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Abstract: Anderson(m0) extrapolation, an accelerator to a fixed-point iteration, stores m0 + 1 prior
evaluations of the fixed-point iteration and computes a linear combination of those evaluations
as a new iteration. The computational cost of the Anderson(m0) acceleration becomes expensive
with the parameter m0 increasing, thus m0 is a common choice in most practice. In this paper, with
the aim of improving the computations of PageRank problems, a new method was developed by
applying Anderson(1) extrapolation at periodic intervals within the Arnoldi-Inout method. The new
method is called the AIOA method. Convergence analysis of the AIOA method is discussed in detail.
Numerical results on several PageRank problems are presented to illustrate the effectiveness of our
proposed method.

Keywords: PageRank problems; Anderson acceleration; Arnoldi-Inout method

1. Introduction

As the core technology of network information retrieval, Google’s PageRank model
(called the PageRank problem) uses the original hyperlink structure of the World Wide
Web to determine the importance of each page and has received a lot of attention in the last
two decades. The core of the PageRank problem is to compute a dominant eigenvector (or
PageRank vector) of the Google matrix A by using the classical power method [1]:

Ax = x, A = αP + (1− α)veT,
∣∣∣∣∣∣x∣∣∣∣∣∣1 = 1, (1)

where x is the PageRank vector, e is a column vector with all elements equal to 1, v is
a personalized vector and the sum of its elements is 1, P is a column-stochastic matrix
(i.e., the dangling nodes have been replaced by columns with 1/n), and α ∈ (0, 1) is a
damping factor.

As the damping factor α gradually approaches 1, the Google matrix is close to the
original hyperlink structure. However, for large α such as α ≥ 0.99, the second eigenvalue
(≤ α) of the matrix A will be close to the main eigenvalue (equal to 1) [2], such that
the classical power method suffers from slow convergence. In order to accelerate the
power method, a lot of new algorithms are used to compute PageRank problems. The
quadratic extrapolation method proposed by Kamvar et al. [3] accelerates the convergence
by periodically subtracting estimates of non-dominant eigenvectors from the current
iteration of the power method. It is worth mentioning that the authors [4] provide a
theoretical justification for acceleration methods, generalizing the quadratic extrapolation
and interpreting it as a Krylov subspace method. Gleich et al. [5] proposed an inner-outer
iteration, wherein an inner PageRank linear system with a smaller damping factor is
solved in each iteration. The inner-outer iteration shows good potential as a framework for
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accelerating PageRank computations, and a series of methods have been proposed based on
it. For example, Gu et al. [6] constructed the power-inner-outer (PIO) method by combining
the inner-outer iteration with the power method. It is worth mentioning that different
versions of the Arnoldi algorithm applied to PageRank computations were first introduced
in [7]. Gu and Wang [8] proposed the Arnoldi-Inout (AIO) algorithm by knitting the
inner-outer iteration with the thick restarted Arnoldi algorithm [9]. Hu et al. [10] proposed
a variant of the Power-Arnoldi (PA) algorithm [11] by using an extrapolation process based
on a trace of the Google matrix A [12].

Anderson(m0) acceleration [13,14] has been widely used to accelerate the convergence
of a fixed-point iteration. Its principle is to store m0 + 1 prior evaluations of the fixed-point
method and compute a linear combination of those evaluations such that a new iteration is
obtained. Anderson(0) is the given fixed-point iteration. Note that when the parameter m0
becomes large, the computational cost of the Anderson(m0) acceleration becomes expensive.
Hence, in most applications, m0 is chosen to be small, and we set m0 = 1 as a usual choice in
this paper. In [15], Toth et al. proved that Anderson(1) extrapolation was locally q-linearly
convergent. Pratapa et al. [16] developed the Alternating Anderson–Jacobi (AAJ) method
by periodically employing Anderson extrapolation to accelerate the classical Jacobi iterative
method for sparse linear systems.

In this paper, with the aim of accelerating the Arnoldi-Inout method for computing
PageRank problems, the Anderson(1) extrapolation is used as an accelerator, and thus a
new method is presented by combining the Anderson(1) extrapolation with the Arnoldi-
Inout method periodically. Our proposed method is called the AIOA method, and its
construction and convergence behavior are analyzed in detail, and numerical simulation
experiments prove the effectiveness of the new algorithm.

