θ
+

1 (13)

Applying the conservation of angular momentum will result in a transfer matrix Q,
as shown in Equation (14). After the knee-lock, the second link only moves due to the
movement of the first link. Therefore, the second row of the transfer matrix is zero in
Equation (15). After reorganizing the equations of angular momentum, all the parameters
in the first row of the transfer matrix can be replaced using the same kinematic coefficients
(a, b, d, e, and f ):

.
θ
+
= Q×

.
θ
−

(14)

Q =

[
q11 q12
0 0

]
=

[
f+a+2b cos θ−2

f+a+2b
a+b cos θ−2

f+a+2b
0 0

]
(15)

Thus, both equations of motion for the double pendulum and single pendulum as well
as the knee-lock collision were modeled and rewritten by the same coefficients (a, b, d, e,
and f ). The following section studies the double pendulum movement under collision
with external surfaces.

3.2.2. External Surfaces

The lower limbs repeatedly interact with the ground during walking. Each step ends
with the corresponding foot hitting the ground. Ground collisions are almost always
modeled as a perfectly inelastic collision, meaning that the maximum loss of kinetic energy
happens during contact, and the two collided bodies (ground and the foot) stay attached
without any slipping. However, in reality, more scenarios such as partially elastic heel-
strike, tripping over an object, or slipping could happen. Modeling similar events in the
double pendulum system can create an improved dynamic model that simulates similar
behavior to human walking. Moreover, modeling collision with objects in the workspace is
beneficial for robotic limb motions.

Here, the case of the double pendulum hitting different external surfaces on the
trajectory path is considered. Similar to PDWs and other dynamic models [22], it is
assumed that the contact happens during knee-lock, but whether the system stays in that
position will depend on the condition of the collision.

Figure 4 shows the different predicted outcomes that could happen during contact
with external objects. Regardless of the collision type, we assume the obstacle, or the wall,
is located at a distance λ and the condition for the contact to happen will be:

(l1 + l2) sin θ1 > λ (16)
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Therefore, for the collision to happen at the same time for two dissimilar double
pendulums, the total length of the systems (l1 + l2) needs to be the same. An additional
new kinematic coefficient (h) replaces the physical parameters (l1 and l2) and defines
this condition:

h = l1 + l2 (17)

In a perfectly inelastic collision (Figure 4a), the maximum amount of kinetic energy is
lost. It is also assumed that the wall has infinite mass. The angular velocity immediately
after the collision is zero. The pendulum is completely stopped by the wall, and all the
kinetic energy of the system is lost. It is interesting to note that even in a perfectly inelastic
collision, the angular momentum of the system is conserved. The assumption is that
the external surface (the wall) has infinite mass, the velocity of the colliding system after
collision becomes zero as shown in Equations (18)–(20).

∑ P− = ∑ P+ (18)

∑
All pendulum masses

ri ×mivi + Mwall × 0 =
(
∑ mi + Mwall

)
V+ (19)

V+ = lim
Mwall→∞

∑All pendulum masses ri ×mivi

∑ mi + Mwall
= 0 (20)

However, the double pendulum is not at the equilibrium position during the collision
and will start to move due to gravity. The potential energy will start to convert to kinetic
energy. This collision does not add any new coefficient.

Calculation for perfectly elastic collision and tripping event (Figure 4b,c) are described
in detail in Appendix B. It is important to note that all the physical parameters in the
collision events (perfectly inelastic, perfectly elastic, and tripping) as well as equations
of motion were replaced by only 6 coefficients, namely a, b, d, e, f , and h. Therefore,
kinematic symmetry between two dissimilar legs can be achieved through symmetry of
these biomechanical coefficients.

