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1. Introduction

The investigation of anisotropic problems has drawn the attention of many authors;
for example, see the works presented in [1–15] and the references therein. This particular
interest in the study of such problems is the basis of many applications to the modeling of
wave dynamics and mechanical processes in anisotropic elastic.

Meanwhile, in the early 1990s, the first anisotropic PDE model was proposed by the
authors of [16], which was used for both image enhancement and denoising in terms
of anisotropic PDEs as well as allowing the preservation of significant image features
(for more details, see for example [17]). In this work, we show that the mathematical
model of homogeneous anisotropic elastic media movement can be introduced by dynamic
system equations of elasticity; it is presented as a symmetrical hyperbolic system of the
first order in term of velocity.

In the current paper, we study the anisotropic nonlinear elliptic problem of the form

−
N

∑
i=1

∂xi

(
|∂xi u|

pi(x)−2∂xi u
)
+ |u|pM(x)−2u = f (x, u), for x ∈ Ω

N

∑
i=1
|∂xi u|

pi(x)−2 ∂xi u νi = 0 for x ∈ ∂Ω

(1)

where Ω ⊂ RN (N ≥ 3) is a bounded open set with a smooth boundary (which can be
viewed as the graph of a smooth function locally; see [18]), νi represents the components
of the outer normal unit vector, pi, i = 1, ...N are continuous functions on Ω, pM(x) =
max{p1(x), . . . , pN(x)} and f : Ω×R→ R is a continuous function with the potential

F(x, t) =
∫ t

0
f (x, s) ds.

This type of problem with variable exponent growth conditions allows us to deal
with equations with other types of nonlinearities due to the fact that the operator ∆~p(u)
such that
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∆~p(u) :=
N

∑
i=1

∂xi

(
|∂xi u|

pi−2∂xi u
)

gives us another behavior for partial derivatives in several directions. This differential
operator involving a variable exponent can be regarded as an extension of the p(x)−Laplace
operator for the anisotropic case; as far as we are aware, ∆p(x) is not homogeneous, and so
the p(x)−Laplacian has more complicated properties than the p−Laplacian.

A host of publications have studied various types of nonlinear anisotropic elliptic
equations from the point of view of the existence and qualitative properties of the data.

As a result of the preoccupation with nonhomogeneous materials that behave dif-
ferently in different spatial directions, anisotropic spaces with variable exponents were
introduced (for more details, see [19]).

In [9], using an embedding theorem involving the critical exponent of anisotropic
type, the authors presented some results regarding the existence and nonexistence of the
following anisotropic quasilinear elliptic problem:

−
N

∑
i=1

∂xi

(
|∂xi u|

pi−2∂xi u
)
= f (x, u), for x ∈ Ω

u = 0 for x ∈ ∂Ω,

(2)

with f (x, u) = λup−1

In [6], the authors studied the above problem when f (x, u) = |u|q(x) − |u|r(x), u ≥ 0,
with the the condition

1 < q− ≤ q+ < r− ≤ r+ < p−m ≤ p+M,

where

pM(x) = max{p1(x), . . . , pN(x)}, pm(x) = min{p1(x), . . . , pN(x)}.

Using the variational approach—especially, the minimum principle and the mountain
pass theorem—the author obtained the existence of at least two nonnegative nontrivial
weak solutions.

In [14], the authors studied the spectrum of the problem when f (x, u) = λg(x)|u|r(x)−2u;
they showed the existence of µ > 0 such that λ is an eigenvalue for any λ > µ.

In this article, we work on the so-called anisotropic variable exponent Sobolev spaces
which were introduced for the first time by the authors in [20]. Motivated by the ideas
accurately introduced in [21], our goal is to improve upon the existence results for problem
(1) in the variable exponent case. The nonlinearity is assumed to be (p+M − 1) superlinear
as t→ ∞,, which means that f exhibits asymmetric behavior. Further, it need not satisfy
the Ambrosetti–Rabinowitz condition, as is usual for superlinear problems. We note that
we may obtain infinitely many solutions by assuming some symmetry on the nonlinearity
f ; that is f (x,−t) = − f (x, t) for x ∈ Ω and t ∈ R (see for example [22]).