The other parts of this article are structured as follows: In Section 2, we briefly review
the Anderson acceleration and the Arnoldi-Inout method for PageRank problems. In
Section 3, the AIOA method is constructed, and its convergence behavior is discussed.
In Section 4, numerical comparisons are reported. Finally, in Section 5, we give some
conclusions.

2. Previous Work
2.1. Anderson Acceleration

Anderson acceleration (also known as Anderson mixing) has been widely used in
electronic structure computations [17]. Walker et al. [14] developed it for solving fixed-
point problems: x = g(x), where x ∈ Rn and g : Rn → Rn . They showed that Anderson
acceleration without truncation was essentially equivalent, in a certain sense, to the gener-
alized minimum residual method (GMRES) [18] for linear problems. It has been proved
that the Anderson iteration is convergent if the fixed-point iteration g is a contraction and
the coefficients in the linear combination remain bounded [15].

In this paper, we consider the Anderson(1) acceleration that stores two prior evalua-
tions g(x0), g(x1) and then computes x2 (a linear combination of g(x0) and g(x1)) as the
new iteration. The main algorithmic steps of Anderson(1) are given as Algorithm 1.

Algorithm 1 The Anderson(1) acceleration

(1) Given an initial vector x0.
(2) Compute x1 = g(x0), where g is a fixed-point iteration.
(3) Compute F = ( f0, f1), where fi = g(xi)− xi, i = 0, 1.
(4) Compute γ = (γ0, γ1)

T that satisfies
min

γ=(γ0,γ1)
T
||Fγ||2, s.t. ∑1

i=0 γi = 1. (2)

(5) Compute x2 = γ0g(x0) + (1− γ0)g(x1).
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According to [15], the constrained linear least-squares problem (2) in step 4 of Algo-
rithm 1 can be formulated as an equivalent, unconstrained least-squares problem:

min
γ0
|| f1 + ( f0 − f1)γ0||2. (3)

It is easy to solve the unconstrained least-squares problem (3), for example, Pratapa
et al. [16] chose the generalized inverse to compute γ0, and Walker et al. [19] chose QR
decomposition [18] to compute γ0.

2.2. The Arnoldi-Inout Method for Computing PageRank

Gu and Wang [8] proposed the Arnoldi-Inout method by preconditioning the inner-
outer iteration with the thick restarted Arnoldi method. Its algorithmic version can be
found in Algorithm 2.

Algorithm 2 Arnoldi-Inout method [8]

Input: an initial vector x0, the size of the subspace m, the number of approximate eigenvectors
that are retained from one cycle to the next p̂, an inner tolerance η, an outer tolerance τ, three
parameters α1, α2, and maxit to control the inner-outer iteration. Set
restart = 0, r = 1, d = 1, d0 = d.
Output: PageRank vector x.
(1). Apply the thick restarted Arnoldi algorithm [8,9] a few times (2–3 times). If the residual norm
satisfies the prescribed tolerance, then stop; otherwise, continue.
(2). Run the inner-outer iteration with x as the initial guess, where x is the approximate vector
obtained from the thick restarted Arnoldi algorithm:
restart = 0;
2.1. While restart < maxit & r > τ

2.2. x = x/||x||1; z = Px;
2.3. r =||αz + (1− α)v− x||2;
2.4. r0 = r; r1 = r; ratio = 0;
2.5. While ratio < α1 & r > τ

2.6. f = (α− β)z + (1− α)v;
2.7. ratio1 = 0;
2.8. While ratio1 < α2 & d > η

2.9. x = f + βz; z = Px;
2.10. d =|| f + βz− x||2;
2.11. ratio1 = d/d0; d0 = d;
2.12. End While
2.13. r =||αz + (1− α)v− x||2;
2.14. ratio = r/r0; r0 = r;
2.15. End While
2.16. x = αz + (1− α)v; x = x /||x||1;
2.17. If r/r1 > α1
2.18. restart = restart + 1;
2.19. End If
2.20. End While
2.21. If r ≤ τ, stop, else goto step 1.

