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Abstract: The paper aims to study a concrete structure, currently used in civil engineering, which
has certain symmetries. This type of problem is common in engineering practice, especially in civil
engineering. There are many reasons why structures with identical elements or certain symmetries
are used in industry, related to economic considerations, shortening the design time, for constructive,
simplicity, cost or logistical reasons. There are many reasons why the presence of symmetries has
benefits for designers, builders, and beneficiaries. In the end, the result of these benefits materializes
through short execution times and reduced costs. The paper studies the eigenvalue and eigenmode
properties of vibration for components of the constructions’ structure, often encountered in current
practice. The identification of such properties allows the simplification and easing of the effort
necessary for the dynamic analysis of such a structure.
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1. Introduction

Frequently encountered in the design and construction of structures used in civil
engineering, symmetries allow, in many cases, the simplification of calculations and dy-
namic analysis of such a structure. The direct consequence would be the shortening of
the design and execution time and, of course, the decrease of the costs generated by these
stages. The smaller information provided by a repetitive or symmetrical structure can help
ease the computational effort. In the case of a static calculation, methods of approaching
this problem are presented in the Strength of Materials courses. In the dynamic case,
considering the elastic elements and studying the vibrations, although certain properties
have long been observed [1], a systematic study of the problem has not yet been done.
A case in which the symmetries introduced by two identical motors and their effect on
vibrations were considered was studied [2]. The use of identical systems was applied to
the design of a centrifugal pendulum vibration absorber system [3]. Circular symmetry
and its induced properties have been reported previously [4,5]. Other particular cases have
been studied [6] using a finite difference method and [7] for continuous systems. In the
following, we will study the case of a mechanical system consisting of four trusses, two
of which are identical. The transverse and torsional vibrations of such a system that are
strongly coupled for the chosen case will be studied.

In the field of engineering, not only in civil engineering, but also in other fields such
as the machine or machinery manufacturing industry, the automotive industry, and the
aerospace industry, there are products, parts of products, machines, and components that
contain identical, repetitive elements, which have, in their composition, parts that show
symmetries of different types.
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Until now, symmetries in Mechanics have been studied mainly from the point of view
of the mathematics involved [8], as they have effects in writing equations of motion [9], but
their applications in practice are little studied [10]. In January 2018, a special issue of the
Symmetry review dedicated to applications in Structural Mechanics (Civil Engineering and
Symmetry-2018, ISSN 2073-8994, [11]) was launched. The course Similarity, Symmetry and
Group Theoretical Methods in Mechanics was organized at the Center for Solid Mechanics-
CISM from UDINE (see ref. [12]).

The use of substructures in the design of the aeronautical industry is a relatively
common procedure used to reduce working time. Finite element models of different parts
are condensed into substructures. Obviously a substructure contains less degree of freedom
(DOF) than the entire structure and it is easier to model it. Likewise, for identical parts that
are found in the construction and design of aeronautical panels, if the substructure has
been generated for one part, the generation of the whole assembly becomes easier to do. A
method reduces the size of the model, useful in the design stage and in the manufacture of
the entire structure. The accuracy of the finite element analysis performed is maintained.
An illustration of this method is presented in a previous work [13].

The modeling of mechanical systems with repetitive or identical parts leads, finally, to
systems of differential equations that describe the answer of such systems, which have, in
their component, strings of identical terms. This feature leads to simpler methods of solving
these systems of differential equations. Such an issue is addressed in studies [14,15].

The vast majority of buildings, works of art, halls, and in general, the constructions,
have identical parts and have symmetries. It is a situation that has existed since the begin-
ning of the first constructions made by man (antiquity) and the reasons are of several kinds
as an easier, faster design, then a cheaper realization and, less important for engineers but
important for beneficiaries, for aesthetic reasons. The structures have in their composition
repetitive elements or present different forms of symmetry. These properties can be used
successfully to facilitate static and dynamic analysis.

Group theory has been used extensively to study various phenomena in physics and
chemistry, such as quantum mechanics, crystallography, and molecular structure. However,
this theory can find a fertile field of application in engineering. This allows simplifying
the analysis of systems that have certain symmetries or identical parts. In this way, it was
efficient in the study of vibrations or the dynamic or kinematic analysis of mechanical
systems. The use of group theory in engineering was analyzed [16,17]. Different aspects
of the use of symmetry in engineering are presented in other papers. In a research [18],
the influence of the symmetry of boundary condition in the description of the models was
studied. Some theoretical basis and an attempt to classify the symmetries that occur in
structures were presented [19] and application of the symmetry in engineering structures
were presented [20,21].

In recent years, new and interesting methods of studying this type of problem have
been studied by researchers [22,23] and new ways to deal with such problems were re-
ported [24,25].

However, there are still many situations that can be studied and, therefore, the present
paper aims to complete the cases studied and to offer proposals for the application of these
properties that could help a design engineer to ease his effort.