Modeling slipping (Figure 4d) on the surface introduces the stick-slip mechanism to
the system. Calculating the velocity of the pendulum over the surface will depend on the
static and kinetic friction coefficients between the wall and the pendulum at the contact
point. This paper does not model this type of collision because this situation requires a
lot of information and therefore assumptions about the material of the surface such as the
shape of the second link foot, the static and kinetic friction coefficients between the two
objects, and so on.
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3.3. Kinetic Measurements

Figure 5 shows the internal forces at the two hinges of the double pendulum. The
forces are indicated in a 2-dimensional plane and in the direction of the local coordinate of
each link. Newton’s second law is used to calculate the forces at any given time during the
motion of the double pendulum.
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For the first hinge (H1):

FH1r = −[m1a + m1b + m2a + m2b]g cos θ1 − [m2al2a

+m2a(l2a + l2b)] sin θ2
..
θ2

(21)

FH1θ = −[m1a + m1b + m2a + m2b]g sin θ1

+[m1al1a + m1a(l1a + l1b) + (m2a + m2b)l1]
..
θ1 + [m2al2a

+m2a(l2a + l2b)] cos θ2
..
θ2

(22)

For the second hinge (H2):

FH2r = −(m2a + m2b)g cos(θ1 + θ2) (23)

FH2θ = (m2a + m2b)g sin(θ1 + θ2) + [m2al2a + m2a(l2a + l2b)]
..
θ2 (24)

Replacing the parameters of the system with the coefficients Equations (3)–(7) and
introducing two new coefficients for kinetic forces, k and s:

k = m1a + m1b + m2a + m2b (25)

s = m2a + m2b (26)

The forces are rewritten as:

FH1r = −kg cos θ2 − d sin θ2
..
θ2 (27)

FH1θ = kg sin θ2 + e
..
θ1 + d cos θ2

..
θ2 (28)

FH2r = −sg cos(θ1 + θ2) (29)
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FH2θ = sg sin(θ1 + θ2) + d
..
θ2 (30)

Six coefficients for the kinematic models (a, b, d, e, f , and h) define the equations
of motion, knee-lock collision, and multiple types of collision with external surfaces.
Achieving kinetic symmetry in addition to kinematic symmetry, introduces two more
kinetic coefficients (k and s).

The combined eight equations (Equations (3)–(7), (25), and (26)) for the biomechanical
coefficients (a, b, d, e, f , h, k, and s) include all ten physical parameters of the double pen-
dulum (m1a, m1b, l1a, l1b, l1, m2a, m2b, l2a, l2b, l2). If all eight coefficients between two
different double pendulums are identical, they are kinematically and kinetically symmetric.
Since there are ten variables within the coefficients, the system of equations is underdeter-
mined (n = 8 equations and m = 10 variables with n < m). The underdetermined system
creates the possibility of systems with different physical parameters but similar coefficients.
However, the coefficient equations are quadratic and nonlinear. There are analytical meth-
ods for solving nonlinear pendulum system with collision [24] but not all the solutions are
acceptable. Negative or complex solutions are not physically acceptable values. Positive
values outside of anthropometric data will not be humanly realizable models. Therefore, it
is important to look for answers that are physically and humanly realizable. Two masses
per link are the minimum number needed to allow an underdetermined system and can
allow for sufficient modeling of a human limb. Three or more masses per link could be
used if needed for modeling but does not provide additional benefits beyond the two for
synchronizing the motion.

4. Results

We analyze and numerically solve the undetermined system of coefficients for human
realizable configurations. The analysis includes the case of achieving only kinematic
symmetry (n = 6) and both kinematic and kinetic symmetry (n = 8). The case of only
kinetic symmetry between two systems is not possible since internal forces depend on the
same acceleration and configuration at each moment.

4.1. Kinematic Symmetry

Two kinematically matched double pendulum systems will move in unison, given
they start at the same initial conditions. However, the internal forces within the joints
will not necessarily be the same. Six out of the eight coefficients’ equations (a, b, f , d, e, h)
describe only kinematic symmetry. Looking closely at coefficients b and d indicates that
l1 is constant. Furthermore, coefficient h reveals that l2 will stay constant as well. With l1
and l2 constant, a reduced underdetermined system of four equations (a, f , d, e) and eight
variables (m1a, m1b, l1a, l1b, m2a, l2a, m2b, l2b) remains.