For Algorithm 2, it is necessary to indicate that:

(1) The detailed description of the thick restarted Arnoldi algorithm in step 1 can be
found in [8,9]. Here, we leave out its implementation for conciseness.

(2) The parameters α1, α2, restart and maxit are used to control the conversion between
the inner-outer iteration and the thick restarted Arnoldi algorithm. The specific utility
mechanism and more details can be found in [8].
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3. The AIOA Method for Computing PageRank

In this section, we combine the Arnoldi-Inout method with the Anderson(1) accel-
eration. The new method is called the AIOA method, which can be understood as the
Arnoldi-Inout method accelerated with the Anderson(1) extrapolation. We first describe
the construction of the AIOA method and then analyze its convergence behavior.

3.1. The Construction of the AIOA Method

The mechanism of the AIOA method can be described as follows: We first ran the
Arnoldi-Inout method with a given initial guess x0 to get an approximation vector x̃1. If
the approximation vector was unsatisfactory, then we treated the inner-outer iteration as a
fixed-point problem and ran Algorithm 1 with vector x̃1 as the starting vector to get another
approximation vector xnew. If the vector xnew did not work better than the approximation
vector x̃3 of the fixed-point problem, we set xnew = x̃3. If the new approximation vector
xnew was still not up to the specified accuracy, then we returned to the Arnoldi-Inout
method with xnew as the starting vector. We repeated the above process similarly until the
required accuracy was reached. The specific algorithmic version is shown as follows.

3.2. Convergence Analysis

The convergence of the Arnoldi-Inout method and that of the Anderson acceleration
can be found in [8,14,15]. In this subsection, we analyze the convergence of the AIOA
method. Specifically, the convergence analysis of Algorithm 3 focuses on the process when
turning from the Anderson(1) acceleration to the Arnoldi-Inout method.

Algorithm 3 AIOA method

(1). Given a unit initial guess x0, an inner tolerance η, an outer tolerance τ, the size of the
subspace m, the number of approximate eigenvectors that are retained from one cycle to the next
p̂, three parameters α1, α2 and maxit to control the inner-outer iteration. Set
restart = 0, r = 1, d = 1, d0 = d, l = 1.
(2). Run the Algorithm 2 with the initial vector x0. If the residual norm satisfies τ, then stop,
otherwise continue.
(3). Run the Algorithm 1 with x̃1 as the starting guess, where x̃1 is the approximation vector
obtained from step 2.
3.1. l = 1, z = Px̃1;
3.2. While l < 3 & r > τ

3.3. f = (α− β)z + (1− α)v;
3.4. Repeat
3.5. x = f + βz; z = Px;
3.6. Until || f + βz− x||2 < η

3.7. l = l + 1;
3.8. x̃l = α z + (1 − α)v;
3.9. r =||x̃l − x||2;
3.10. End While
3.11. Compute f0 = x̃2 − x̃1, f1 = x̃3 − x̃2.
3.12. Compute γ0 that satisfies min

γ0
|| f1 + ( f0 − f1)γ0||2.

3.13. Compute xnew = γ0 x̃2 + (1− γ0) x̃3.
3.14. If ||x̃3 − x̃2||2 <||xnew − x̃2||2
3.15. xnew = x̃3;
3.16. else
3.17. r =||xnew − x̃2||2;
3.18. End If
3.19. If r ≤ τ, stop, else go back to step 2 with the vector xnew as the starting vector.

Let Lm−1 denote the set of polynomials whose degree does not exceed m− 1 and σ(A)
represent the set of eigenvalues of the matrix A. Assume the eigenvalues of A are sorted
in the decreasing order 1 = |λ1| > |λ2| ≥ · · · ≥ |λn|. The following theorem proposed
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by Saad [20] describes the relationship between an approximate eigenvector µ1 and the
Krylov subspace Km.