2. Model and Free Vibration Response

We have 2 coplanar reinforced concrete beams with different properties. AD beam is a
main beam, considered double clamped at both ends, with the length L1 + L2. CB beam is a
secondary beam, considered simply supported at both ends (nodes C and B), with length
L3 + L3. The beams are made monolithically, so at point O of the intersection, a rigid knot
is created. The secondary beam is arranged symmetrically to the main beam. The 2 beams
have the Young’s moduli E1 and E2. The 2 beams have different sectional properties: for
beam AD, we have the moment of inertia Iz1 and the area of section A1, and for beam
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CB, we have the moment of inertia Iz2 and the area of section A2, with the property that
Iz1 > Iz2 and A1 > A2. The whole structure is presented in Figure 1.
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Figure 1. Structure with repetitive cells.

Thus, the model of the mechanical system considered (Figure 2) consists of two
identical trusses OB and OC rigidly fixed, perpendicular to a third bar AOD. The trusses
can have transverse vibrations in a direction perpendicular to the ABDC plane and torsional
vibrations. The trusses are clamped in the points B and C. In A and D, the AOD trusses
are clamped, so the displacement, slope, and torsion angle at these points are zero. For
point O, the transverse displacements of point O belonging to all four bars are equal. The
torsion angle of the truss AO in O is equal to the torsion angle of the truss OD in O and
with the slope of the bars OB and OC in O. The torsion angle of the trusses OB and OC in
O is equal to the slope of the trusses AO and OD in point O. The sum of the shear forces
and moments in O will be zero.
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We will study a continuous concrete truss, homogeneous, with constant section. If
there are no forces distributed or concentrated along the length of the truss, the vibrations
of this are described by the well-known Equations [26]:

∂4v
∂x4 +

ρA
EIz

∂2v
∂t2 = 0 (1)

The notations used in Equation (1) are the following: v—is the truss deflection, A—s
the cross section, ρ is the mass density, E—Young’s modulus, and Iz is the second area
moment of inertia with respect to the z axis and x is the ordinate of the point having the
deflection v.
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To solve Equation (1), we look for a solution of the form [27–29]:

v(x, t) = Φ(x) sin(pt + θ). (2)

Equation (2) must check Equation (1) at any time and, imposing this condition, we
obtain:

∂4Φ
∂x4 − p2 ρA

EIz
Φ = 0 (3)

Denote:
λ4 =

ρA
EIz

(4)

Then, Equation (1) becomes:

∂4Φ
∂x4 − p2λ4Φ = 0 (5)

In Equation (5), Φ represents the function, depending on the abscissa x, which gives
us the deformed bar (eigenmode) corresponding to its eigenpulsation p. The solution is:

Φ(x) = C1 sin(λ
√

px) + C2 cos(λ
√

px) + C3sh(λ
√

px) + C4ch(λ
√

px). (6)

The constants C1, C2, C3, C4 are determined considering the boundary conditions for
this problem.

In the following, we will use Equation (5) for the domains defined by the four trusses,
obtaining, in this way, four differential equations of the fourth order, corresponding to the
frames AO, OD, OB, OC (see Appendix A).

The study of torsional vibrations for a straight bar, unloaded over the length, leads to
the second order differential equation:

∂2 ϕ

∂x2 −
J

GIp

∂2 ϕ

∂t2 = 0 (7)

where ϕ is the angle of torsion of the cross section being at the distance x from the end of
the truss, J = ρIp is the polar moment of inertia, Ip is the polar second moment of the area,
and G is shear’s modulus.

The solution Equation (7) is sought in the form:

ϕ(x, t) = ψ(x) sin(pt + θ) (8)

Equation (8) must verify Equation (7), from which we obtain:

∂2ψ

∂x2 + p2δ2
i Φ = 0 (9)

where the notation was made:
δ2 =

J
G Ip

(10)

The solution is:
ψ(x) = D1 sin(δpx) + D2 cos(δpx) (11)

Denoted by Mb is the bending moment of a bar in section x, T the shear force that
appears in the cross section and with Mt the torque. For the studied system in the paper,
the boundary conditions are:

(a) For the AO truss, the end A is clamped, so: vAO(0, t) = 0; v′AO(0, t) = 0; ϕ(0, t) = 0;
(b) For the OD truss, the end D is supported, so: vOD(L1, t) = 0; v′OD(L1, t) = 0; ϕ(0, t) = 0;
(c) For the OB truss, the end B is supported so: vOB(L3, t) = 0; Mb

OB(L3, t) = 0;
Mt

OB(L3, t) = 0;
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(d) For the OC truss, the end C is clamped, so: vOC(L3, t) = 0; Mb
OC(L3, t) = 0;

Mt
OC(L3, t) = 0.

Imposing these conditions, for the considered four bars, 12 boundary conditions are
obtained. The two moments and the shear force are expressed by the known relationships
in the mechanics of the deformable solid [30–33]:

Mb(x) = −EIz
∂2v(x)

∂x2 ; T(x) = EIz
∂3v(x)

∂x3 ; Mt(x) = GIp
∂ϕ(x)

∂x
(12)

Using the Equation (12), the solutions presented in Appendixes, and the boundary
conditions (a), (b), (c), and (d) result in 12 linear equations involving the unknown constants
(Appendix A).