This work is organized as follows. In Section 2, we give the necessary notations and
some properties of anisotropic variable exponent Sobolev spaces, in order to facilitate the
reading of the paper. In Section 3, we present the main results, and finally, we prove the
existence of the solution.

2. Preliminaries

We introduce the setting of our problem with some auxiliary results. For convenience,
we recall some basic facts which are used later, with reference to [19,23,24].

For r ∈ C+(Ω), we introduce the Lebesgue space with the variable exponent defined by

Lr(·)(Ω) = {u : u is a measurable real-valued function,
∫

Ω
|u(x)|r(x) dx < ∞},
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where
C+(Ω) = {r ∈ C(Ω;R) : inf

x∈Ω
r(x) > 1}.

The space Lr(x)(Ω) endowed with the Luxemburg norm

‖u‖r(.) = ‖u‖Lr(·)(Ω) = inf
{

µ > 0 :
∫

Ω

∣∣∣u(x)
µ

∣∣∣r(x)
dx ≤ 1

}
,

is a separable and reflexive Banach space.
Concerning the embedding result, we make the following proposition:

Proposition 1 ([24]). Assume that Ω is bounded and r1, r2 ∈ C+(Ω) such that r1 ≤ r2 in Ω.
Then, the embedding Lr2(·)(Ω) ↪→ Lr1(·)(Ω) is continuous.

Furthermore, the Hölder-type inequality∣∣ ∫
Ω

u(x)v(x) dx
∣∣ ≤ 2‖u‖Lr(·)(Ω)‖v‖Lr′(·)(Ω)

(3)

holds for all u ∈ Lr(·)(Ω) and v ∈ Lr′(·)(Ω), where Lr′(·)(Ω) the conjugate space of
Lr(·)(Ω), with

1/r(x) + 1/r′(x) = 1.

Moreover, we denote

r+ = sup
x∈Ω

r(x), r− = inf
x∈Ω

r(x)

For u ∈ Lr(·)(Ω), we have the following properties:

‖u‖Lr(·)(Ω) < 1 (= 1; > 1) ⇔
∫

Ω
|u(x)|r(x) dx < 1 (= 1; > 1); (4)

‖u‖Lr(·)(Ω) > 1 ⇒ ‖u‖r−
Lr(·)(Ω)

≤
∫

Ω
|u(x)|r(x) dx ≤ ‖u‖r+

Lr(·)(Ω)
; (5)

‖u‖Lr(·)(Ω) < 1 ⇒ ‖u‖r+
Lr(·)(Ω)

≤
∫

Ω
|u(x)|r(x) dx ≤ ‖u‖r−

Lr(·)(Ω)
; (6)

‖u‖Lr(·)(Ω) → 0 (→ ∞) ⇔
∫

Ω
|u(x)|r(x) dx → 0 (→ ∞). (7)

To recall the definition of the isotropic Sobolev space with a variable exponent,
W1,r(·)(Ω), we set

W1,r(·)(Ω) = {u ∈ Lr(·)(Ω) : ∂xi u ∈ Lr(·)(Ω) for all i ∈ {1, . . . , N}},

endowed with the norm

‖u‖W1,r(·)(Ω) = ‖u‖Lr(·)(Ω) +
N

∑
i=1
‖∂xi u‖Lr(·)(Ω).

The space
(
W1,r(·)(Ω), ‖ · ‖W1,r(·)(Ω)

)
is a separable and reflexive Banach space.

Now, we consider ~p : Ω→ RN to be the vectorial function

~p(x) = (p1(x), . . . , pN(x))

with pi ∈ C+(Ω) for all i ∈ {1, . . . , N} and we recall that

pM(x) = max{p1(x), . . . , pN(x)}, pm(x) = min{p1(x), . . . , pN(x)}.
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The anisotropic space with a variable exponent is

X = W1,~p(·)(Ω) = {u ∈ LpM(·)(Ω) : ∂xi u ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , N}}

and it is endowed with the norm

‖ u ‖= ‖u‖W1,~p(·)(Ω) = ‖u‖LpM(·)(Ω)
+

N

∑
i=1
‖∂xi u‖Lpi(·)(Ω)

.