Theorem 1. [20] Assume that A is diagonalizable and that the initial vector v0 in Arnoldi’s
method has expansion v0 = ∑n

i=1 ζiµi with respect to the eigenbasis {µi}i=1,2,3,··· ,n in which
||µi||1 = 1, i = 1, 2, 3, · · · , n and ζ1 6= 0. Then the following inequality holds

||(I −Pm)µ1||2 ≤ ξεm, (4)

where Pm is the orthogonal projector onto the subspace Km(A, v0), ξ = ∑n
i=2

∣∣∣ ζi
ζ1

∣∣∣ and

εm = min
p∈Lm−1,p(λ1)=1

max
λ∈σ(A)/λ1

|p(λ)|.

For the purpose of analyzing the convergence speed of our algorithm, it is given that
two useful theorems about the spectrum properties of the Google matrix A are as follows.

Theorem 2. [21] Assume that the spectrum of the column-stochastic matrix P is [1, π2, · · · , πn]
and then the spectrum of the matrix A = αP + (1− α)evT is [1, απ2, · · · , απn], where α ∈ (0, 1),
and v is a vector with nonnegative elements such that eTv = 1.

Theorem 3. [2] Let P be an n × n column-stochastic matrix. Let α be a real number such that
0 < α < 1. Let E be an n × n rank-one column-stochastic matrix E = veT , where e is the
n-vector whose elements are all ones and v is an n-vector whose elements are all nonnegative and
sum to 1. Let A = αP + (1− α)E be an n × n column-stochastic matrix, and then its dominant
eigenvalue λ1 = 1,|λ2| ≤ α.

In the Arnoldi-Inout method, let v0 from the previous thick restarted Arnoldi method
be the starting vector for the inner-outer iteration. Next, the inner-outer method produces
the vector v1 = Gkv0, where k ≥ maxit and G = (I − βP)−1[(α− β)P + (1− α)veT].
The derivation of the iterative matrix G can be found in [5]. In our proposed method,
we ran Algorithm 1 with vector v1 as the initial vector. Note that in the Anderson(1)
acceleration, we treated the inner-outer iteration as a fixed-point iteration such that the new
vector vnew = ω

[
(1− γ0)G2v1 + γ0Gv1

]
was produced such thatωwas the normalizing

factor. If the vector vnew worked better than the vector G2v1, then, as given in Algorithm
3, we set vnew = G2v1, which meant the Anderson(1) acceleration was reduced to the
inner-outer iteration and the convergence of Algorithm 3 was certainly established for
this case. Hence, it is discussed that the convergence for another case when the vector
vnew = ω

[
(1− γ0)G2v1 + γ0Gv1

]
works better than the vector G2v1.

In the next cycle of the AIOA algorithm, a m-step Arnoldi process was run with vnew
as the starting vector, and then the new Krylov subspace

Km(A, vnew) = span
(

vnew, Avnew, · · · , Am−1vnew

)
was constructed. Next, we introduced the theorem that illustrates the convergence of the
AIOA method.

Theorem 4. Suppose that the matrix A is diagonalizable if we denote by P̃m the orthogonal
projector onto the subspace Km(A, vnew). Then under the notations of Theorem 1, it has

||
(

I − P̃m

)
µ1||2 ≤ Λ·

(
α− β

1− β

)k+1
·ξεm, (5)



Symmetry 2021, 13, 636 6 of 13

where Λ =
∣∣∣(1− γ0)

α−β
1−β + γ0

∣∣∣, ξ = ∑n
i=2

∣∣∣ ζi
ζ1

∣∣∣, εm = min
p∈Lm−1,p(λ1)=1

max
λ∈σ(A)/λ1

|p(λ)| and k ≥

maxit.

Proof of Theorem 4. For any u ∈ Km(A, vnew), there exists q(x) ∈ Lm−1 such that

u = q(A)vnew
= ω·q(A)·

[
(1− γ0)G2 + γ0G

]
v1

= ω·q(A)·
[
(1− γ0)Gk+2 + γ0Gk+1

]
v0

= ω·q(A)·
[
(1− γ0)Gk+2 + γ0Gk+1

]
·
(

ζ1µ1 +
n
∑

i=2
ζiµi

)
,

(6)

where v0 = ∑n
i=1 ζiµi is the expansion of v0 within the eigenbasis [µ1, µ2, . . . , µn].