The continuity of the elastic system at point O leads to the following conditions: we
have once that the displacements in C for all trusses: vAO(L2, t) = vOD(0, t) = vOB(0, t) =
vOC(0, t), (three conditions), the slopes in O of the trusses AO and OD are equal to the tor-
sion angle of the trusses OB and OC in: v′AO(L2, t) = v′OD(0, t) = ϕOB(0, t) = −ϕOC(0, t),
(three conditions), and the torsion angles of the bars AO and OD in O are equal to the
slopes of the bar OB and OC in O: ϕAO(L2, t) = ϕOD(0, t) = v′OB(0, t) = −v′OC(0, t)) (three
conditions). These mean nine conditions presented in the Appendix B, from which nine
linear equations result.

Three more conditions are needed to obtain the constants in the written differential
equations. They are obtained by considering the equilibrium of an infinitesimal element of
the mass containing the point O.

The sum of the four shear forces in O must be zero, so:

T1 + T2 + T3− T4 = 0 (13)

A similar equilibrium relation is obtained for bending and torsional moments:

Mb1 + Mb2 + Mt3 −Mt4 = 0, (14)

Mt1 + Mt2 + Mb3 −Mb4 = 0 (15)

Writing these three conditions results in three linear equations (Appendix C). The
unknowns are: {

BAO
}
=
[

CAO
1 CAO

2 CAO
3 CAO

4 DAO
1 DAO

2
]

(16){
BOD

}
=
[

COD
1 COD

2 COD
3 COD

4 DOD
1 DOD

2
]

(17){
BOB

}
=
[

COB
1 COB

2 COB
3 COB

4 DOB
1 DOB

2
]

(18){
BOC

}
=
[

COC
1 COC

2 COC
3 COC

4 DOC
1 DOC

2
]

(19)

or:

{B} =


{

BAO}{
BOD}{
BOB}{
BOC}

 (20)

In such way, a homogeneous linear system with 24 equations with 24 unknowns was
obtained. In order to have other solutions besides the trivial solution zero, the determinant
of the system must be zero. Putting this condition, the obtained eigenfrequencies of the
system can be determined from the obtained equation.

The continuous models used in our studies are excellent for a classical analysis of
such systems. The boundary conditions, written for these models, ultimately lead to a
linear system of homogeneous equations. For this system to have a solution other than the



Symmetry 2021, 13, 656 6 of 18

trivial solution, zero, it is necessary that the system determinant be equal to zero. Imposing
this condition leads to writing the characteristic equation that will provide, by solving, its
eigenfrequencies of vibration. Once these values are known, then, we can determine your
eigenmodes for these frequencies.

The matrix of the system can be written, in a concise form:

A24×24

 A11 0 A12
0 A11 A12

A21 A21 A22

 (21)

where the matrices
[
Aij
]

are presented in Appendix C.

[A]{B} = {0} (22)

The condition:
det(A) = 0 (23)

offers the eigenvalues of the system of differential equations.

3. Properties of the Eigenvalues and Eigenmodes

Let us now consider one of the identical trusses OB and OC. The truss is clamped in O
and supported in B (or C). Equations (1) and (7) are also valid for the OB bar (OC), with
the boundary conditions:

For point O:
x = 0; v(0, t) = 0; v′(0, t) = 0; ϕ(0, t) = 0 (24)

and for the point B(C):

x = L3; v(L3, t) = 0; Mb(L3, t) = 0; Mt(L3, t) = 0 (25)

The solution is:

Φ(x) = C1 sin(λ2
√

px) + C2 cos(λ2
√

px) + C3sh(λ2
√

px) + C4ch(λ2
√

px) (26)

for transversal vibrations and:

ψ(x) = D1 sin(δ2 px) + D2 cos(δ2 px) (27)

with the imposed boundary conditions for this case:

COB
2 + COB

4 = 0; COB
1 + COB

3 = 0; DOB
2 = 0 (28)

CBO
1 sin(λ2

√
pL3) + CBO

2 cos(λ2
√

pL3) + CBO
3 sh(λ2

√
pL3) + CBO

4 ch(λ2
√

pL3) = 0 (29)

− CBO
1 sin(λ2

√
p L3)− CBO

2 cos(λ2
√

pL3) + CBO
3 sh(λ2

√
pL3) + CBO

4 ch(λ2
√

pL3) = 0 (30)

DBO
1 cos(δ2 pL3)− DBO

2 sin(δ2 pL3) = 0 (31)

Using conditions expressed by Equations (28)–(31), it is now possible to determine the
constants CBO

1 , CBO
2 , CBO

3 , CBO
4 , DBO

1 , DBO
2 from the linear homogenous system:

[A11]
{

BOB
}
= 0 (32)

where [A11] is the matrix determined by Equation (A76).
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If the condition of the existence of non-zero solutions is set:

det (A11) = 0 (33)

It is now possible to obtain the eigenvalues of the truss OB (or OC).
The following theorems will be proved in the following:

Theorem 1. The eigenvalues for the OB truss, clamped at one end and supported at the other, are
also eigenvalues for the entire mechanical system.

Proof. We must show that det (A) = 0 implies det (S) = 0. In reference [34], this property is
proved in a more general case. It turns out that the property is valid in our case. �

It follows that the eigenvalues of a single truss in Appendix D, clamped at one end
and supported at the other, are also eigenvalues of the composed system, clamped in A
and D and with the ends B and C supported.

