

Article Rational Type Contractions in Extended *b*-Metric Spaces

Huaping Huang ^{1,*} ^(D), Yumnam Mahendra Singh ² ^(D), Mohammad Saeed Khan ³ ^(D) and Stojan Radenović ⁴

- ¹ School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404020, China
- ² Department of Basic Sciences and Humanities, Manipur Institute of Technology, A Constituent College of Manipur University, Takelpat 795004, Manipur, India; ymahenmit@rediffmail.com
- ³ Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa; mohammad@squ.edu.om or drsaeed9@gmail.com
- ⁴ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia; radens@beotel.net
- * Correspondence: huaping@sanxiau.edu.cn

Abstract: In this paper, we establish the existence of fixed points of rational type contractions in the setting of extended *b*-metric spaces. Our results extend considerably several well-known results in the existing literature. We present some nontrivial examples to show the validity of our results. Furthermore, as applications, we obtain the existence of solution to a class of Fredholm integral equations.

Keywords: comparison function; *α*-admissible; rational type contraction; extended *b*-metric space; Fredholm integral equation

1. Introduction and Preliminaries

The concept of distance between two abstract objects has received importance not only for mathematical analysis but also for its related fields. Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces (see also Czerwik [2]). Recently, Kamran et al. [3] gave the notion of extended b-metric space and presented a counterpart of Banach contraction mapping principle. On the other hand, fixed point results dealing with general contractive conditions involving rational type expression are also interesting. Some well-known results in this direction are involved (see [4–10]).

First, of all, we recall some fixed point theorems for rational type contractions in metric spaces.

Theorem 1 ([5]). *Let T be a continuous self mapping on a complete metric space* (*X*, *d*). *If T is a rational type contraction, there exist* $\alpha, \beta \in [0, 1)$ *, where* $\alpha + \beta < 1$ *such that*

$$d(Tx,Ty) \le \alpha d(x,y) + \beta \frac{d(x,Tx)d(y,Ty)}{d(x,y)}$$

for all $x, y \in X$, $x \neq y$, then T has a unique fixed point in X.

Theorem 2 ([4]). *Let T be a continuous self mapping on a complete metric space* (*X*, *d*). *If T is a rational type contraction, there exist* $\alpha, \beta \in [0, 1)$ *, where* $\alpha + \beta < 1$ *such that*

$$d(Tx,Ty) \le \alpha d(x,y) + \beta \cdot \frac{d(y,Ty)[1+d(x,Tx)]}{1+d(x,y)}$$

for all $x, y \in X$, then T has a unique fixed point in X.

Fisher [11] refined the result of Khan [6] in the following way.

Citation: Huang, H.; Singh, Y.M.; Khan, M.S.; Radenović, S. Rational Type Contractions in Extended *b*-Metric Spaces. *Symmetry* **2021**, *13*, 614. https://doi.org/10.3390/ sym13040614

Academic Editors: Wei-Shih Du, Huaping Huang, Juan Ramón Torregrosa Sánchez, Sun Young Cho and Alicia Cordero Barbero

Received: 28 February 2021 Accepted: 1 April 2021 Published: 7 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Theorem 3** ([11]). *Let* T *be a self mapping on a complete metric space* (X, d)*. If* T *is a rational type contraction,* T *satisfies the inequality*

$$d(Tx, Ty) \le k \begin{cases} \frac{d(x, Tx)d(x, Ty) + d(y, Ty)d(y, Tx)}{d(x, Ty) + d(y, Tx)}, & \text{if } d(x, Ty) + d(y, Tx) \neq 0, \\ 0, & \text{if } d(x, Ty) + d(y, Tx) = 0, \end{cases}$$

for all $x, y \in X$, where $0 \le k < 1$. Then, T has a unique fixed point in X.

Ahmad et al. [12] extended Theorem 3 from metric spaces to generalized metric spaces (see [13] for more details). Piri et al. [14] extended the result of Ahmad et al. [12] in the following way.

