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Abstract: The concept of arithmetic-geometric index was recently introduced in chemical graph
theory, but it has proven to be useful from both a theoretical and practical point of view. The
aim of this paper is to obtain new bounds of the arithmetic-geometric index and characterize the
extremal graphs with respect to them. Several bounds are based on other indices, such as the second
variable Zagreb index or the general atom-bond connectivity index), and some of them involve some
parameters, such as the number of edges, the maximum degree, or the minimum degree of the graph.
In most bounds, the graphs for which equality is attained are regular or biregular, or star graphs.

Keywords: arithmetic-geometric index; variable Zagreb index; general atom-bond connectivity
index; symmetric division deg index; vertex-degree-based topological index

1. Introduction

In chemical graph theory, a topological descriptor is a function that associates each
molecular graph with a real value. If it correlates well with some chemical property, then it
is called a topological index. Since Winer’s work (see [1]), numerous topological indices
have been defined and discussed, the growing interest in their study is because there are
several applications in theoretical chemistry, especially in QSPR/QSAR research (see [2–4]).

In particular, vertex-degree-based topological indices belong to one of the largest
and most studied classes of topological descriptors. The Randić index [5] and the Zagreb
indices [6] are probably the best known such descriptors.

In [7–9], the first and second variable Zagreb indices are defined, for each α ∈ R, as

Mα
1 (G) = ∑

u∈V(G)

dα
u, Mα

2 (G) = ∑
uv∈E(G)

(dudv)
α,

where du denotes the degree of u ∈ V(G).
Note that, for α = 2, α = −1 and α = 3, the index Mα

1 is the first Zagreb index M1, the
inverse index ID, and the forgotten index F, respectively; also, for α = 1, α = −1/2 and
α = −1, the index Mα

2 is the second Zagreb index M2, the Randić index R and the modified
Zagreb index.

The geometric-arithmetic index| GA is defined in [10] as

GA(G) = ∑
uv∈E(G)

2
√

dudv

du + dv
.

There are many papers studying the mathematical and computational properties of
the GA index (see [10–17]).
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In 2015, the arithmetic-geometric index [18] was defined as

AG(G) = ∑
uv∈E(G)

du + dv

2
√

dudv
.

The AG index of path graphs with pendant vertices attached was discussed in the
papers [18,19]. Additionally, the arithmetic-geometric index of graphene, which is the most
conductive and effective material for electromagnetic interference shielding, was computed
in [20]. The paper [21] studied the spectrum and energy of arithmetic-geometric matrix, in
which the sum of all elements is equal to 2AG. Other bounds of the arithmetic-geometric
energy appeared in [22,23]. The paper [24] studies extremal AG-graphs for various classes
of simple graphs, and it includes inequalities that involve AG + GA, AG− GA, AG · GA,
and AG/GA. In [25–28], there are more bounds on the AG index and a discussion on the
effect of deleting an edge from a graph on the arithmetic-geometric index.

Along the paper, we denote, by G, a simple graph without isolated vertices.
An important subject in the study of topological indices is to bind them in terms of

some parameters. Reference [29] proves that many upper bounds of GA are not useful, and
it shows the importance of obtaining upper bounds of GA less than the number of edges m.
In a similar way, it is important to find lower bounds of AG that are greater than m. With
this aim, in this paper we obtain several new lower bounds of AG, which are greater than
m, and we characterize the extremal graphs.

2. Bounds Involving Other Indices

A graph is said biregular if it is bipartite and the degree of any vertex in one side of the
bipartition is the maximum degree ∆ and the degree of any vertex in the other side is the
minimum degree δ.

One can check that the following result holds.

Lemma 1. Let g be the function g(x, y) = x+y
2
√

xy with 0 < a ≤ x, y ≤ b. Then

1 ≤ g(x, y) ≤ a + b
2
√

ab
.

The equality in the upper bound is attained if and only if either x = a and y = b, or x = b
and y = a, and the equality in the lower bound is attained if and only if x = y.

The following inequalities follow from Lemma 1:

m ≤ AG(G) ≤ ∆ + δ

2
√

∆δ
m. (1)

The lower bound in (1) also follows from the inequalities GA(G) · AG(G) ≥ m2 and
GA(G) ≤ m, see [11,12]. The upper bound in (1) appears in [27].

The following result improves the lower bound in (1), see Remark 1.

Theorem 1. If G is a graph with m edges, maximum degree ∆, and minimum degree δ, then

m +
M1(G)− 2M1/2

2 (G)

2∆
≤ AG(G) ≤ m +

M1(G)− 2M1/2
2 (G)

2δ
.