We point out that
(
W1,~p(·)(Ω), ‖ · ‖W1,~p(·)(Ω)

)
is a reflexive Banach space. Let introduce

the following notations:

p̄(x) =
N

∑N
i=1 1/pi(x)

and p̄∗(x) =
N

∑N
i=1

1
pi(x) − 1

.

Proposition 2 ([19]). If q ∈ C+(Ω) satisfies 1 < q(x) < max{p∗(x), pM(x)} for all x ∈ Ω
then the embedding W1,−→p (x)(Ω) ↪→ Lq(x)(Ω) is compact.

3. Main Results

Proposition 3. Putting

I(u) =
∫

Ω

N

∑
i=1

1
pi(x)

|∂xi u)|
pi(x) dx.

then I ∈ C1(X,R), and the derivative operator I′ of I is

I′(u).v =
N

∑
i=1

∫
Ω
|∂xi u|

pi(x)−2∂xi u∂xi v dx.

(i) The functional I′ is of the (S+) type, where I′ is the Gâteaux derivative of the functional I.
(ii) I′ : X → X∗ is a bounded homeomorphism and a strictly monotone operator.

The proof of the first assertion (i) is similar to that in [2]. The second assertion is well
known (for example, see [19]).

Next, we give the mountain pass theorem of Ambrosetti–Rabinowitz (see [25]).

Proposition 4. Let X be a real Banach space with its dual space X∗ and suppose that φ ∈ C1(X,R)
satisfies the condition

max
(

φ(0), φ(u∗)
)
≤ β ≤ inf

‖u‖=ρ
φ(u),

for some α < β, ρ > 0 and u∗ ∈ X with ‖u∗‖ > ρ. Let c ≤ β be characterized by

c = inf
γ∈Γ

max
τ∈[0,1]

φ(γ(τ)),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = γ(1) = u∗ is the set of continuous paths joining 0 and
u∗. Then, there exists a sequence (un)n in X such that

φ(un)→ c ≥ β and
(

1 + ‖un‖
)
‖φ′(un)‖∗ → 0. �

The problem (1) is considered in the case when f ∈ C(Ω×R) such that

Hypothesis 1 (H1). There exist C > 0 and q ∈ C+(Ω) with p+M < q− ≤ q+ < p∗(x) for all
x ∈ Ω, such that f verifies

| f (x, s)| ≤ C
(
1 + |s|q(x)−1)

for all x ∈Ω and all s ∈R and f (x, t) = f (x, 0) = 0 ∀x ∈ Ω, t ≤ 0.
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Hypothesis 2 (H2). lim
t→0

f (x, t)

|t|p+M−1
= l1 < ∞, lim

t→∞

f (x, t)t

|t|p+M
= ∞, uniformly for x ∈ Ω.

Hypothesis 3 (H3). For a.e x ∈ Ω, f (x,t)

tp+M−1
is nondecreasing with respect to t ≥ 0.

Hypothesis 4 (H4). lim sup
|t|→+∞

pM(x)F(x, t)
| t |pM(x)

< λ1, uniformly for a.e x ∈ Ω, with

λ1 = inf
u∈W1,−→p (x)(Ω),u 6=0

∑N
i=1
∫

Ω
1

pi(x) |∂xi u|pi(x) dx +
∫

Ω
1

pM(x) |u|
pM(x) dx∫

Ω
1

pM(x) |u|
pM(x) dx

> 0.

Hypothesis 5 (H5). There exist a0 > 0 and δ > 0 such that

F(x, t) ≥ a0|t|q0 , ∀x ∈ Ω, |t| < δ,

where q0 ∈ C(Ω) with q0 < p−m .

Definition 1. We define the weak solution for problem (1) as a function u ∈W1,−→p (x)(Ω) satisfying

N

∑
i=1

∫
Ω
|∂xi u|

pi(x)−2∂xi u ∂xi v dx +
∫

Ω
|u|pM(x)−2uvdx−

∫
Ω

f (x, u)v dx = 0,

for all v ∈W1,−→p (x)(Ω).

Our main result in this section is the following.