Theorem 4 ([14]). Let T be a self mapping on a complete generalized metric space (X, d_g) . If T is a rational type contraction, T satisfies the inequality

$$d_{g}(Tx, Ty) \leq k \begin{cases} \max\left\{d_{g}(x, y), \frac{d_{g}(x, Tx)d_{g}(x, Ty) + d_{g}(y, Ty)d_{g}(y, Tx)}{\mathcal{A}_{0}(x, y)}\right\}, & \text{if } \mathcal{A}_{0}(x, y) \neq 0, \\ 0, & \text{if } \mathcal{A}_{0}(x, y) = 0, \end{cases}$$

for all $x, y \in X, x \neq y$, where $0 \leq k < 1$ and $A_0(x, y) = \max\{d_g(x, Ty), d_g(y, Tx)\}$. Then, T has a unique fixed point in X.

Let us recall some basic concepts in *b*-metric spaces as follows.

Definition 1 ([1,2]). Let X be a nonempty set and $s \ge 1$ be a given real number. A function $d_b : X \times X \rightarrow [0, +\infty)$ is called a b-metric on X, if, for all $x, y, z \in X$, the following conditions hold: $(d_b 1) d_b(x, y) = 0$ if and only if x = y; $(d_b 2) d_b(x, y) = d_b(y, x)$; $(d_b 3) d_b(x, y) \le s[d_b(x, z) + d_b(z, y)]$.

In this case, the pair (X, d_b) is called a b-metric space.

It is well-known that any *b*-metric space will become a metric space if s = 1. However, any metric space does not necessarily be a *b*-metric space if s > 1. In other words, *b*-metric spaces are more general than metric spaces (see [15]).

The following example gives us evidence that *b*-metric space is indeed different from metric space.

Example 1 ([16]). Let (X, d) be a metric space and $d_b(x, y) = (d(x, y))^p$ for all $x, y \in X$, where p > 1 is a real number. Then, (X, d_b) is a b-metric space with $s = 2^{p-1}$. However, (X, d_b) is not a metric space.

Definition 2 ([17]). Let $\{x_n\}$ be a sequence in a b-metric space (X, d_h) . Then,

(i) $\{x_n\}$ is called a convergent sequence, if, for each $\epsilon > 0$, there exists $n_0 = n_0(\epsilon) \in \mathbb{N}$ such that $d_b(x_n, x) < \epsilon$, for all $n \ge n_0$, and we write $\lim_{n \to \infty} x_n = x$;

(*ii*) { x_n } is called a Cauchy sequence, if, for each $\epsilon > 0$, there exists $n_0 = n_0(\epsilon) \in \mathbb{N}$ such that $d_b(x_n, x_m) < \epsilon$, for all $n, m \ge n_0$;

(iii) (X, d_b) is said to be complete if every Cauchy sequence is convergent in X.

The following theorem is a basic theorem for Banach type contraction in *b*-metric space.

Theorem 5 ([18]). Let T be a self mapping on a complete b-metric space (X, d_b) . Then, T has a unique fixed point in X if

$$d_b(Tx,Ty) \leq kd_b(x,y)$$

holds for all $x, y \in X$, where $k \in [0, 1)$ is a constant. Moreover, for any $x_0 \in X$, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to the fixed point.

Note that the distance function d_h utilized in *b*-metric spaces is generally discontinuous (see [15,19]). For fixed point results and more examples in *b*-metric spaces, the readers may refer to [15–18].

In what follows, we recall the concept of extend *b*-metric space and some examples.

Definition 3 ([3]). Let X be a nonempty set. Suppose that θ : $X \times X \rightarrow [1, +\infty)$ and d_{θ} : $X \times X \rightarrow [0, +\infty)$ are two mappings. If for all $x, y, z \in X$, the following conditions hold:

 $(d_{\theta}1) d_{\theta}(x, y) = 0$ if and only if x = y;

 $(d_{\theta}2) d_{\theta}(x,y) = d_{\theta}(y,x);$

 $(d_{\theta}3) d_{\theta}(x,y) \leq \theta(x,y) [d_{\theta}(x,z) + d_{\theta}(z,y)],$

then d_{θ} is called an extended b-metric, and the pair (X, d_{θ}) is called an extended b-metric space.

Note that, if $1 \le \theta(x, y) = s$ (a finite constant), for all $x, y \in X$, then extended *b*-metric space reduces to a *b*-metric space. That is to say, *b*-metric space is a generalization of metric space, and extended *b*-metric space is a generalization of *b*-metric space.

In the following, we introduce some examples for extended *b*-metric spaces.