The equality in each bound is attained if and only if G is a regular graph.
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Proof. We have
du + dv

2
√

dudv
= 1 +

(√
du −

√
dv
)2

2
√

dudv
,

AG(G) = m + ∑
uv∈E(G)

(√
du −

√
dv
)2

2
√

dudv
.

Because

∑
uv∈E(G)

(√
du −

√
dv
)2

2
√

dudv
≥ 1

2∆ ∑
uv∈E(G)

(√
du −

√
dv
)2

=
1

2∆

(
∑

uv∈E(G)

(
du + dv

)
− 2 ∑

uv∈E(G)

√
dudv

)

=
M1(G)− 2M1/2

2 (G)

2∆
,

we conclude

AG(G) ≥ m +
M1(G)− 2M1/2

2 (G)

2∆
.

Because

∑
uv∈E(G)

(√
du −

√
dv
)2

2
√

dudv
≤ 1

2δ ∑
uv∈E(G)

(√
du −

√
dv
)2

=
1
2δ

(
∑

uv∈E(G)

(
du + dv

)
− 2 ∑

uv∈E(G)

√
dudv

)

=
M1(G)− 2M1/2

2 (G)

2δ
,

we conclude

AG(G) ≤ m +
M1(G)− 2M1/2

2 (G)

2δ
.

If G is regular, then both bounds are the same, and they are equal to AG(G).
If the equality in some bound is attained, then we have either dudv = ∆2 for every

uv ∈ E(G) or dudv = δ2 for every uv ∈ E(G), so du = ∆ for every u ∈ V(G) or du = δ for
every u ∈ V(G), and G is a regular graph.

Remark 1. Because Cauchy–Schwarz inequality gives

M1(G)− 2M1/2
2 (G) = ∑

uv∈E(G)

(√
du −

√
dv
)2

= ∑
uv∈E(G)

(√
du −

√
dv
)2 1

m ∑
uv∈E(G)

12

≥ 1
m

(
∑

uv∈E(G)

∣∣√du −
√

dv
∣∣)2

,

we have M1(G)− 2M1/2
2 (G) ≥ 0 and, so, Theorem 1 improves the lower bound in (1).

The misbalance rodeg index [30] is

MR (G) = ∑
uv∈E(G)

∣∣√du −
√

dv
∣∣.

Theorem 1 and Remark 1 have the following consequence.
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Corollary 1. If G is a graph with m edges, maximum degree ∆, and minimum degree δ, then

m +
MR (G)2

2∆m
≤ AG(G),

and the equality is attained if and only if G is regular graph.

The following fact is elementary.

Lemma 2. Let us consider the function f (x, y) = (xy)α with δ ≤ x, y ≤ ∆. Then

f (x, y) ≤ δ2α , if α ≤ 0,

f (x, y) ≤ ∆2α , if α ≥ 0.

The following result provides bounds that relate the arithmetic-geometric and the
second variable Zagreb indices.

Theorem 2. If G is a graph with maximum degree ∆ and minimum degree δ, and α ∈ R, then

AG(G) ≤ ∆δ2α−1M−α
2 (G), if α ≤ 1/2,

AG(G) ≤ ∆2α M−α
2 (G), if α ≥ 1/2,

and the equality in each bound is attained for some fixed α if and only if G is regular.

Proof. We have

∑
uv∈E(G)

du + dv

2
√

dudv
≤ ∆ ∑

uv∈E(G)

(dudv)
α−1/2(dudv)

−α.

If α ≤ 1/2, then Lemma 2 gives

AG(G) ≤ ∆δ2α−1 ∑
uv∈E(G)

(dudv)
−α.

If α ≥ 1/2, then we have, by Lemma 2

AG(G) ≤ ∆2α ∑
uv∈E(G)

(dudv)
−α.

If G is regular, then AG(G) = m, M−α
2 (G) = δ−2αm = ∆−2αm and ∆δ2α−1 = ∆2α, and

the equality in each bound is attained.
If the equality is attained, then du + dv = 2∆ for every uv ∈ E(G); thus, du = ∆ for

every u ∈ V(G), and G is a regular graph.

The symmetric division deg index

SDD(G) = ∑
uv∈E(G)

d2
u + d2

v
dudv

= ∑
uv∈E(G)

( du

dv
+

dv

du

)
.

is another Adriatic index that appears in [30,31], see also [32].

We need the following inequality (see e.g., [14], Lemma 4) in the proof of Theorem 3
below.