As shown in [5] and [8], it has

G = (I − βP)−1[(α− β)P + (1− α)veT]
= (I − βP)−1 A− (I − βP)−1 + I,

then
Gµi = (I − βP)−1 Aµi − (I − βP)−1 µi + µi

= (I − βP)−1λiµi − (I − βP)−1µi + µi

= (λi − 1)(I − βP)−1µi + µi,

where we use Aµi = λiµi, i = 1, 2, . . . , n.
Assume that πi is an eigenvalue of P, and from Theorem 2, π1 = 1, πi = 1

αλi,
i = 2, 3, . . . , n, then the matrix (I − βP)−1 has eigenvalues

ηi =
1

1− βπi
, i = 1, 2, . . . , n,

such that
Gµi =

λi − βπi
1− βπi

µi, i = 2, 3, . . . , n. (7)

Using the fact that λ1 = 1 and π1 = 1, we have Gµ1 = µ1 and Gkµ1 = µ1. Let

ϕi =
λi − βπi
1− βπi

, i = 2, 3, . . . , n,

then, according to Theorem 3 and derivation in [8], it has |λi| ≤ α, i = 2, 3, . . . , n,
such that

|ϕi| =
∣∣∣∣λi − βπi

1− βπi

∣∣∣∣ ≤ α− β

1− β
. (8)

Substituting (7) and (8) into (6), it has

u = ωq(1)ζ1µ1 + ω

[
(1− γ0)

n

∑
i=2

q(λi)ϕk+2
i ζiµi + γ0

n

∑
i=2

q(λi)ϕk+1
i ζiµi

]
,

and then ∣∣∣∣∣∣ u
ωq(1)ζ1

− µ1

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∑n

i=2
ζi
ζ1
· q(λi)

q(1) ·ϕ
k+1
i µi·[(1− γ0)ϕi + γ0]

∣∣∣∣∣∣
2

≤
∣∣∣(1− γ0)

α−β
1−β + γ0

∣∣∣·( α−β
1−β

)k+1 n
∑

i=2

∣∣∣ ζi
ζ1

∣∣∣·max
i 6=1
|p(λi)|

= Λ·
(

α−β
1−β

)k+1
ξ·max

i 6=1
|p(λi)|,

where we let p(λ) = q(λ)/q(1) satisfy p(1) = 1, ξ = ∑n
i=2

∣∣∣ ζi
ζ1

∣∣∣ and Λ =
∣∣∣(1− γ0)

α−β
1−β + γ0

∣∣∣.
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Therefore, we proved

||
(

I − P̃m

)
µ1||2 = min

u∈Km(A,vnew)
||u− µ1||2

≤ Λ·
(

α−β
1−β

)k+1
·ξ· min

p∈Lm−1,p(λ1)=1
max

λ∈σ(A)/λ1
|p(λ)|.

�

Remark 1. Comparing (4) with (5), it is easy to find that our method can improve the convergence

speed by a factor of at least Λ·
(

α−β
1−β

)k+1
when turning from the Anderson(1) acceleration to the

Arnoldi-Inout method.

4. Numerical Experiments

In this section, we first give the appropriate choice for the parameter maxit and then
test the effectiveness of the AIOA method. For the thick restarted Arnoldi method, there
were two parameters, m and p̂, that needed to be considered, but the thick restarted Arnoldi
method had the same effect as the Arnoldi-Inout [8] method and the AIOA method. In
addition, with the parameters m and p̂ increasing, the cost would have been expensive,
and they usually take small values. As a result, we don’t discuss the choice of the two
parameters m and p̂ in detail and set m = 4 and p̂ = 3 for all test examples.

All the numerical experiments were performed using MATLAB R2018a programming
package on 2.10 GHZ CPU with 1 6GB RAM.

Table 1 lists the characteristics of the test matrices, where n represents the matrix
size, nnz denotes the number of nonzero elements and den is the density which is defined
by den = nnz

n×n × 100. All the test matrices are available from https://sparse.tamu.edu/
(accessed on 14 July 2020). For the sake of justice, the same initial guess x0 = v = e/n with
e = [1, 1, · · · , 1]T was used. The damping factors were chosen as α = 0.99, 0.993, 0.995
and 0.998 in all numerical experiments. The stopping criterion were set as the 2-norm
of the residual, and the prescribed outer tolerance was τ = 10−8. For the inner-outer
iterations, the inner residual tolerance was η = 10−2, and the smaller damping factor was
β = 0.5. The parameters chosen to control the flip-flop were α1 = α− 0.1 and α2 = α− 0.1.
We ran the thick restarted Arnoldi procedure twice in each loop of the Arnoldi-Inout [8]
method and the AIOA method. In the AIOA algorithm, we chose the QR decomposition to
compute γ0.