a, f , d, e equations can numerically be solved for kinematic symmetry. These coeffi-
cients are also physically meaningful and represent biomechanical properties. They are
moments and moments of inertia for the second link and the entire pendulum. We use a
numerical approach to solve for a set of humanly realizable data. The sample is chosen for
an average anthropometric dataset from [25]. It is important to note that current anthropo-
metric datasets only report total mass of each link and do not report mass distribution data.
Therefore, we assumed an arbitrary distribution of masses on each link. Table 1 shows the
data for the sample system. The numerical method can solve for all possible combinations
of physical parameters that result in the same coefficients as Sys H. We also apply physical
restrictions such as l1a + l1b ≤ l1 and l2a + l2b ≤ l2. The range for each variable is set
between zero and twice in value, and the precision for length values is set to 0.05.
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Table 1. Humanly realizable sample system for the numerical solution.

m1a l1a m1b l1b l1 m2a l2a m2b l2b l2

Sys H 1 4.0 0.2 3.5 0.2 0.6 2 0.1 1.5 0.2 0.5
1 All masses are in kilogram (kg) and lengths are in meter (m).

The numerical method tested∼ 105 combinations and resulted in 365 parallel solutions
(about ~0.3% of tested combinations) that match the human realizable criteria. Figure 6
shows four examples of these systems compared to Sys H. The first example indicates
the lightest possible double pendulum design that creates the same kinematic outcome
as Sys H. The second parallel system has the heaviest total mass. The third and fourth
examples demonstrate the lowest and highest ratio of the first link total mass to the second
link. All these dissimilar double pendulum models create the same trajectory of motion,
angular positions, velocities, and acceleration for both links for all time assuming they
start at the same position. Each system in this grouping is different from others in physical
parameters, but all of them have the same kinematic coefficient values, meaning all the
kinematic equations will result in the same output. The system of coefficients represents a
lot of potential for optimizing the design without sacrificing the desired outcomes. This
benefit gets more important when designing rehabilitation devices for disabled people.
Creating assistive devices such as prosthetic legs that are mechanically capable of creating
a symmetric gait pattern and are lighter in weight could potentially improve the walking
experience and efficiency for amputees, crutch users, and stroke survivors.
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Figure 7 demonstrates an application of dissimilar double pendulums using the
systems in Figure 6. If an amputee has the same anthropometric data as Sys H on their
healthy leg (Figure 7a), designs of a prosthetic leg that can have similar kinematic outcomes
could benefit from the 365 derived systems with similar kinematic coefficients.
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Figure 7b shows the lightest prosthetic leg design with a 10% decrease in total mass.
Figure 7c demonstrates a design that minimizes the ratio of total mass between the two
links by 25.2%. Similar kinematics between a healthy leg and a prosthetic leg can assist
with the improvement of symmetric gait patterns where both sides are able to walk with
similar step times and step lengths.

4.2. Full Symmetry

While systems with kinematic symmetry have similar trajectories, the forces generated
in the hip or knee joint might not be the same. To achieve kinetic symmetry along with
kinematic symmetry, all eight of the coefficients (a, b, d, e, f , h, k, and s) between two
dissimilar systems should be the same. Section 3.1 numerically solves the first six kinematic
equations. The final two kinetic coefficients, k and s, represent the total mass of the whole
system and the second link, respectively. This section generates a full symmetry analysis.
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Numerically solving for the additional k and s equations results in 60 parallel solutions
(less than one percent (~0.06%) of all the ∼ 105 tested combinations). These systems match
all eight coefficients of Sys H.

Figure 8 indicates the variations in mass values and mass locations between these par-
allel solutions. All these systems result in the same kinematic and kinetic outcomes while
having different physical parameters. The similar biomechanical coefficients between these
parallel solutions would mean that these systems have the same total mass, moment, and
moment of inertia in the whole system and the second link (Equations (3)–(7), (25) and (26)).
For instance, a maximum mass value in m2a (Figure 8a) is accompanied by a minimum
mass value in m2b of the same system.
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Among the 60 solution, l2b did not change much and only had three different values.
Therefore, the boxplot of this parameter in Figure 8b does not have data points for a
complete Whisker plot. The numerical method solves the underdetermined system of
coefficients for a subset of possible solutions. Increasing the precision and range of the
variables can return more answers for the datasets.