Lemma 3. Let (X, µ) be a measure space and f , g : X → R measurable functions. If there exist
positive constants ω, Ω with ω|g| ≤ | f | ≤ Ω|g| µ-a.e., then

‖ f ‖2‖g‖2 ≤
1
2

(√
Ω
ω

+

√
ω

Ω

)
‖ f g‖1. (2)
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If these norms are finite, the equality in the bound is attained if and only if ω = Ω and
| f | = ω|g| µ-a.e. or f = g = 0 µ-a.e.

We have the following direct consequence.

Corollary 2. If aj, bj ≥ 0 and ωbj ≤ aj ≤ Ωbj for 1 ≤ j ≤ m, then

( m

∑
j=1

a2
j

)1/2( m

∑
j=1

b2
j

)1/2
≤ 1

2

(√
Ω
ω

+

√
ω

Ω

)
m

∑
j=1

ajbj.

If aj > 0 for some 1 ≤ j ≤ m, then the equality holds if and only if ω = Ω and aj = ωbj for
every 1 ≤ j ≤ m.

The following result provides an inequality relating the arithmetic-geometric and the
symmetric division deg indices.

Theorem 3. Let G be a graph with m edges, maximum degree ∆, and minimum degree δ. Subse-
quently,√

2
√

∆δ (∆ + δ)(√
∆ +
√

δ
)2

√
m
(
SDD(G) + 2m

)
≤ AG(G) ≤ 1

2

√
m
(
SDD(G) + 2m

)
.

The equality in the lower bound is attained if and only if G is a regular graph. The equality in
the upper bound is attained if G is a regular or biregular graph.

Proof. Let us consider
aj :=

du + dv

2
√

dudv
, bj := 1.

We have, by Corollary 1,

1 ≤
aj

bj
≤ ∆ + δ

2
√

∆δ
.

Thus, Corollary 2 gives

(
∑

uv∈E(G)

1
)(

∑
uv∈E(G)

(du + dv)2

4dudv

)
≤ 1

4

√ ∆ + δ

2
√

∆δ
+

√
2
√

∆δ

∆ + δ

2(
∑

uv∈E(G)

du + dv

2
√

dudv

)2

=
1
4

 (√
∆ +
√

δ
)2√

2
√

∆δ (∆ + δ)

2

AG(G)2.

Because

∑
uv∈E(G)

1 = m, ∑
uv∈E(G)

(du + dv)2

4dudv
=

1
4 ∑

uv∈E(G)

d2
u + d2

v
dudv

+ ∑
uv∈E(G)

1
2

=
1
4

SDD(G) +
1
2

m,
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we conclude

m
4
(
SDD(G) + 2m

)
≤ 1

4

 (√
∆ +
√

δ
)2√

2
√

∆δ (∆ + δ)

2

AG(G)2,

AG(G) ≥

√
2
√

∆δ (∆ + δ)(√
∆ +
√

δ
)2

√
m
(
SDD(G) + 2m

)
.

If the equality in this bound is attained, then Corollary 2 gives

1 =
∆ + δ

2
√

∆δ
.

Thus, Corollary 1 gives ∆ = δ, and, so, G is regular.
If G is regular, then√

2
√

∆δ (∆ + δ)(√
∆ +
√

δ
)2

√
m
(
SDD(G) + 2m

)
=

√
2δ 2δ

4δ

√
m
(
2m + 2m

)
= m = AG(G).

On the other hand, the Cauchy–Schwarz inequality gives

AG(G)2 =
(

∑
uv∈E(G)

du + dv

2
√

dudv

)2
≤
(

∑
uv∈E(G)

1
)(

∑
uv∈E(G)

(du + dv)2

4dudv

)
.

Because

∑
uv∈E(G)

1 = m, ∑
uv∈E(G)

(du + dv)2

4dudv
=

1
4

SDD(G) +
1
2

m,

we conclude
AG(G)2 ≤ m

4
(
SDD(G) + 2m

)
.

If G is regular or biregular, then

1
2

√
m
(
SDD(G) + 2m

)
=

1
2

√
m
((∆

δ
+

δ

∆

)
m + 2m

)
=

m
2

√
∆2 + δ2 + 2∆δ

∆δ
=

∆ + δ

2
√

∆δ
m = AG(G).

The atom-bond connectivity index [33] is

ABC(G) = ∑
uv∈E(G)

√
du + dv − 2

du dv
.

Furtula et al. [34] made a generalization of ABC index, defined as

ABCα(G) = ∑
uv∈E(G)

(
du + dv − 2

du dv

)α

, where α ∈ R.

They showed that the ABCα defined in this way, for α = −3, has better predictive
power than the original ABC index.
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The three following results relate the arithmetic-geometric and the general atom-bond
connectivity indices.