Using the matrix done by Equation (A76), and obtaining the eigenvalues for this
matrix, the eigenmodes of deformations are obtained using Equation (A85). The following
two theorems will be proved:

Theorem 2. For eigenvalues that are common to the whole mechanical system (Figure 3) and to the
subsystem in Figure A1 (see Theorem 1), eigenvectors are of the form:

Φ =

−
Φ1
Φ1
0

 (34)

(the existence of common eigenvalues is proved by theorem T1).
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Proof. For the eigenvalues obtained from Equation (33), the following system must be
solved:  A11 0 A12

0 A11 A12
A21 A21 A22


ΦOB
ΦOC

ΦAOD

 =


0
0
0

 (35)
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where:
detA11 = 0 (36)

Condition (36) implies that a vector ΦOB can be found, such that:

A11ΦOB = 0 (37)

Suppose that we determined this vector. Equation (35) becomes, after performing
some simple calculations:

A11ΦOB + A12ΦAOD = 0 (38)

A11ΦOC + A12ΦAOD = 0 (39)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (40)

If we take into account Equation (37), the system of Equations (38)–(40) becomes:

A12ΦAOD = 0 (41)

A11ΦOC + A12ΦAOD = 0 (42)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (43)

From Equation (41), because, in general, detA12 6= 0, it follows immediately:

ΦAOD = 0 (44)

and introducing that in Equation (43), we obtain ΦOB = −ΦOC, a relation which verifies
also Equation (42), if we take into account Equation (37). If ΦOB = Φ1 is denoted, it results
in Equation (34). �

Theorem 3. For the other eigenvalues of the system, the eigenvectors are of the form:

Φ =


Φ1
Φ1
Φ3

 (45)

Proof. For the eigenvalues calculated, the system of Equation (35) must be solved, with
detA11 6= 0 or:

A11ΦOB + A12ΦAOD = 0 (46)

A11ΦOC + A12ΦAOD = 0 (47)

A21(ΦOB + ΦOC) + A22ΦAOD = 0 (48)

Subtracting (47) from (46), we get:

A11(ΦOB −ΦOC) = 0 (49)

If det A 6= 0, it results in Φs −Φm = 0 and Φs = Φm = Φ1. �

A block diagram representing the stage of the analysis is presented in Figure 4.
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in Equation (34). □ 

Theorem 3. For the other eigenvalues of the system, the eigenvectors are of the form: 𝛷 = 𝛷𝛷𝛷  (45) 

Proof. For the eigenvalues calculated, the system of Equation (35) must be solved, with det 𝐴 ≠  0 or: 𝐴 𝛷 + 𝐴 𝛷 = 0 (46) 𝐴 𝛷 + 𝐴 𝛷 = 0 (47) 𝐴 (𝛷 + 𝛷 ) + 𝐴 𝛷 = 0 (48) 
Subtracting (47) from (46), we get: 𝐴 (𝛷 − 𝛷 ) = 0 (49) 
If det 𝐴 ≠  0, it results in 𝛷 − 𝛷 = 0 and 𝛷 = 𝛷 = 𝛷 . □ 

A block diagram representing the stage of the analysis is presented in Figure 4. 
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For the eigenfrequencies of the system that are the same with the eigenvalues of a 
single clamped truss at one end and supported at the other, the eigenmodes are skew 

Figure 4. Block diagram of the operation.

For the eigenfrequencies of the system that are the same with the eigenvalues of a
single clamped truss at one end and supported at the other, the eigenmodes are skew
symmetric, the two identical trusses vibrate in counterphase, and the third truss AOD rests.
For the other eigenfrequencies, the identical trusses have identical eigenmodes.

4. Conclusions

Buildings and constructions, in general, show different forms of symmetry or are
made up of repetitive elements. The existence of these symmetries leads to obtaining
advantages related to the calculation, design, and manufacture of the structure. One of the
advantages is related to the ease of describing the system by systematizing the information
used; then, the properties demonstrated in the paper allow to decrease the time required
to perform calculations and all this will allow savings and simplifications in the design
process. Then, the existence of identical elements or identical parts can simplify the process
of making the structure, by simplifying the labor and effort required to manufacture the
structure. In conclusions, the design is simpler, and the realization costs are lower. There
are also aesthetic reasons that justify the realization of structures with symmetries. From
the point of view of calculation and behavior in static and dynamic cases, symmetries
can bring significant advantages. In the strength of materials, symmetries are widely
used in the static analysis of structures. However, they can be used for dynamic analysis,
so that the vibrations of such structures allow simplification of the calculation and time
savings in the design process. The paper has presented several vibration properties of
a symmetrical structure made of concrete, used in civil engineering. Such structures are
frequently encountered in the construction of buildings and in civil engineering and the
knowledge of vibration properties can prove to be an advantage that allows to reduce the
time and costs related to the design. We mention that symmetries appearing in all aspects
of current life and in engineering applications are common. In consequence, the results
obtained can be extended to other situations that may be encountered in practice. Future
research could reveal other types of symmetries that will allow the systematization of the
results and the proposal of a strategy to approach the design and execution of systems with
identical parts or symmetries.
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Appendix A

For the truss AO:
∂4ΦAO

∂x4 − ρ1 A1

E1 Iz1
p2ΦAO = 0 (A1)

For the truss OD:
∂4ΦBC

∂x4 − ρ1 A1

E1 Iz1
p2ΦOD = 0 (A2)