Table 1. The characteristics of test matrices.

Name n nnz den

wb-cs-stanford 9914 36,854 0.375× 10−1

usroads-48 126,146 323,900 0.204× 10−2

web-Stanford 281,903 2,312,497 0.291× 10−2

wiki-Talk 2,394,385 5,021,410 0.875× 10−4

4.1. The Selection of Parameter Maxit

In this subsection, we discuss the selection of the parameter value maxit by analyzing
the numerical results of the Arnoldi-Inout [8] (denoted as “AIO”) method and the AIOA
method for the web-Stanford matrix, which contains 281,903 pages and 2,312,497 links.
Table 2 lists the matrix–vector products (MV) of the AIO method and the AIOA method
for the web-Stanford matrix when α = 0.99, 0.993, 0.995, 0.998 and maxit = 2, 4, 6, 8, 10.
Figure 1 depicts the curves of computing time (CPU) of the two methods versus number
maxit, respectively.

https://sparse.tamu.edu/
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Table 2. The number of the matrix–vector products of the AIO method and the AIOA method on the web-Stanford matrix.

α
maxit = 2 maxit = 4 maxit = 6 maxit = 8 maxit = 10

AIO AIOA AIO AIOA AIO AIOA AIO AIOA AIO AIOA

α = 0.99 342 266 337 277 386 306 423 308 439 281
α = 0.993 446 309 422 327 433 376 542 417 563 358
α = 0.995 558 383 637 414 524 544 706 440 711 471
α = 0.998 1044 588 975 677 699 661 1503 669 1533 789

Figure 1. The total computing (CPU) time of the Arnoldi-Inout (AIO) method and the AIOA method
versus number maxit on the web-Stanford matrix.

From Table 2, it is observed that the optimal maxit was different for different α and
different methods. From Figure 1, optimal maxit is 6 and the worst performing maxit is 8
for the AIO method, but for the AIOA method, the best value of maxit is not 6. For fairness,
we decided to choose the maxit = 4 in the following numerical experiments. In addition,
in Table 2, when α = 0.995 and maxit = 6, the MV of the AIOA is a little more than that of
the AIO method, but the CPU time of AIOA method is better than that of the AIO method.
The situation suggests that our method has some potential.

4.2. Comparisons of Numerical Results

In this subsection, we tested the effectiveness of the AIOA method through numerical
comparison experiments with the inner-outer (denoted as “Inout”) [5] method, the power-
inner-outer (denoted as “PIO”) [6] method and the Arnoldi-Inout (denoted as “AIO”) [8]
method in terms of iteration counts (IT), the number of matrix-vector products (MV) and
the computing time (CPU) in seconds. In all experiments in this subsection, we set the
parameters m = 4, p̂ = 3 and maxit = 4. Tables 3–6 give the numerical experiment
results of the Inout method, the PIO method, the AIO method and the AIOA method for
four matrices when α = 0.99, 0.993, 0.995, 0.998, and Figures 2–5 describe the residual
convergence images of the above methods with different α for all test matrices.

In order to better demonstrate the efficiency of our proposed method, we defined

speedup =
CPUAIO − CPUAIOA

CPUAIO
× 100%,

to show the speedup of the AIOA method with respect to the AIO method in terms of CPU.
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Table 3. Numerical results of the four methods on the wb-cs-stanford matrix.

α Inout PIO AIO AIOA

α = 0.99

IT 997 333 192 116
MV 997 666 238 167
CPU 0.2344 0.2011 0.1741 0.1038

speedup 40.35%

α = 0.993

IT 1427 476 252 133
MV 1427 952 316 200
CPU 0.3283 0.2488 0.2297 0.1211

speedup 47.28%

α = 0.995

IT 2000 667 304 143
MV 2000 1334 378 209
CPU 0.4590 0.3490 0.2689 0.1273

speedup 52.65%

α = 0.998

IT 5009 1670 396 216
MV 5009 3340 496 315
CPU 1.1347 0.8670 0.3817 0.1985

speedup 47.99%

Figure 2. Convergence behaviors of the four methods on the wb-cs-stanford matrix.