Theorem 4. Let G be a graph with maximum degree ∆ and without isolated edges, and α > 0.
Then

AG(G) ≤ (∆− 1)α(∆ + 1)

2∆α+ 1
2

ABC−α(G),

and the equality in the inequality holds if and only if G is a union of stars S∆+1.

Proof. Note that (du, dv) 6= (1, 1), since G does not have isolated edges, hence ∆ ≥ 2. First
of all, we are going to compute the minimum value of

W(x, y) =
(

x + y− 2
xy

)−α 2
√

xy
x + y

= 2(x + y− 2)−α(x + y)−1xα+ 1
2 yα+ 1

2

on {1 ≤ x ≤ y, 2 ≤ y ≤ ∆}. We have

∂W
∂x

= 2yα+ 1
2

[
−α(x + y− 2)−α−1(x + y)−1xα+ 1

2 − (x + y− 2)−α(x + y)−2xα+ 1
2

+

(
α +

1
2

)
(x + y− 2)−α(x + y)−1xα− 1

2

]
= 2yα+ 1

2 xα− 1
2 (x + y− 2)−α−1(x + y)−2[−α(x + y)x− (x + y− 2)x

+

(
α +

1
2

)
(x + y− 2)(x + y)

]
= 2yα+ 1

2 xα− 1
2 (x + y− 2)−α−1(x + y)−2[α(x + y)(x + y− 2− x)

+(x + y− 2)
(

x + y
2
− x
)]

= 2yα+ 1
2 xα− 1

2 (x + y− 2)−α−1(x + y)−2
[

α(x + y)(y− 2) +
1
2
(x + y− 2)(y− x)

]
≥ 0,

so, W(x, y) is strictly increasing on x ∈ [1, y] for every fixed y ≥ 2 and, so, W(1, y) ≤
W(x, y). Consider

a(y) = W(1, y) = 2(y− 1)−α(1 + y)−1yα+1/2.

Subsequently,

a′(y) = 2
[
−α(y− 1)−α−1(y + 1)−1yα+ 1

2 − (y− 1)−α(y + 1)−2yα+ 1
2

+

(
α +

1
2

)
(y− 1)−α(y + 1)−1yα− 1

2

]
= 2(y− 1)−α−1(y + 1)−2yα− 1

2

[
−α(y + 1)y− (y− 1)y +

(
α +

1
2

)
(y− 1)(y + 1)

]
= 2(y− 1)−α−1(y + 1)−2yα− 1

2

[
α(y + 1)(y− 1− y) + (y− 1)

(
y + 1

2
− y
)]

= 2(y− 1)−α−1(y + 1)−2yα− 1
2

[
−α(y + 1)− 1

2
(y− 1)2

]
< 0,

so, w is strictly decreasing on y ∈ [2, ∆]. Thus, we have a(∆) ≤ a(y) = W(1, y) ≤W(x, y)
for every 1 ≤ x ≤ y, 2 ≤ y ≤ ∆ and the equalities hold if and only if x = 1 and y = ∆.
Therefore,

2∆α+ 1
2

(∆− 1)α(∆ + 1)
du + dv

2
√

dudv
≤
(

du + dv − 2
dudv

)−α

for every uv ∈ E(G),
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and the equality is attained if and only if du = 1 and dv = ∆ or vice versa for each edge
uv ∈ E(G), i.e., every connected component of G is a star S∆+1.

Remark 2. The argument in the proof of Theorem 4 (with the same hypotheses) allows for obtaining
the following lower bound of AG, but it is elementary:

(2∆− 2)α

∆2α
ABC−α(G) ≤ AG(G),

and the equality in the inequality holds if and only if G is regular.

We can improve Theorem 4 when δ ≥ 2.

Theorem 5. Let G be a graph with maximum degree ∆ and minimum degree δ ≥ 2, and α > 0.
Afterwards,

AG(G) ≤ max

{
(2δ− 2)α

δ2α
,
(∆ + δ− 2)α(∆ + δ)

2(∆δ)α+ 1
2

}
ABC−α(G).

The equality in the inequality holds if G is regular.

Proof. Consider the notation in the proof of Theorem 4, and the function

c(y) = W(δ, y) = 2δα+ 1
2 (y + δ− 2)−α(y + δ)−1yα+ 1

2 ,

with 2 ≤ δ ≤ y ≤ ∆. The argument in the proof of Theorem 4 gives that c(y) = W(δ, y) ≤
W(x, y) for every δ ≤ x ≤ y ≤ ∆.