Theorem 1. (a) Assume (H1), (H2) and (H3), then (1) has at least a nontrivial solution.
(b) Under the assumptions (H4)− (H5), the problem (1) has at least a nontrivial solution in

W1,−→p (x)(Ω).

It is well known that the (AR) condition defined by

(AR) p+MF(x, s) ≤ f (x, s)s a.e x ∈ Ω,

plays a crucial role in guaranteeing that every Palais Smale sequence of associated func-
tionals is bounded in W1,−→p (Ω). Here, we avoid using the condition (AR) under various
assumptions on f and by different methods. Notice that the condition (H2) is weaker than
the (AR) condition, and thus it is more interesting. Moreover, for instance, the function
f (x, t) = |t|p+M−2t log(1 + |t|), t ∈ R verifies our assumptions (H1)–(H3); however, it does
not satisfy the (A-R) type condition.

4. Proofs

Firstly, related to problem (1.1), we have the associated functional φ : W1,−→p (x)(Ω)→ R
is given by

φ(u) =
∫

Ω

N

∑
i=1

1
pi(x)

|∂xi u|
pi(x) dx +

∫
Ω

1
pM(x)

|u|pM(x) dx−
∫

Ω
F(x, u) dx.

From the continuous embedding

W1,−→p (x)(Ω) ↪→ Ls(x)(Ω), ∀s(x) ∈ [1, p̄∗(x)],

it follows that φ ∈ C1(W1,−→p (x)(Ω),R) (see [19]).
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Lemma 1. Assume that (H1), (H2) and (H3) hold; then,
(i) There exists v ∈ X with v > 0 such that φ(tv)→ −∞ as t→ ∞.
(ii) There exist α, β > 0 such that φ(u) ≥ β for all u ∈ X with ‖u‖ = α.

Proof. (i) In view of the condition (H2), we may choose a constant K > 0 such that

F(x, s) > K|s|p
+
M uniformly inx ∈ Ω, |s| > CK. (8)

Let t > 1 large enough and v ∈ X with v > 0, from (8) we get

φ(tv) ≤ tp+M
N

∑
i=1

∫
Ω

1
pi(x)

|∂xi v|
pi(x) dx + tp+M

∫
Ω

1
pM(x)

|v|pM(x) dx−
∫
|tv|>CK

F(x, tv)dx−
∫
|tv|≤CK

F(x, tv)dx

≤ tp+M
1

p−m

N

∑
i=1

∫
Ω
|∂xi v|

pi(x) dx + tp+M
1

p−M

∫
Ω
|v|pM(x) dx− Ktp+M

∫
Ω
|v|p

+
M dx−

∫
|tv|≤CK

F(x, tv)dx

≤ tp+M
1

p−m

N

∑
i=1

∫
Ω
|∂xi v|

pi(x) dx + tp+M
1

p−M

∫
Ω
|v|pM(x) dx− Ktp+M

∫
Ω
|v|p

+
M dx + C1,

where C1 > 0 is a constant, taking K to be sufficiently large to ensure that

1
p−m

N

∑
i=1

∫
Ω
|∂xi v|

pi(x) dx +
1

p−M

∫
Ω
|v|pM(x) dx− K

∫
Ω
|v|p

+
M dx < 0

which implies that
φ(tv)→ −∞ as t→ +∞.

(ii) For ‖ u ‖< 1 we have

φ(u) ≥ 1
p+M

∫
Ω

N

∑
i=1
|∂xi u|

pi(x) dx +
1

p+M

∫
Ω
|u|pM(x) dx−

∫
Ω

F(x, u) dx

≥ 1
p+M

N

∑
i=1
‖∂xi u‖

p+M
Lpi(·)(Ω)

+
1

p+M
‖u‖p+M

LpM(·)(Ω)
−
∫

Ω
F(x, u) dx

≥ 1
p+M
‖u‖p+M −

∫
Ω

F(x, u) dx.

On the other side, from (H1) and (H2),

| f (x, u)| ≤ ε|u|p
+
M−1 + C(ε)|u|q(x)−1, ∀(x, u) ∈ Ω×R.