Example 2. Let $X = [0, +\infty)$. Define two mappings $\theta : X \times X \to [1, +\infty)$ and $d_{\theta} : X \times X \to [1, +\infty)$ $[0, +\infty)$ as follows: $\theta(x, y) = 1 + x + y$, for all $x, y \in X$, and

$$d_{\theta}(x,y) = \begin{cases} x+y, & x,y \in X, \ x \neq y, \\ 0, & x=y. \end{cases}$$

Then, (X, d_{θ}) *is an extended b-metric space.*

Indeed, $(d_{\theta}1)$ and $(d_{\theta}2)$ in Definition 3 are clear. Let $x, y, z \in X$. We prove that $(d_{\theta}3)$ in *Definition 3 is satisfied.*

(*i*) If x = y, then $(d_{\theta}3)$ is clear. (*ii*) If $x \neq y$, x = z, then

$$\begin{aligned} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1+x+y)[0+(z+y)] \\ &= (1+x+y)(x+y) \\ &\geq x+y = d_{\theta}(x,y). \end{aligned}$$

(iii) If $x \neq y$, y = z, then

$$\begin{aligned} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1+x+y)[(x+z)+0] \\ &= (1+x+y)(x+y) \\ &\geq x+y = d_{\theta}(x,y). \end{aligned}$$

(iv) If $x \neq y, y \neq z, x \neq z$, then

$$\theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] = (1+x+y)[(x+z) + (z+y)]$$

$$\geq x + 2z + y$$

$$\geq x + y = d_{\theta}(x,y).$$

Consider the above cases, it follows that $(d_{\theta}3)$ *holds. Hence, the claim holds.*

Example 3. Let $X = \mathbb{R}$. Define two mappings $\theta : X \times X \to [1, +\infty)$ and $d_{\theta} : X \times X \to [0, +\infty)$ as follows: $\theta(x, y) = 1 + |x| + |y|$, for all $x, y \in X$ and

$$d_{\theta}(x,y) = \begin{cases} x^2 + y^2, & x, y \in X, \ x \neq y, \\ 0, & x = y. \end{cases}$$

Then, (X, d_{θ}) *is an extended b-metric space.*

Indeed, $(d_{\theta}1)$ and $(d_{\theta}2)$ in Definition 3 are obvious. Let $x, y, z \in X$. We prove that $(d_{\theta}3)$ in Definition 3 is satisfied.

(*i*) If x = y, then $(d_{\theta}3)$ is obvious.

(*ii*) If $x \neq y$, x = z, then

$$\begin{split} \theta(x,y)[d_{\theta}(x,z)+d_{\theta}(z,y)] &= (1+|x|+|y|)[0+(z^2+y^2)] \\ &= (1+|x|+|y|)(x^2+y^2) \\ &\geq x^2+y^2 = d_{\theta}(x,y). \end{split}$$

(iii) If $x \neq y$, y = z, then

$$\begin{aligned} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1 + |x| + |y|)[(x^2 + z^2) + 0] \\ &= (1 + |x| + |y|)(x^2 + y^2) \\ &\geq x^2 + y^2 = d_{\theta}(x,y). \end{aligned}$$

(*iv*) If $x \neq y, y \neq z, x \neq z$, then

$$\begin{aligned} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1 + |x| + |y|)[(x^{2} + z^{2}) + (z^{2} + y^{2})] \\ &\geq (1 + |x| + |y|)(x^{2} + y^{2}) \\ &\geq x^{2} + y^{2} = d_{\theta}(x,y). \end{aligned}$$

Consider the above cases, it follows that $(d_{\theta}3)$ *holds. Hence, the claim holds.*

Example 4. Let $X = \mathbb{R}$. Define two mappings $d_{\theta} : X \times X \to [0, +\infty)$ and $\theta : X \times X \to [1, +\infty)$ as follows:

$$d_{\theta}(x,y) = \begin{cases} \frac{|x|+|y|}{1+|x|+|y|}, & x,y \in X, \ x \neq y, \\ 0, & x = y, \end{cases}$$

and $\theta(x,y) = 1 + |x| + |y|$, for all $x, y \in X$. Then, (X, d_{θ}) is an extended b-metric space.

Indeed, $(d_{\theta}1)$ and $(d_{\theta}2)$ in Definition 3 are valid. Let $x, y, z \in X$. We prove that $(d_{\theta}3)$ in Definition 3 is satisfied.

(*i*) If x = y, then $(d_{\theta}3)$ holds.