We have

c′(y) = 2δα+ 1
2

[
−α(y + δ− 2)−α−1(y + δ)−1yα+ 1

2 − (y + δ− 2)−α(y + δ)−2yα+ 1
2

+

(
α +

1
2

)
(y + δ− 2)−α(y + δ)−1yα− 1

2

]
= 2δα+ 1

2 (y + δ− 2)−α−1(y + δ)−2yα− 1
2

[
− α(y + δ)y− (y + δ− 2)y

+

(
α +

1
2

)
(y + δ− 2)(y + δ)

]
= 2δα+ 1

2 (y + δ− 2)−α−1(y + δ)−2yα− 1
2

[
α(y + δ)(−y + y + δ− 2)

+(y + δ− 2)
(
−y +

y + δ

2

)]
= 2δα+ 1

2 (y + δ− 2)−α−1(y + δ)−2yα− 1
2

[
α(y + δ)(δ− 2)− 1

2
(y + δ− 2)(y− δ)

]
.

Consider first the case δ = 2. We have

c′(y) = 2δα+ 1
2 (y + δ− 2)−α−1(y + δ)−2yα− 1

2

[
α(y + δ)(δ− 2)− 1

2
(y + δ− 2)(y− δ)

]
= −δα+ 1

2 (y + δ− 2)−α(y + δ)−2yα− 1
2 (y− δ) ≤ 0.

Thus, miny∈[δ,∆] c(y) = c(∆).
Now, assume that δ ≥ 3. Let us consider the second degree polynomial

P(y) = α(y + δ)(δ− 2)− 1
2
(y + δ− 2)(y− δ).
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Because

P(0) = αδ(δ− 2)− 1
2
(δ− 2)(−δ) =

(
α +

1
2

)
δ(δ− 2) ≥ 0,

there exists at least a non-positive zero of P. Hence, there exists at most a zero of P in the
interval [δ, ∆]. Additionally, P(δ) = 2δ(δ− 2) > 0.

Thus, there exists, at most, a zero of c′ in the interval [δ, ∆] and c′(δ) > 0. Consequently,

min
y∈[δ,∆]

c(y) = min
{

c(δ), c(∆)
}

,

for every δ ≥ 3 and, so, for every δ ≥ 2. Therefore,

W(x, y) ≥W(δ, y) ≥ c(y) ≥ min
{

c(δ), c(∆)
}

= min
{

δ2α(2δ− 2)−α, 2(∆δ)α+ 1
2 (∆ + δ− 2)−α(∆ + δ)−1

}
,

for every δ ≤ x ≤ y ≤ ∆ and, by symmetry, for every δ ≤ x, y ≤ ∆. Consequently,

min

{
δ2α

(2δ− 2)α
,

2(∆δ)α+ 1
2

(∆ + δ− 2)α(∆ + δ)

}
du + dv

2
√

dudv
≤
(

du + dv − 2
dudv

)−α

for every uv ∈ E(G), and

AG(G) ≤ max

{
(2δ− 2)α

δ2α
,
(∆ + δ− 2)α(∆ + δ)

2(∆δ)α+ 1
2

}
ABC−α(G).

If G is regular, thus ∆ = δ and

max

{
(2δ− 2)α

δ2α
,
(∆ + δ− 2)α(∆ + δ)

2(∆δ)α+ 1
2

}
ABC−α(G)

max
{
(2δ− 2)α

δ2α
,
(2δ− 2)α2δ

2δ2α+1

}
δ2α

(2δ− 2)α
m = m = AG(G),

and the equality in the inequality holds.

Now, we relate the arithmetic-geometric and general atom-bond connectivity indices
with parameter greater than or equal to 1/2.

Theorem 6. If G is a graph with minimum degree δ ≥ 2 and maximum degree ∆, and β ≥ 1/2,
then

AG(G) ≤
(

∆2

2∆− 2

)β

ABCβ(G),

and the equality in the inequality is attained if and only if G is regular.

Proof. Define α = −β ≤ −1/2. As in the proof of Theorem 4, let us consider

W(x, y) =
(

x + y− 2
xy

)−α 2
√

xy
x + y

= 2(x + y− 2)−α(x + y)−1xα+ 1
2 yα+ 1

2
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on {2 ≤ δ ≤ x ≤ y ≤ ∆}. We have

∂W
∂x

= 2yα+ 1
2 xα− 1

2 (x + y− 2)−α−1(x + y)−2
[

α(x + y)(y− 2) +
1
2
(x + y− 2)(y− x)

]
≤ 2yα+ 1

2 xα− 1
2 (x + y− 2)−α−1(x + y)−2

[
−1

2
(x + y)(y− 2) +

1
2
(x + y− 2)(y− x)

]
= 2yα+ 1

2 xα− 1
2 (x + y− 2)−α−1(x + y)−2

[
−1

2
(x− 2)− (y− x)

]
≤ 0,

on {δ ≤ x ≤ y ≤ ∆}. Hence, W(y, y) ≤W(x, y) when δ ≤ x ≤ y ≤ ∆. We define now

b(y) = W(y, y) = 2−α

(
y− 1

y2

)−α

.