By the continuous embedding from X into Lq(x)(Ω) and Lp+M (Ω) there exist c1, c2 > 0
such that

‖u‖
Lp+M (Ω)

≤ c1‖u‖, ‖u‖Lq+ (Ω)
, ‖u‖Lq− (Ω)

≤ c2‖u‖ (9)

for all u ∈ X. Thus,∫
Ω

F(x, u) dx ≤
∫

Ω

ε

p+M
|u|p

+
M dx +

∫
Ω

C(ε)
q(x)
|u|q(x) dx (10)

≤ εc
p+M
1 ‖u‖

p+M + cq−
2

C(ε)
q−
‖u‖q−

for all x ∈ Ω and all u ∈ X.
Therefore,

φ(u) ≥
(

1

2(N + 1)p+m p+M
− C(ε)cq−

2 ‖u‖
q−−p+M − εc

p+M
1

)
‖u‖p+M ,
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since 1 < p+M < q−, then for α sufficiently small we take β > 0 such that

φ(u) ≥ β, ∀u ∈ Xwith‖u‖ = α.

Lemma 2. Under the assumptions (H1) and (H3), for any (un)n ⊂ X such that

φ′(un).un → 0, as n→ ∞,

then there is a subsequence, still denoted by (un)n, such that

φ(tun) ≤
tp−m

p−m

[ 1
n
+
∫

Ω

1
p−m

f (x, un)un dx
]
−
∫

Ω
F(x, un) dx,

for all t ∈ R and t > 0.

Proof. Consider a function g such that

g(t) =
1

p−m
tp−m f (x, un)un − F(x, tun),

then

g′(t) = tp−m−1 f (x, un)un − f (x, tun)un

= tp−m−1un

(
f (x, un)−

f (x, tun)

tp−m−1

)
,

which means that g′(t) ≥ 0 for t ∈]0, 1] and g′(t) ≤ 0 when t ≥ 1, it follows that

g(t) ≤ g(1), ∀t > 0. (11)

From the hypothesis φ′(un).un → 0, for any n > 1, we have

|φ′(un).un| <
1
n

,

therefore

− 1
n
< φ′(un).un =

∫
Ω

N

∑
i=1
|∂xi un|pi(x) dx +

∫
Ω
|un|PM(x) dx−

∫
Ω

f (x, un)un dx <
1
n

. (12)

Using the formulas (11) and (12), we obtain

φ(tun) =
∫

Ω

N

∑
i=1

1
pi(x)

|∂xi tun|pi(x) dx +
∫

Ω

1
pM(x)

|tun|PM(x) dx−
∫

Ω
F(x, tun) dx

<
tp−m

p−m

[
− 1

n
+
∫

Ω

(
f (x, un)un − F(x, tun)

)
dx
]

. (13)

Proof of Theorem 1. (a) Let (un)n ⊂ X satisfying the assertions of Proposition 4; then,

φ(un) =
N

∑
i=1

∫
Ω

1
pi(x)

|∂xi un|pi(x) +
∫

Ω

1
pM(x)

|u|pM(x) dx−
∫

Ω
F(x, un) dx = c + o(1)

and (
1 + ‖un‖

)
‖φ′(un)‖ → 0
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then
‖un‖ −

∫
Ω

f (x, un)un dx = o(1)

and also

N

∑
i=1

∫
Ω
|∂xi un|pi(x)−2∂xi un.∂xi ϕ +

∫
Ω
|u|pM(x)−2 ϕ dx−

∫
Ω

f (x, un)ϕ = o(1)

∀ϕ ∈ X.
Let us show that the sequence (un)n is bounded in W1,−→p (x)(Ω).
Define

tn =
(2p+Mc)1/p+M

‖un‖
> 0

and
ωn = tnun.

Because ‖ωn‖ = (2p+Mc)1/p+M so ωn is bounded in W1,−→p (x)(Ω), therefore, up to a
subsequence still denoted by (ωn)n, we have

ωn ⇀ ω in W1,−→p (x)(Ω)

ωn → ω in Lq(x)(Ω), f or q(x) ∈ (1, max{p∗(x), pM(x)})

and
ωn → ω a.e in Ω.

Suppose that ‖un‖ → ∞, we confirm that ω ≡ 0. Indeed, putting

Ω1 = {x ∈ Ω : ω(x) = 0}

and
Ω2 = {x ∈ Ω : ω(x) 6= 0}.