4.3. Simulations

As a proof of concept, this section simulates the results of kinematic and kinetic
outcomes. The simulations demonstrate the outcomes of the anthropometric data of a
healthy leg, and two of sample systems derived based on the matching coefficients with
similar biomechanics, one with only kinematic symmetry and one with full symmetry.
Table 2 shows these samples.

Table 2. Humanly realizable sample systems for the numerical solution.

m1a l1a m1b l1b l1 m2a l2a m2b l2b l2

Kinematic 1 3.56 3.50 0.30 0.10 0.6 1.78 1.28 0.15 0.15 0.5
Full 2 6.50 1.00 0.25 0.29 0.6 3.00 0.50 0.15 0.28 0.5

1 Sample system with only kinematic symmetry. 2 Sample system with full (kinetic and kinematic) symmetry.
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The simulation results compare the angle, angular velocity, angular acceleration, and
the reaction forces at both joints. The modeling considers the different cases of plastic
or elastic collision and impact with external surfaces. The goal of this section is to show
that the new coefficients introduced in this research can accurately predict similarity in
kinematic and kinetic outcomes of dissimilar double pendulums.

Figure 9 introduces the algorithm logic. The programming was written in MATLAB
R2019a. The double pendulum starts with an initial condition as an input. At every
increment of time, the angular positions, velocities, and accelerations of the two links are
calculated. The system can be locked at the hinge so as to not allow the second link to move
toward the opposite side. Therefore, if θ2 becomes zero, the knee is locked, and the double
pendulum switches to a single pendulum. During the single pendulum mode and before
reaching the external surface ((l1 + l2) sin θ1 < λ), a pseudo-double pendulum tracks the
angular position and angular velocity of the unlocked second link at every time step. The
moment θ2 in the pseudo-double pendulum turns positive, the real system is unlocked and
will switch back to the double pendulum mode.
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Figure 9. Algorithm flowchart for simulation of a double pendulum system with knee-lock and
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state of the system under a sudden collision. Blue rectangles are the processors for calculating the
state of the system (angles, angular velocities, angular accelerations).
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When the system reaches the external surface ((l1 + l2) sin θ1 = λ), three different
types of collisions (described in Section 3.2.2) can happen. Based on the condition of the
knee joint and elasticity of the collision, the results of a perfectly elastic collision, perfectly
inelastic, or an impulse impact were simulated.

Figure 10 shows the results for two sample systems of Table 2 along with the original
data, Sys H, from Tabel 1. As expected, the system with only kinematic symmetry had the
same trajectory (Figure 10a,b) as the original anthropometric data (Sys H); however, the
joints’ forces were different. The system with full symmetry matched the trajectory as well
as the forces at the joints (Figure 10a–d) of Sys H.
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(a) Angular displacement; (b) angular acceleration; (c) internal forces at hip joint; (d) internal forces at the knee joint.
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5. Discussion

Dynamic models such as double pendulums offer a simple yet flexible approach
for understanding the biomechanics of impaired walking. They closely simulate human
walking patterns. Each leg can be modeled as a double pendulum with two links (thigh
and calf) connected with a hinge (knee). Dissimilar double pendulums can mimic asym-
metric limbs where the physical characteristic of each side is different from the other.
This theoretical modeling helps us understand the influence of physical parameters of
legs on kinematic and kinetic performance. This outcome can help develop assistive de-
vices and rehabilitation techniques capable of generating identical dynamics in inherently
asymmetric gaits.

This research redefines the kinematic and kinetic equations describing double pendu-
lums, including equations of motion, collision events, and internal forces at the joints. A set
of new biomechanical coefficients is defined. They replace all physical parameters of the
system in the mathematical equations. We indicated that not all parameters individually
affect the outcome of the double pendulum; rather, combinations of them (biomechanical
coefficients) collectively influence the kinematic and kinetic performance. This discovery
helps us choose different systems that can create the same desired motion or force reaction.
This flexibility can significantly help in creating symmetric walking in a gait with unilateral
impairment. For instance, a prosthetic leg can be designed to have the same step time and
step length as the healthy leg.