Subsequently,

b′(y) = α2−α

(
y− 1

y2

)−α−1 y− 2
y3 ≤ 0.

Consequently, b is a strictly decreasing function on δ ≤ y ≤ ∆, and

W(∆, ∆) = b(∆) ≤ b(y) = W(y, y) ≤W(x, y)

when δ ≤ x ≤ y ≤ ∆. Hence, by symmetry,(
2∆− 2

∆2

)β

= W(∆, ∆) ≤W(x, y)

for each δ ≤ x, y ≤ ∆, and(
2∆− 2

∆2

)β du + dv

2
√

dudv
≤
(

du + dv − 2
dudv

)β

for every uv ∈ E(G),

(
2∆− 2

∆2

)β

AG(G) ≤ ABCβ(G).

Remark 3. The arguments in the proof of Theorem 6 (with the same hypotheses) allow to obtain
the following lower bound of AG, but it is elementary:(

δ2

2δ− 2

)β

ABCβ(G) ≤ AG(G),

and the equality in the inequality holds if and only if G is regular.

3. General Bounds on the AG Index

In this section we obtain additional lower bounds of AG improving the lower bound
in (1), which do not involve other topological indices. The two following bounds involve
m and the minimum degree.

Theorem 7. If G is a graph with m edges, minimum degree δ, maximum degree δ + 1, and α is the
number of edges uv with du 6= dv, then α is an even integer and

AG(G) = m + α

(
2δ + 1

2
√

δ(δ + 1)
− 1

)
.
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Proof. Let D = {uv ∈ E(G) : du 6= dv}, then α is the cardinality of D. Because δ is the
minimum degree of G and δ + 1 is its maximum degree, if uv ∈ D, then du = δ and
dv = δ + 1 or vice versa and, therefore,

du + dv

2
√

dudv
=

2δ + 1
2
√

δ(δ + 1)
.

If uv ∈ Dc, then du = dv = δ or du = dv = δ + 1, and therefore

du + dv

2
√

dudv
= 1.

Because there are exactly α edges in D and m− α edges in Dc, we have

AG(G) = ∑
uv∈E(G)

du + dv

2
√

dudv

= ∑
uv∈Dc

du + dv

2
√

dudv
+ ∑

uv∈D

du + dv

2
√

dudv

= ∑
uv∈Dc

1 + ∑
uv∈D

2δ + 1
2
√

δ(δ + 1)

= m− α + α
2δ + 1

2
√

δ(δ + 1)
.

Assume, for contradiction, that α is an odd integer.
Let G1 be a subgraph of G induced by the n1 vertices with degree δ in V(G), and

denote by m1 the number of edges of G1. Handshaking Lemma gives n1δ − α = 2m1.
Because α is an odd integer, δ is also an odd integer. Thus, δ + 1 is an even integer.

Let G2 be a subgraph of G that is induced by the n2 vertices with degree δ + 1 in V(G),
and denote, by m2, the number of edges of G2. Handshaking Lemma gives n2(δ + 1)− α =
2m2, a contradiction, since α is an odd integer and δ + 1 is an even integer.

Thus, we conclude that α is an even integer.

Theorem 8. If G is a connected graph with m edges, minimum degree δ and maximum degree
δ + 1, then

AG(G) ≥ m +
2δ + 1√
δ(δ + 1)

− 2 ,

and the equality is attained for each δ.

Proof. Let α be the number of edges uv ∈ E(G) with du 6= dv. Theorem 7 gives that α is an
even integer. Because G is a connected graph, we have α 6= 0 and so, α ≥ 2. Since

2δ + 1
2
√

δ(δ + 1)
> 1

and α ≥ 2, Theorem 7 gives

AG(G) = m + α

(
2δ + 1

2
√

δ(δ + 1)
− 1

)

≥ m + 2

(
2δ + 1

2
√

δ(δ + 1)
− 1

)

= m− 2 +
2δ + 1√
δ(δ + 1)

.
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Given a fixed δ, let us consider the complete graphs Kδ+1 and Kδ+2 with δ + 1 and
δ + 2 vertices, respectively. Fix u1, u2 ∈ V(Kδ+1) and v1, v2 ∈ V(Kδ+2), and denote by
K′δ+1 and K′δ+2 the graphs obtained from Kδ+1 and Kδ+2 by deleting the edges u1u2 and
v1v2, respectively. Let Γδ be the graph with V(Γδ) = V(K′δ+1) ∪ V(K′δ+2) and E(Γδ) =

E(K′δ+1) ∪ E(K′δ+2) ∪ {u1v1} ∪ {u2v2}. Thus, Γδ has δ2 + 2δ + 1 edges, minimum degree δ,
maximum degree δ + 1, and Theorem 7 give

AG(Γδ) = δ2 + 2δ− 1 +
2δ + 1√
δ(δ + 1)

.