Since |un| = ‖un‖ |ωn |

(2p+Mc)
1

p+M

, we can easily see that |un(x)| → ∞ a.e in Ω2

From the assumption (H2) and for a large enough n, we find that

f (x, un)un

|un|p
+
M

> k uni f ormly x ∈ Ω2

for a large enough k. Thus,

2p+Mc = lim
n→∞

‖ωn‖p+M

= lim
n→∞

|tn|p
+
M‖un‖p+M

= lim
n→∞

|tn|p
+
M

∫
Ω

| f (x, un)un|p
+
M

|un|p
+
M

|un|p
+
M dx

> k lim
n→∞

∫
Ω2

|ωn|p
+
M dx

= k
∫

Ω2

|ω|p
+
M dx. (14)

The fact that 2p+Mc is constant and k is sufficiently large allows us to infer that |Ω2| = 0
and then ω ≡ 0 in Ω.
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Furthermore, since ω = 0 and in view of the continuity of the Nemitskii operator,
we get

F(., ωn)→ 0 in L1(Ω),

which implies that
lim

n
F(x, ωn) = 0;

then,

φ(ωn) ≥
1

p+M
t

p+M
n

[ ∫
Ω

N

∑
i=1
|∂xi u|

pi(x) dx +
∫

Ω
|u|pM(x) dx

]
− o(1)

≥ 1
p+M

2p+Mc− o(1) = 2c− o(1)

> c. (15)

Once more, as in (12), for a certain n > 1 we have

−1
n

<
p−m
p+M
〈φ′(un), un〉 <

1
n

.

Thus,

φ(un) =
∫

Ω

N

∑
i=1
|∂xi un|pi(x) dx +

∫
Ω

1
pM(x)

|tnun|pM(x) dx−
∫

Ω
F(x, un) dx

≥ 1
p+M

p+M
p−m

(
−1
n

+
∫

Ω
f (x, un)un dx

)
−
∫

Ω
F(x, un) dx (16)

that is,

φ(un) +
1

np−m
≥
∫

Ω

( 1
p−m

f (x, un)un − F(x, un)
)

dx. (17)

Meanwhile, from Lemma 2,

φ(tun) ≤
tp−m

np−m
+
∫

Ω

( 1
p−m

f (x, un)un − F(x, un)
)

dx. (18)

By virtue of (17) and (18), we have

φ(ωn) ≤
tp−m + 1

np−m
+ φ(un)→ c,

which is contradictory with (15). Therefore, (un)n is bounded in W1,
−−→
p(x)(Ω).

Now, regarding the boundedness of (un)n in X and the fact that X is reflexive, there
exists u ∈ X such that un ⇀ u. Since φ′ is a (S+) type map (because I′ is of the (S+) type
(see Proposition 3)), thus un → u in X, thereby (un)n converges strongly to a nontrivial
critical point of φ and the proof of Theorem 1 is achieved.

(b) Recall that by applying Jensen’s inequality to the convex function

t (≥ 0)→ tp−m ,

we obtain
N

∑
i=1
‖∂xi u‖

p−m
pi(.)
≥ 1

Np−m−1

[ N

∑
i=1

[
‖∂xi u‖pi(.)

]p−m
.



Symmetry 2021, 13, 633 10 of 12

Let us make the following notations:

F1 = {i ∈ {1, . . . , N} : ‖∂xi un‖Lpi (Ω) ≤ 1},
F2 = {i ∈ {1, . . . , N} : ‖∂xi un‖Lpi (Ω) > 1}.

Then, we get

N

∑
i=1

∫
Ω
|∂xi un|pi(x)dx = ∑

i∈F1

∫
Ω
|∂xi un|pi(.)dx + ∑

i∈F2

∫
Ω
|∂xi un|pi(.) dx

≥ ∑
i∈F1

‖∂xi un‖pM

Lpi(.)
+ ∑

i∈F2

‖∂xi un‖p−m
Lpi(.)

≥
N

∑
i=1
‖∂xi un‖p−m

Lpi(.)
− ∑

i∈F1

‖∂xi un‖p−m
Lpi(.)