The double pendulum model in this research has ten different physical parameters.
We introduce eight biomechanical coefficients (6 for kinematic equations and 2 for kinetic
equations). We replace all the physical parameters in the equations with these coefficients.
Therefore, they shape an underdetermined system with more physical parameters in the
system than biomechanical coefficients required for symmetry. Using anthropometric
data, we then numerically solve the underdetermined system for physically and humanly
meaningful answers.

We found 365 solutions (about ~0.3% of ∼ 105 tested combinations) for kinematic
symmetry and 60 solutions (~0.06% of all the tested combinations) for full symmetry.
Simulation of the sample systems for the anthropometric data confirmed the accuracy of
the coefficients in achieving kinematic and kinetic symmetry.

There are some limitations in this research that future studies can improve. This paper
only investigates the theoretical motion of the impaired gait. A follow-up study is needed
to experimentally validate this model in clinical application. The physical simulation
of ground impact does not study slipping. Future studies can expand the simulation to
include analytical solutions, additional masses on each link, a foot model at the tip, external
forces and torques, and friction.

Achieving identical limb dynamics can enhance the quality of life for patients with
unilateral impairments. Future clinical studies can validate and incorporate the double
pendulum model for various rehabilitation applications. For instance, a physical therapist
can utilize this theoretical model to modify the weight training in stroke therapy. Another
example is to use the pendulum measurements for customizing the design of prosthetic
legs for optimal performance.

6. Conclusions

This research introduces a new idea to redefine the modeling of dynamic systems. We
introduce a set of biomechanical coefficients that act as a connection between the physical
parameters of the system and multipliers defining the dynamic equations. In a system with
fewer coefficients than parameters, a range of flexibility in the design can create asymmetric
systems that have biomechanical equivalence. These innovative coefficients can potentially
help improve our understanding of asymmetric gait and optimize the techniques and
devices that promote symmetry.
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Appendix A. Step-by-Step Derivation of Lagrange’s Equations in Double Pendulum

The velocity of each mass in Figure 2 is:
→
V1a =

→
ω1a ×

→
r 1a =

.
θ1k̂1 × l1a r̂1 = l1a

.
θ1θ̂1 (A1)

→
V1b =

→
ω1b ×

→
r 1b =

.
θ1k̂1 × (l1a + l1a)r̂1 = (l1a + l1b)

.
θ1θ̂1 (A2)

→
V2a = V1 + (

.
θ1 +

.
θ2)k̂2 × l2a r̂2 = l1

.
θ1θ̂1 + l2a(

.
θ1 +

.
θ2)θ̂2 (A3)

→
V2b = V1 + (

.
θ1 +

.
θ2)k̂2 × (l2a + l2b)r̂2 = l1

.
θ1θ̂1 + (l2a + l2b)(

.
θ1 +

.
θ2)θ̂2 (A4)

Here, a vector is differentiated from a scalar by the arrow sign on top. Unit vectors of
the local coordinates are noted by a hat sign whenever the magnitude and the direction of
a vector are separated. It is important to note that the two local systems of the links can be
transferred using Equations (A5)–(A7).

r̂2 = sin θ2θ̂1 + cos θ2r̂1 (A5)

θ̂2 = cos θ2θ̂1 − sin θ2r̂1 (A6)

k̂2 = k̂1 (A7)

Therefore, the last two velocities in the Equations (A3) and (A4) can be rewritten as:
→
V2a = l1

.
θ1θ̂1 + l2a(

.
θ1 +

.
θ2)θ̂2

= [l1
.
θ1 + l2a cos θ2(

.
θ1 +

.
θ2)] θ̂1 − [l2a sin θ2(

.
θ1 +

.
θ2)] r̂1

(A8)

→
V2b = l1

.
θ1θ̂1 + (l2a + l2b)(

.
θ1 +

.
θ2)θ̂2

= [l1
.
θ1 + (l2a + l2b) cos θ2(

.
θ1 +

.
θ2)] θ̂1 − [(l2a + l2b) sin θ2(

.
θ1 +

.
θ2)] r̂1

(A9)

Using the velocities and the height of the masses at time t, the total kinetic and
potential energy of the system can be derived at any time as depicted in Equations (A10)
and (A11).