Hence, the equality is attained for each δ.

A chemical graph is a graph with ∆ ≤ 4.

Corollary 3. If G is a connected chemical graph with m edges, minimum degree δ, and maximum
degree δ + 1, then Then

AG(G) ≥ m− 2 +
7
√

3
6

.

Furthermore, the equality in the bound is attained.

Proof. Because G is a chemical graph, we have 1 ≤ δ ≤ 3. Since

min
1≤δ≤3

2δ + 1√
δ(δ + 1)

= min
{

3√
2

,
5√
6

,
7√
12

}
=

7
√

3
6

,

Theorem 8 gives the desired inequality.
The graph Γ3 in the proof of Theorem 8 provides that the equality is attained.

We need some definitions. Let G be a graph with maximum degree ∆ and minimum
degree δ < ∆− 1. We denote, by α0, α1, α2,, the cardinality of the subsets of edges

A0 = {uv ∈ E(G) : du = δ, dv = ∆},
A1 = {uv ∈ E(G) : du = δ, δ < dv < ∆},
A2 = {uv ∈ E(G) : du = ∆, δ < dv < ∆},

respectively.
We need the following result ([28], Theorem 5).

Lemma 4. If G is a graph with m edges, maximum degree ∆, and minimum degree δ < ∆− 1,
then

AG(G) ≤ ∆ + δ

2
√

∆δ
m− α1

(
∆ + δ

2
√

∆δ
− δ + ∆− 1

2
√

δ(∆− 1)

)
− α2

(
∆ + δ

2
√

∆δ
− ∆ + δ + 1

2
√

∆(δ + 1)

)
,

AG(G) ≥ m + α0

(
∆ + δ

2
√

∆δ
− 1
)
+ α1

(
2δ + 1

2
√

δ(δ + 1)
− 1

)
+ α2

(
2∆− 1

2
√

∆(∆− 1)
− 1

)
.

We are going to use Lemma 4 to obtain the following lower bound of AG involving m
and the minimum and maximum degree.

Theorem 9. Let G be a connected graph with m edges, maximum degree ∆ and minimum degree
δ < ∆− 1. Subsequently,

AG(G) ≥ m + min
{ 2δ + 1

2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
− 2 ,

∆ + δ

2
√

∆δ
− 1

}
.
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The equality in the bound is attained.

Proof. Because G is connected, we have two possibilities: A0 6= ∅, or A1 6= ∅ and A2 6= ∅.
In the first case, α0 ≥ 1 and, since

du + dv

2
√

dudv
≥ 1,

Lemma 4 gives

AG(G) ≥ m + α0

(
∆ + δ

2
√

∆δ
− 1
)
+ α1

(
2δ + 1

2
√

δ(δ + 1)
− 1

)
+ α2

(
2∆− 1

2
√

∆(∆− 1)
− 1

)

≥ m +
∆ + δ

2
√

∆δ
− 1 .

In the second case, α1, α2 ≥ 1 and Lemma 4 give

AG(G) ≥ m + α0

(
∆ + δ

2
√

∆δ
− 1
)
+ α1

(
2δ + 1

2
√

δ(δ + 1)
− 1

)
+ α2

(
2∆− 1

2
√

∆(∆− 1)
− 1

)

≥ m +
2δ + 1

2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
− 2 .

Let G be the graph in the figure.

We have m = 12, ∆ = 3, δ = 1, A0 = ∅, α0 = 0, A1 = {u2u3}, α1 = 1, A2 = {u1u2}
and α2 = 1. Additionally, if uv /∈ A0 ∪ A1 ∪ A2, then du = dv. Thus,

AG(G) = ∑
uv∈E(G)\A0∪A1∪A2

du + dv

2
√

dudv
+ ∑

uv∈A0

∆ + δ

2
√

∆δ
+ ∑

uv∈A1

δ + dv

2
√

δdv
+ ∑

uv∈A2

∆ + dv

2
√

∆dv

= 10 +
2δ + 1

2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
= 10 +

3
2
√

2
+

5
2
√

6
≈ 12.0813

The lower bound is

m+min

{
2δ + 1

2
√

δ(δ + 1)
+

2∆− 1
2
√

∆(∆− 1)
− 2,

∆ + δ

2
√

∆δ
− 1

}

12+min
{

3
2
√

2
+

5
2
√

6
− 2,

2√
3
− 1
}

≈ 12 + min{0.0813, 0.1547} = 12.0813

and so, this graph attains the equality in the inequality.