For the truss OB:
∂4ΦOB

∂x4 − ρ2 A2

E2 Iz2
p2ΦOB = 0 (A3)

For the truss OC:
∂4ΦOC

∂x4 − ρ2 A2

E2 Iz2
p2ΦOC = 0 (A4)

The following notations are made:

ρ1 A1

E1 Iz1
= λ4

1;
ρ2 A2

E2 Iz2
= λ4

2 (A5)

Using (A5), the four solutions for the four differential equations of order four (A1)–(A4)
are:

ΦAO(x) = CAO
1 sin(λ1

√
px) + CAO

2 cos(λ1
√

px) + CAO
3 sh(λ1

√
px) + CAO

4 ch(λ1
√

px) (A6)

ΦOD(x) = COD
1 sin(λ1

√
px) + COD

2 cos(λ1
√

px) + COD
3 sh(λ1

√
px) + COD

4 ch(λ1
√

px) (A7)

ΦOB(x) = COB
1 sin(λ2

√
px) + COB

2 cos(λ2
√

px) + COB
3 sh(λ2

√
px) + COB

4 ch(λ2
√

px) (A8)

ΦOC(x) = COC
1 sin(λ2

√
px) + COC

2 cos(λ2
√

px) + COC
3 sh(λ2

√
px) + COC

4 ch(λ2
√

px) (A9)

For torsion, the notation was made:

δ2
i =

Ji
Gi Ipi

i = 1, 2 (A10)

Index 1 corresponds to trusses AO and OD and index 2 to trusses OB and OC. Apply-
ing Equation (8) for the four trusses studied, leads us to:

For torsional vibrations of the bar AO:

∂2ψAO
∂x2 + p2δ2

1ψAO = 0 (A11)
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for torsional vibrations of the bar OD:

∂2ψOD
∂x2 + p2δ2

1ψOD = 0 (A12)

for torsional vibrations of the bar OB:

∂2ψOB
∂x2 + p2δ2

2ψOB = 0 (A13)

for torsional vibrations of the bar OC:

∂2ψOC
∂x2 + p2δ2

2ψOC = 0 (A14)

The solutions of the four equations (A11)–(A14) are:

ψAO(x) = DAO
1 sin(δ1 px) + DAO

2 cos(δ1 px) (A15)

ψOD(x) = DOD
1 sin(δ1 px) + DOD

2 cos(δ1 px) (A16)

ψOB(x) = DOB
1 sin(δ2 px) + DOB

2 cos(δ2 px) (A17)

ψOC(x) = DOC
1 sin(δ2 px) + DOC

2 cos(δ2 px) (A18)

The solutions contain 24 integration constants that will be determined considering the
boundary conditions.

The two moments and the shear force are expressed by the known relationships in the
mechanics of the deformable solid [26,27]:

Mb(x) = −EIz
∂2v(x)

∂x2 ; T(x) = EIz
∂3v(x)

∂x3 ; Mt(x) = GIp
∂ϕ(x)

∂x

However:
Truss AO:

∂v(x)
∂x

= uoΦ′AO(x) sin(pt + θ) =

λ1
√

p
[
CAO

1 cos(λ1
√

px)− CAO
2 sin(λ1

√
px) + CAO

3 ch(λ1
√

px) + CAO
4 (shλ1

√
px)
]

sin(pt + θ)
(A19)

∂2v(x)
∂x2 = uoΦ′′AO(x) sin(pt + θ) =

(λ1
√

p)2
[
−CAO

1 sin(λ1
√

px)− CAO
2 cos(λ1

√
px) + CAO

3 sh(λ1
√

px) + CAO
4 ch(λ1

√
px)
]

sin(pt + θ);
(A20)

∂3v(x)
∂x3 = Φ′′′AO(x) sin(pt + θ) =

(λ1
√

p)3
[
−CAO

1 cos(λ1
√

px) + CAO
2 sin(λ1

√
px) + CAO

3 ch(λ1
√

px) + CAO
4 sh(λ1

√
px)
]

sin(pt + θ)

(A21)

∂ϕ(x)
∂x

= ψ′AO sin(pt + θ) = δ1 p
[

DAO
1 cos(δ1 px)− DAO

2 sin(δ1 px)
]

sin(pt + θ) (A22)

Truss OD:

∂v(x)
∂x

= λ1
√

p
[
COD

1 cos(λ1
√

px)− COD
2 sin(λ1

√
px) + COD

3 ch(λ1
√

px) + COD
4 sh(λ1

√
px)
]

sin(pt + θ) (A23)

∂2v(x)
∂x2 = (λ1

√
p)2
[
−COD

1 sin(λ1
√

px)− COD
2 cos(λ1

√
px) + COD

3 sh(λ1
√

px) + COD
4 ch(λ1

√
px)
]

sin(pt + θ) (A24)

∂3v(x)
∂x3 = (λ1

√
p)3
[
−COD

1 cos(λ1
√

px) + COD
2 sin(λ1

√
px) + COD

3 ch(λ1
√

px) + COD
4 sh(λ1

√
px)
]

sin(pt + θ) (A25)
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∂ϕ(x)
∂x

= ϕoψ′AO sin(pt + θ) = ϕoδ1 p
[

DOD
1 cos(δ1 px)− DOD

2 sin(δ1 px)
]

sin(pt + θ) (A26)