Ttot = 1
2 m1aV2

1a +
1
2 m1bV2

1b +
1
2 m2aV2

2a +
1
2 m2bV2

2b

= 1
2 {m1al2

1a

..
θ

2
1 + m1b(l1a + l1b)

2 ..
θ

2
1

+m2a[l2
1

..
θ

2
1 + l2

2a(
..
θ

2
1 +

..
θ

2
2 + 2

..
θ1

..
θ2)

+2l1l2a
..
θ1(

..
θ1 +

..
θ2) cos θ2]

+m2b[l2
1

..
θ

2
1 + (l2a + l2b)

2(
..
θ

2
1 +

..
θ

2
2 + 2

..
θ1

..
θ2)

+2l1(l2a + l2b)
..
θ1(

..
θ1 +

..
θ2) cos θ2]}

(A10)

Utot = −m1agl1a cos θ1 −m1bg(l1a + l1b) cos θ1 −m2ag(l1 cos θ1
+l2a cos(θ1 + θ2))−m2bg(l1 cos θ1 + (l2a
+l2b)cos(θ1 + θ2))

(A11)



Symmetry 2021, 13, 705 18 of 21

where, g is the gravity constant. Forming the Lagrangian L = Ttot −Utot, the modeling can
derive the equations of motion under the two variables of the system, namely θ1 and θ2.
Then, the Lagrange’s equations with no external force or torque would be:

d
dt

(
∂Ttot

∂
.
θi

)
− ∂Ttot

∂θi
+

∂Utot

∂θi
= 0 (A12)

where i = {1, 2}. Calculating the Lagrange’s equations for the variables of the sys-
tem and reorganizing the order of parameters will result in two equations of motion
as Equations (1) and (2).

Appendix B. Contact with External Surafces

Appendix B.1. Perfectly Elastic

For a perfectly elastic collision (Figure 4b), the angular momentum and kinetic energy
are conserved. It is also assumed that the knee joint is not activated (leg does not bend)
because of the collision.

∆K = 0 & ∆P = 0 (A13)

∑ P− =
→
r
−
1a ×m1a

→
v
−
1a +

→
r
−
1b ×m1b

→
v
−
1b +

→
r
−
2a ×m2a

→
v
−
2a +

→
r
−
2b ×m2b

→
v
−
2b

= [m1al2
1a + m1b(l1a + l1b)

2 + m2a(l1 + l2a)
2

+m2b(l1 + l2a + l2b)
2]

.
θ
−
1 (−k̂)

(A14)

∑ P+ = [m1al2
1a + m1b(l1a + l1b)

2 + m2a(l1 + l2a)
2

+m2b(l1 + l2a + l2b)
2]

.
θ
+

1 (+k̂)
(A15)

After calculating the sum of angular momentum and replacing the parameters with
kinematic coefficients of Equations (3)–(7), Equation (A16) is derived.

∑ P− = ∑ P+ → [ f + 2b + a]
.
θ
−
1 = −[ f + 2b + a]

.
θ
+

1 (A16)

.
θ
+

1 = −
.
θ
−
1 (A17)

Based on Equation (A17), the magnitude of the velocity of the system does not change,
but the direction will be reversed. The result is similar to other perfectly elastic collisions,
such as a ball bouncing back from an infinite wall. Since the magnitude of the velocities
and the masses stay without change before and after impact, conservation of kinetic energy
also applies.

Appendix B.2. Tripping

In Figure 4c, the pendulum hits an object while the knee is locked. The knee im-
mediately unlocks (bends) after the impact, as shown in Figure A1. In other words, the
single pendulum switches to double pendulum due to an impulse applied to the foot of
the pendulum. Therefore, the conservation of angular momentum does not apply. Still, the
change in the momentum before and after the event will be equal to the angular impulse
applied to each hinge.