4. Conclusions

Topological indices have become a useful tool for the study of theoretical and practical
problems in different areas of science. An important line of research that is associated with
topological indices is to find optimal bounds and relations between known topological
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indices. In particular, to obtain bounds for the topological indices that are associated with
invariant parameters of a graph.

We have the following nine results for the arithmetic-geometric index AG:

• An upper and lower bound of AG based on the first and second variable Zagreb
indices (Theorem 1).

• An upper bound of AG that is based on the second variable Zagreb index Ma
2

(Theorem 2).
• An upper and lower bound of AG based on SDD (Theorem 3).
• An upper bound of AG based on the general atom-bond connectivity index ABCa

(Theorem 4).
• Another upper bound of AG based on the general atom-bond connectivity index

ABCa for graphs with minimum degree δ ≥ 2 (Theorem 5).
• A further upper bound of AG based on the general atom-bond connectivity index

ABCa for graphs with minimum degree δ ≥ 2 (Theorem 6).
• An exact formula of AG based on the number of edges m and the minimum degree δ

if the maximum degree is δ + 1 (Theorem 7).
• A lower bound of AG based on the number of edges m and the minimum degree δ if

the maximum degree is δ + 1 (Theorem 8). We provide a family of graphs for which
the equality is attained.

• A lower bound of AG that is based on the number of edges m, the minimum degree δ,
and the maximum degree ∆ (Theorem 9). We provide a graph for which the equality
is attained.

Because the arithmetic-geometric index is useful from a practical point of view, to
know extremal graphs for each bound involving this index allows for detecting chemical
compounds that could satisfy desirable properties. Hence, these extremal graphs should
correspond to molecules with a extremal value of a desired property correlated well with
this index.

In the case of centrality indices, the generalization of degree has turned out to be a
useful approach: the role of a more interconnected node can differ from a node that is
connected to nodes having a lower degree [35]. We would like to purpose as a direction for
future research to study similar problems for centrality indices.
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10. Vukičević, D.; Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of

edges. J. Math. Chem. 2009, 46, 1369–1376. [CrossRef]
11. Das, K.C. On geometric-arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 2010, 64, 619–630. [CrossRef]
12. Das, K.C.; Gutman, I.; Furtula, B. Survey on Geometric-Arithmetic Indices of Graphs. MATCH Commun. Math. Comput. Chem.

2011, 65, 595–644.
13. Das, K.C.; Gutman, I.; Furtula, B. On first geometric-arithmetic index of graphs. Discrete Appl. Math. 2011, 159, 2030–2037.

[CrossRef]
14. Martínez-Pérez, A.; Rodríguez, J.M.; Sigarreta, J.M. A new approximation to the geometric-arithmetic index. J. Math. Chem. 2018,

56, 1865–1883. [CrossRef]
15. Mogharrab, M.; Fath-Tabar, G.H. Some bounds on GA1 index of graphs. MATCH Commun. Math. Comput. Chem. 2010, 65, 33–38.
16. Rodríguez, J.M.; Sigarreta, J.M. Spectral properties of geometric-arithmetic index. Appl. Math. Comput. 2016, 277, 142–153.

[CrossRef]
17. Sigarreta, J.M. Bounds for the geometric-arithmetic index of a graph. Miskolc Math. Notes 2015, 16, 1199–1212. [CrossRef]
18. Shegehall, V.S.; Kanabur, R. Arithmetic-geometric indices of path graph. J. Math. Comput. Sci. 2015, 16, 19–24.
19. Shegehall, V.S.; Kanabur, R. Arithmetic-geometric indices of graphs with pendant vertices attached to the middle vertices of path.

J. Math. Comput. Sci. 2015, 6, 67–72.
20. Shegehall, V.S.; Kanabur, R. Computation of new degree-based topological indices of graphene. J. Math. 2016, 2016, 4341919.

[CrossRef]
21. Zheng, L.; Tian, G.-X.; Cui, S.-Y. On spectral radius and energy of arithmetic-geometric matrix of graphs. MACTH Commun. Math.

Comput. Chem. 2020, 83, 635–650.
22. Guo, X.; Gao, Y. Arithmetic-geometric spectral radius and energy of graphs. MACTH Commun. Math. Comput. Chem. 2020,

83, 651–660.
23. Das, K.C.; Gutman, I. Degree-based energies of graphs. Linear Algebra Appl. 2018, 554, 185–204. [CrossRef]
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