Truss OB:
∂v(x)

∂x
= λ2

√
p
[
COB

1 cos(λ2
√

px)− COB
2 sin(λ2

√
px) + COB

3 ch(λ2
√

px) + COB
4 sh(λ2

√
px)
]

sin(pt + θ) (A27)

∂2v(x)
∂x2 = (λ2

√
p)2
[
−COB

1 sin(λ2
√

px)− COB
2 cos(λ2

√
px) + COB

3 sh(λ2
√

px) + COB
4 ch(λ2

√
px)
]

(A28)

∂3v(x)
∂x3 = (λ2

√
p)3
[
−COB

1 cos(λ2
√

px) + COB
2 sin(λ2

√
px) + COB

3 ch(λ2
√

px) + COB
4 sh(λ2

√
px)
]

sin(pt + θ) (A29)

∂ϕ(x)
∂x

= ϕoδ2 p
[

DOB
1 cos(δ2 px)− DOB

2 sin(δ2 px)
]

sin(pt + θ) (A30)

Truss OC:
∂v(x)

∂x
= λ2

√
p
[
COC

1 cos(λ2
√

px)− COC
2 sin(λ2

√
px) + COC

3 ch(λ2
√

px) + COC
4 sh(λ2

√
px)
]

sin(pt + θ) (A31)

∂2v(x)
∂x2 = (λ2

√
p)2
[
−COC

1 sin(λ2
√

px)− COC
2 cos(λ2

√
px) + COC

3 sh(λ2
√

px) + COC
4 ch(λ2

√
px)
]

sin(pt + θ) (A32)

∂3v(x)
∂x3 = (λ2

√
p)3
[
−COC

1 cos(λ2
√

px) + COC
2 sin(λ2

√
px) + COC

3 ch(λ2
√

px) + COC
4 sh(λ2

√
px)
]

sin(pt + θ) (A33)

∂ϕ(x)
∂x

= ϕoδ2 p
[

DAO
1 cos(δ2 px)− DAO

2 sin(δ2 px)
]

sin(pt + θ) (A34)

The following relations will be obtained:

CAO
2 + CAO

4 = 0 (A35)

CAO
1 + CAO

3 = 0 (A36)

DAO
2 = 0 (A37)

COD
1 sin(λ1

√
pL1) + COD

2 cos
(
λ1
√

pL1
)
+ COD

3 sh
(
λ1
√

pL1
)
+ COD

4 ch
(
λ1
√

pL1
)
= 0 (A38)

COD
1 cos(λ1

√
pL1)− COD

2 sin(λ1
√

pL1) + COD
3 ch(λ1

√
pL1) + COD

4 sh
(
λ1
√

pL1
)
= 0 (A39)

DOD
1 sin(δ1 pL1) + DOD

2 cos(δ1 pL1) = 0 (A40)

COB
1 sin(λ2

√
pL3) + COB

2 cos
(
λ2
√

pL3
)
+ COB

3 sh
(
λ2
√

pL3
)
+ COB

4 ch
(
λ2
√

pL3
)
= 0 (A41)

−COB
1 sin

(
λ2
√

pL3
)
− COB

2 cos(λ2
√

pL3) + COB
3 sh

(
λ2
√

pL3
)
+ COB

4 ch
(
λ2
√

pL3
)
= 0 (A42)

DOB
1 cos(δ2 pL3)− DOB

2 sin(δ2 pL3) = 0 (A43)

COC
1 sin(λ2

√
pL3) + COC

2 cos
(
λ2
√

pL3
)
+ COC

3 sh(λ2
√

pL3) + COC
4 ch(λ2

√
pL3) = 0 (A44)

−COC
1 sin

(
λ2
√

pL3
)
− COC

2 cos(λ2
√

pL3) + COC
3 sh(λ2

√
pL3) + COC

4 ch(λ2
√

pL3) = 0 (A45)

DOC
1 cos(δ2 pL3)− DOC

2 sin(δ2 pL3) = 0 (A46)

which represent a system of 12 equations.

Appendix B

These nine conditions lead to nine relationships:

CAO
1 sin(λ1

√
pL2) + CAO

2 cos(λ1
√

pL2) + CAO
3 sh(λ1

√
pL2) + CAO

4 ch(λ1
√

pL2) =

COD
2 + COD

4 = COB
2 + COB

4 = COC
2 + COC

4

(A47)

λ1
√

p
[
CAO

1 cos(λ1
√

pL2)− CAO
2 sin(λ1

√
pL2) + CAO

3 ch(λ1
√

pL2) + CAO
4 sh(λ1

√
pL2)

]
=

λ1
√

p
[
COD

1 + COD
3

]
= DOB

2 = −DOC
2

(A48)
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DAO
2 = DOD

2 = λ2
√

p
[
COB

1 + COB
3

]
= λ2

√
p
[
COC

1 + COC
3

]
(A49)

or :
1

λ2
√

p
DAO

2 =
1

λ2
√

p
DOD

2 = COB
1 + COB

3 = COC
1 + COC

3 (A50)

in which, together, (A35)–(A46) represent a system of 21 equations.
From (A47), we can obtain the equations:

COB
2 + COB

4 − COD
2 − COD

4 = 0 (A51)

COC
2 + COC

4 − COD
2 − COD

4 = 0 (A52)

CAO
1 sin(λ1

√
pL2) + CAO

2 cos(λ1
√

pL2) + CAO
3 sh(λ1

√
pL2) + CAO

4 ch(λ1
√

pL2) − COD
2 + COD

4 = 0. (A53)

From (A48), we can obtain the equations:

2: COB
1 + COB

3 − 1
λ2
√

p
DAO

2 = 0 (A54)

COC
1 + COC

3 − 1
λ2
√

p
DAO

2 = 0 (A55)

DAO
2 − DOD

2 = 0 (A56)

From (A49), we obtain:

DOB
2 − λ1

√
p
[
COD

1 + COD
3

]
= 0 (A57)

DOC
2 − λ1

√
p
[
COD

1 + COD
3

]
= 0; (A58)

λ1
√

p
[
CAO

1 cos(λ1
√

pL2)− CAO
2 sin(λ1

√
pL2) + CAO

3 ch(λ1
√

pL2) + CAO
4 sh(λ1

√
pL2)

]
−λ1
√

p
[
COD

1 + COD
3
]
= 0 (A59)

Appendix C

Three more conditions are needed to obtain the constants in the written differential
equations.

They are obtained by considering the equilibrium of an infinitesimal element of the
mass containing the point O.

The sum of the four shear forces in O must be zero, so:

T1 + T2 + T3− T4 = 0

Replacing the expressions of the shear force determined for the four bars in O,
we obtain:

λ3
1 E1 Iz1

(
−CAO

1 cos
(
λ1
√

p L2
)
+ CAO

2 sin
(
λ1
√

p L2
)
+ CAO

3 ch
(
λ1
√

p L2
)

+ CAO
4 sh(λ1

√
p L2)

)
+ λ3

1E1 Iz1
(
−COD

1 + COD
3
)
+ λ3

2 E2 Iz2
(
−COB

1 + COB
3
)

− λ3
2 E2 Iz2

(
−COC

1 + COC
3
)
= 0

(A60)

With the notation:

a1 =
E2 Ip2

E1 Iz1

(
λ2

λ1

)3
(A61)

we can write:

(−CAO
1 cos(λ1

√
p L2) + CAO

2 sin(λ1
√

p L2) + CAO
3 ch(λ1

√
p L2)

+ CAO
4 sh(λ1

√
p L2))+ (−COD

1 + COD
3 ) + a1(−COB

1 + COB
3 )− a1(−COC

1 + COC
3 ) = 0

(A62)



Symmetry 2021, 13, 656 14 of 18

A similar equilibrium relation is obtained for bending and torsional moments.

Mb1 + Mb2 + Mt3 −Mt4 = 0

Mt1 + Mt2 + Mb3 −Mb4 = 0

Taking into account relations (27)–(43), we obtain:

− E1 Iz1
∂2ΦAO(L2)

∂x2 − E1 Iz1
∂2ΦOD(0)

∂x2 + G2 Ip2
∂ϕOB(0)

∂x
− G2 Ip2

∂ϕOC(0)
∂x

= 0 (A63)

G1 Ip1
∂ϕAO(L2)

∂x
+ G1 Ip1

∂ϕOD(0)
∂x

− E2 Iz2
∂2ΦOB(L2)

∂x2 + E2 Iz2
∂2ΦOC(0)

∂x2 = 0 (A64)

Using (11)–(14) and (23)–(26), the results are:

CAO
1 sin(λ1

√
p L2) + CAO

2 cos(λ1
√

p L2)− CAO
3 sh(λ1

√
p L2)− CAO

4 ch(λ1
√

p)−

(−COD
2 + COD

4 ) +
G2 Ip2

E1 Iz1

δ2

λ2
1
(DOB

1 − DOC
1 ) = 0

(A65)

G1 Ip1

E2 Iz2

δ1

λ2
2
(DAO

1 cos(δ1 pL2)− DAO
2 sin(δ1 pL2)) +

G1 Ip1

E2 Iz2

δ1

λ2
2

DOD
1 −

(−COB
2 + COB

4 ) + (−COC
2 + COC

4 ) = 0
(A66)

This denoted:

a2 =
G2 Ip2

E1 Iz1

δ2

λ2
1

, a3 =
G1 Ip1

E2 Iz2

δ1

λ2
2

(A67)

CAO
1 sin(λ1

√
p L2) + CAO

2 cos(λ1
√

p L2)− CAO
3 sh(λ1

√
p L2)− CAO

4 ch(λ1
√

p L2)−(
−COD

2 + COD
4

)
+ a2

(
DOB

1 − DOC
1

)
= 0

(A68)

a3

(
DAO

1 cos(δ1 pL2)− DAO
2 sin(δ1 pL2

)
) + a3DOD

1 −
(
−COB

2 + COB
4

)
+
(
−COC

2 + COC
4

)
= 0 (A69)

This represents a system with 24 equations with 24 unknowns. From the system
formed, we must determine the constants CAO