Angular momentums before and after impact around the first hinge (hip) can be
derived using the velocities:
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∑
→
P
−
H1 =

→
r
−
1a ×m1a

→
v
−
1a +

→
r
−
1b ×m1b

→
v
−
1b +

→
r
−
2a ×m2a

→
v
−
2a +

→
r
−
2b ×m2b

→
v
−
2b

= [m1al2
1a + m1b(l1a + l1b)

2 + m2a(l1 + l2a)
2

+m2b(l1 + l2a + l2b)
2]

.
θ
−
1 (−k̂) = [ f + a + 2b]

.
θ
−
1 (−k̂)

(A18)

∑
→
P
+

H1 =
→
r
+

1a ×m1a
→
v
+

1a +
→
r
+

1b ×m1b
→
v
+

1b +
→
r
+

2a ×m2a
→
v
+

2a +
→
r
+

2b ×m2b
→
v
+

2b
= m1al2

1a + m1b(l1a + l1b)
2 + m2a(l1 + l2a cos θ2)

2

+m2b(l1 + (l2a + l2b) cos θ2)
2 + m2al2

2a sin2 θ2

+m2b(l2a + l2b)
2 sin2 θ2]

.
θ
+

1 (−k̂)
+[m2a(l2a)

2 + m2b(l2a + l2b)
2 + m2al1l2a cos θ2

+m2bl1(l2a + l2b) cos θ2]
.
θ
+

2 (k̂)

=
[

f + a + 2b cos θ+2
] .
θ
+

1 (−k̂) +
[
a + b cos θ+2

] .
θ
+

2 (k̂)

(A19)

The impulse applied during impact can be modeled as an averaged force applied
during a short time such as ∆t:

I =
∫ tend

tstart
f (t)dt = F∆t (A20)
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Then, the change in angular momentum around the first hinge will be equal to the
angular impulse (τ∆t) as calculated below:

∆
→
P H1 =

(
F·rarm1

)
∆t = τ∆t (A21)

where, rarm1 is the vertical distance from the first hinge to the point of contact with the
obstacle (Figure A1). Therefore, the first equation for the change in angular momentum
will be:

−
[

f + a + 2b cos θ+2
] .
θ
+

1 +
[
a + b cos θ+2

] .
θ
+

2 + [ f + a + 2b]
.
θ
−
1

=
(

F∆t
)[
(l1 + l2) cos θ−1

] (A22)

In this equation, θ−1 and
.
θ
−
1 are the state of the system before the impact and are

known values. To calculate the state of the system after the impact (θ+1 , θ+2 ,
.
θ
+

1 ,
.
θ
+

2 ), three
more equations are needed. The change in angular momentums before and after impact
around the second hinge (knee) can be driven similar to the first hinge:

∑
→
P
−
H2 =

→
r
−
2a ×m2a

→
v
−
2a +

→
r
−
2b ×m2b

→
v
−
2b

= [l2a r̂1 ×m2a(l1 + l2a)
.
θ
−
1 (−θ̂1)]

+[(l2a + l2b)r̂1 ×m2b(l1 + l2a + l2b)
.
θ
−
1 (−θ̂1)]

= (a + b)
.
θ
−
1 (−θ̂1)

(A23)

∑
→
P
+

H2 =
→
r
+

2a ×m2a
→
v
+

2a +
→
r
+

2b ×m2b
→
v
+

2b
= [m2al2

2a + m2b(l2a + l2b)
2 + m2al1l2a cos θ+2

+m2al1(l2a + l2b) cos θ+2 ]
.
θ
+

1 (−k̂)

+[m2al2
2a + m2b(l2a + l2b)

2]
.
θ
+

2 (k̂)

=
(
a + b cos θ+2

) .
θ
+

1 (−k̂) + a
.
θ
+

2 (k̂)

(A24)

∆
→
P H2 =

(
F·rarm2

)
∆t = τ∆t (A25)

where, rarm2 is the perpendicular moment arm between the second hinge and the impulse
force (Figure A1).

−
(
a + b cos θ+2

) .
θ
+

1 + a
.
θ
+

2 + (a + b)
.
θ
−
1 = F∆tl2 cos θ−1 (A26)

Two mathematical equations based on the physical location of the pendulum can
be derived; assuming the double pendulum moves along the radial direction during
the impact:

l1
.
θ
+

1 = −l2
.
θ
+

2 (A27)

l1 sin
(
θ+1 − θ−1

)
= l2 sin

(
θ+2 − θ+1 + θ−1

)
(A28)

The four Equations (A22) and (A26)–(A28) will form the state of the pendulum imme-
diately after the impact.
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