,

so,
N

∑
i=1

∫
Ω
|∂xi un|pi(x)dx ≥

N

∑
i=1
‖∂xi un‖p−m

Lpi(.)
− N. (19)

and

N

∑
i=1

1
pi(x)

∥∥∥ ∂u
∂xi

∥∥∥
pi(.)

≥ 1
p+M

∑
i∈F1

∥∥∥ ∂u
∂xi

∥∥∥p+i

pi(.)
+

1
p+M

∑
i∈F2

∥∥∥ ∂u
∂xi

∥∥∥p−i

pi(.)

≥ 1
p+M

(
1

p+M

N

∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥p−m

pi(.)
− N

)

≥ 1
p+M

 1

Np−m − 1

(
∑

i=1N

∥∥∥ ∂u
∂xi

∥∥∥
pi(.)

)p−m

− N

. (20)

If ‖u‖pM (.) ≥ 1, the same lines as in [26], and [11] hold, then we have

I(u) ≥ 1
p+M

 1

Np−m−1

(
N

∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
pi(.)

)p−m

− N +
1

p+M
‖u‖p−m

pM(.)


≥ 1

p+M

 1

Np−m−1

(
N

∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
pi(.)

)p−m

+ ‖u‖p−m
pM(.)

− N
p+M

≥ 1

2p−m−1 p+M
inf
{

1,
1

Np−m−1

}[ N

∑
i=1

∥∥∥ ∂u
∂xi

∥∥∥
pi(.)

+ ‖u‖pM(.)

]p−m

− N
p+M

≥ 1

2p−m−1 p+M
inf
{

1,
1

Np−m−1

}
‖u‖p−m − N

p+M
.

(21)

If ‖u‖pM (.) < 1 we have

I(u) ≥ 1
p+M

[ 1

Np−m−1

(
N

∑
i=1

‖∂xi u‖pi(.)

)p−m

+ ‖u‖p−m
pM(.) − 1− N

]
(because‖u‖pM(.) − 1 < 0)

≥ 1
p+M

[ 1

Np−m−1

(
N

∑
i=1

‖∂xi u‖pi(.)

)p−m

+ ‖u‖p−m
pM(.)

]
− N − 1

p+M

≥ 1

2p−m−1 p+M
inf
{

1,
1

Np−m−1

}
‖u‖p−m − N − 1

p+M
. (22)
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Now, let us prove that φ is coercive: for ‖ u ‖> 1, by (H4), in either case (22) or (21)
it yields

φ(u) =
N

∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx +

∫
Ω

1
pM(x)

|u|pM(x) dx−
∫

Ω
F(x, u)dx

≥
N

∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx +

∫
Ω

1
pM(x)

|u|pM(x) dx− (λ1 − ε)
∫

Ω

| u |pM(x)

pM(x)
dx

≥
N

∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) +

∫
Ω

1
pM(x)

|u|pM(x) dx

− (λ1 − ε)

λ1

N

∑
i=1

∫
Ω

1
pi(x)

|∂xi u|
pi(x) dx +

∫
Ω

1
pM(x)

|u|pM(x) dx

≥ 1

2p−m−1 p+M
inf
{

1,
1

Np−m−1

}(
1− (λ1 − ε)

λ1

)
‖ u ‖p−m −c.

Thus, φ is coercive and has a global minimizer u1 that means φ′(u1)u1 = 0, which
is nontrivial. Indeed, fixing v0 ∈ X \ {0} and t > 0 to be small enough, from (H5), we
obtain that

φ(tv0) ≤ C2

(∫
Ω

tpi(x)

pi(x)
|v0|pi(x)dx +

∫
Ω

tpM(x)

pM(x)
|v0|pM(x)dx

)
−
∫

Ω
F(x, tv0)dx

≤ C3tp−m − C4tq0 < 0, (23)

because q0 < p−m .

5. Conclusions

In this work, we studied a kind of elliptic problem in an anisotropic form concerning
the Sobolev space with variable exponents. By using the variational approach, and with-
out assuming the Ambrosetti–Rabinowitz type conditions, we proved the existence of a
nontrivial solution.
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