Table 4. Numerical results of the four methods on the usroads-48 matrix.

α Inout PIO AIO AIOA

α = 0.99

IT 436 146 96 51
MV 436 292 109 73
CPU 1.1275 1.0362 0.7928 0.4347

speedup 45.16%

α = 0.993

IT 537 180 118 59
MV 537 360 135 84
CPU 1.6484 1.0888 1.0487 0.6894

speedup 34.26%
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Table 4. Cont.

α Inout PIO AIO AIOA

α = 0.995

IT 646 216 146 64
MV 646 432 164 94
CPU 1.9562 1.4969 1.1519 0.6894

speedup 40.14%

α = 0.998

IT 999 334 242 106
MV 999 668 272 155
CPU 2.5375 2.0479 1.8138 0.9163

speedup 49.48%

Figure 3. Convergence behaviors of the four methods on the usroads-48 matrix.

Table 5. Numerical results of the four methods on the web-Stanford matrix.

α Inout PIO AIO AIOA

α = 0.99

IT 768 381 284 191
MV 769 762 337 277
CPU 9.5426 11.7488 8.4437 7.2447

speedup 14.20%

α = 0.993

IT 1087 544 360 229
MV 1088 1088 422 327
CPU 10.4567 13.4826 11.0564 8.2018

speedup 25.81%

α = 0.995

IT 1516 763 540 279
MV 1517 1526 637 414
CPU 16.6344 17.8678 17.0485 10.7983

speedup 36.66%

α = 0.998

IT 3781 1908 828 484
MV 3782 3816 975 677
CPU 38.1507 43.2843 26.5169 16.8771

speedup 36.35%
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Figure 4. Convergence behaviors of the four methods on the web-Stanford matrix.

Table 6. Numerical results of the four methods on the wiki-Talk matrix.

α Inout PIO AIO AIOA

α = 0.99

IT 687 230 97 86
MV 687 460 117 109
CPU 47.5235 34.3597 23.7834 20.1552

speedup 15.25%

α = 0.993

IT 971 324 113 109
MV 971 648 136 136
CPU 73.2740 45.5463 27.8776 25.1927

speedup 9.63%

α = 0.995

IT 1339 448 145 118
MV 1339 896 173 157
CPU 98.4781 62.3806 35.8122 29.3671

speedup 17.99%

α = 0.998

IT 3127 1044 275 98
MV 3127 2088 324 141
CPU 208.5881 155.7358 65.6808 26.0576

speedup 60.32%

From the numerical results in Tables 3–6, it is easy to see that the AIOA method
performed better than the other three methods in terms of IT, MV and CPU time for four
matrices with different damping factors. As we expected, the advantage of the AIOA
method was obvious for large α. For instance, when α = 0.995, the speedup is 52.65%
in Table 3 and 36.66% in Table 5. When α = 0.998, the speedup is 49.48% in Table 4 and
60.32% in Table 6. In addition, from Figures 2–5, it is easy to observe that the AIOA method
can reach the accuracy requirement faster than the Inout method, the PIO method and the
AIO method for all test examples. Therefore, the above results verify the effectiveness of
the AIOA method.
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Figure 5. Convergence behaviors of the four methods on the wiki-Talk matrix.

5. Conclusions

In this paper, by employing the Anderson(1) extrapolation at periodic intervals within
the Arnoldi-Inout method, we have presented a new method called the AIOA method
to accelerate the computation speed of PageRank problems. Its implementation process
and convergence theorem can be found in Section 3. Numerical simulation experiment
results in Section 4 proved that the AIOA method was very efficient and converged faster
compared to the inner-outer method, the power-inner-outer method and the Arnoldi-Inout
method. However, there is still a lot of work to be further studied. For example, it is
difficult to handle the best choices for parameters m, β, maxit.
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