1 , CAO
2 , CAO

3 , CAO
4 , COD

1 , COD
2 , COD

3 , COD
4 ,

COB
1 , COB

2 , COB
3 , COB

4 , COC
1 , COC

2 , COC
3 , COC

4 , DAO
1 , DAO

2 , DOD
1 , DOD

2 , DOB
1 , DOB

2 , DOC
1 , DOC

2 .
They will be denoted, in the following:

{B} =


{

BAO}{
BOD}{
BOB}{
BOC}

 (A70)

with: {
BAO

}
=
[

CAO
1 CAO

2 CAO
3 CAO

4 DAO
1 DAO

2
]

(A71){
BOD

}
=
[

COD
1 COD

2 COD
3 COD

4 DOD
1 DOD

2
]

(A72){
BOB

}
=
[

COB
1 COB

2 COB
3 COB

4 DOB
1 DOB

2
]

(A73){
BOC

}
=
[

COC
1 COC

2 COC
3 COC

4 DOC
1 DOC

2
]

(A74)

A homogeneous linear system was obtained. In order to have other solutions besides
the trivial solution zero, the determinant of the system must be zero. Putting this condition,
the obtained eigenfrequencies of the system can be determined from the obtained equation.

Denote:
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[A11] =



0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1

sin(λ2
√

pL3) cos(λ2
√

pL3) sh(λ2
√

pL3) ch(λ2
√

pL3) 0 0
− sin(λ2

√
pL3) − cos(λ2

√
pL3) sh(λ2

√
pL3) ch(λ2

√
pL3) 0 0

0 0 0 0 cos(δ2 pL3) − sin(δ2 pL3)

 (A75)

[A12] =



0 0 0 0 0 0 0 −1 0 −1 0 0
0 0 0 0 0 − 1

λ1
√

p 0 0 0 0 0 0
0 0 0 0 0 0 −λ1

√
p 0 −λ1

√
p 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


(A76)

[A21] =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−a1 0 −a1 0 0 0 a1 0 −a1 0 0 0

0 0 0 0 a2 0 0 0 0 0 −a2 0
0 1 0 −1 0 0 0 −1 0 1 0 0



(A77)

In the following, we denote:

[A22] =

[
A22a A22b
A22c A22d

]
(A78)

where:

[A22a] =



0 1 0 1 0 0
1 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (A79)

[A12b] =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin(λ1
√

pL1) cos(λ1
√

pL1) sh(λ1
√

pL1) ch(λ1
√

pL1) 0 0
cos(λ1

√
pL1) − sin(λ1

√
pL1) ch(λ1

√
pL1) sh(λ1

√
pL1) 0 0

0 0 0 0 sin(δ1 pL1) cos(δ1 pL1)

 (A80)

[A12d] =



0 −1 0 1 0 0
0 0 0 0 0 −1
−1 0 −1 0 0 0
−1 0 1 0 0 0
0 1 0 −1 0 0
0 0 0 0 a3 0

 (A81)
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[A12c] =



sin(λ1
√

pL2) cos(λ1
√

pL2) sh(λ1
√

pL2) ch(λ1
√

pL2) 0 0
0 0 0 0 0 1

cos(λ1
√

pL2) − sin(λ1
√

pL2) ch(λ1
√

pL2) sh(λ1
√

pL2) 0 0
− cos(λ1

√
pL2 sin(λ1

√
pL2) ch(λ1

√
pL2) sh(λ1

√
pL2) 0 0

sin(λ1
√

pL2 cos(λ1
√

pL2) −sh(λ1
√

pL2) −ch(λ1
√

pL2) 0 0
0 0 0 0 a3cos(δ1 pL2) −a3sin(δ1 pL2)

 (A82)

In this case, the matrix of the system can be written, in a concise form:

A24×24 =

 A11 0 A12
0 A11 A12

A21 A21 A22

 (A83)

and the system becomes:
[A]{B} = {0} (A84)

The condition:
det(A) = 0 (A85)

offers the eigenvalues of the system of differential Equations (6)–(9) and (19)–(22).

Appendix D

Let us now consider one of the identical trusses OB and OC. The truss is clamped in O
and supported in B (or C). Equation (1) is also valid for the OB bar (OC), with the boundary
conditions:
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For point O:
x = 0; v(0, t) = 0; v′(0, t) = 0; ϕ(0, t) = 0 (A86)

and for the point B(C):

x = L3; v(L3, t) = 0; Mb(L3, t) = 0; Mt(L3, t) = 0 (A87)

The solution:
v(x, t) = Φ(x) sin(pt + θ) (A88)

offers the new equation:
∂4Φ
∂x4 − p2 ρ2 A2

E2 Iz2
Φ = 0 (A89)

If noted:
λ4

2 =
ρ2 A2

E2 Iz2
(A90)

the solution is:

Φ(x) = C1 sin(λ2
√

px) + C2 cos(λ2
√

px) + C3sh(λ2
√

px) + C4ch(λ2
√

px) (A91)
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Torsional vibrations are described by Equation (15). By choosing ϕ as:

ϕ(x, t) = ψ(x) sin(pt + θ) (A92)

and introducing in Equation (15), we obtain:

∂2ψ

∂x2 + p2δ2
2ψ = 0 (A93)

The solution of the differential Equation (A93) will be:

ψ(x) = D1 sin(δ2 px) + D2 cos(δ2 px) (A94)
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