(*ii*) If $x \neq y$, x = z, then

$$\begin{split} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1 + |x| + |y|) \left(0 + \frac{|z| + |y|}{1 + |z| + |y|} \right) \\ &= (1 + |x| + |y|) \cdot \frac{|x| + |y|}{1 + |x| + |y|} \\ &\geq \frac{|x| + |y|}{1 + |x| + |y|} \\ &\geq \frac{|x| + |y|}{1 + |x| + |y|} \\ &= d_{\theta}(x,y). \end{split}$$

(iii) If $x \neq y$, y = z, then

$$\begin{split} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1 + |x| + |y|) \left(\frac{|x| + |z|}{1 + |x| + |z|} + 0 \right) \\ &= (1 + |x| + |y|) \cdot \frac{|x| + |y|}{1 + |x| + |y|} \\ &\geq \frac{|x| + |y|}{1 + |x| + |y|} \\ &\geq \frac{|x| + |y|}{1 + |x| + |y|} \\ &= d_{\theta}(x,y). \end{split}$$

(iv) If $x \neq y, y \neq z, x \neq z$, then, by the fact that $f(t) = \frac{t}{1+t}$ is nondecreasing on $[0, +\infty)$ and $|x| + |y| \leq |x| + |z| + |y|$, it follows that

$$\begin{split} \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)] &= (1 + |x| + |y|) \left(\frac{|x| + |z|}{1 + |x| + |z|} + \frac{|z| + |y|}{1 + |z| + |y|} \right) \\ &\geq (1 + |x| + |y|) \left(\frac{|x| + |z|}{1 + |x| + |z| + |y|} + \frac{|z| + |y|}{1 + |x| + |z| + |y|} \right) \\ &= (1 + |x| + |y|) \cdot \frac{|x| + 2|z| + |y|}{1 + |x| + |z| + |y|} \\ &\geq \frac{|x| + |z| + |y|}{1 + |x| + |z| + |y|} \\ &\geq \frac{|x| + |y|}{1 + |x| + |z| + |y|} = d_{\theta}(x,y). \end{split}$$

Consider the above cases, it follows that $(d_{\theta}3)$ *holds. Hence, the claim holds.*

Example 5. Let $X = [0, +\infty)$ and $\theta(x, y) = \frac{3+x+y}{2}$ be a function on $X \times X$. Define a mapping $d_{\theta}: X \times X \to [0, +\infty)$ as follows:

$$d_{\theta}(x,y) = 0, \text{ for all } x, y \in X, x = y,$$

$$d_{\theta}(x,y) = d_{\theta}(y,x) = 5, \text{ for all } x, y \in X \setminus \{0\}, x \neq y,$$

$$d_{\theta}(x,0) = d_{\theta}(0,x) = 2, \text{ for all } x \in X \setminus \{0\}.$$

Then, (X, d_{θ}) *is an extended-b metric space.*

As a matter of fact, obviously, $(d_{\theta}1)$ and $(d_{\theta}2)$ hold. For $(d_{\theta}3)$, we have the following cases: (i) Let $x, y, z \in X \setminus \{0\}$ such that x, y and z are distinct each other, then

$$d_{\theta}(x,y) = 5 \le 5(3+x+y) = \theta(x,y)[d_{\theta}(x,z) + d_{\theta}(z,y)].$$

(ii) Let $x, y \in X \setminus \{0\}, x \neq y$ and z = 0, then

$$d_{\theta}(x,y) = 5 \le 2(3+x+y) = \theta(x,y)[d_{\theta}(x,0) + d_{\theta}(0,y)].$$

(iii) Let $x, z \in X \setminus \{0\}, x \neq z$ and y = 0, then

$$d_{\theta}(x,0) = 2 \le \frac{7}{2}(3+x) = \theta(x,0)[d_{\theta}(x,z) + d_{\theta}(z,y)].$$

Therefore, $(d_{\theta}3)$ *in Definition 3 holds. Thus, the claims hold.*

Remark 1. *Examples 2–5 are extended b-metric spaces but not b-metric spaces.*

Similar to Definition 2, we recall some concepts in extended *b*-metric spaces as follows.

Definition 4 ([3]). Let $\{x_n\}$ be a sequence in an extended b-metric space (X, d_θ) . Then,

(*i*) $\{x_n\}$ is called a convergent sequence, if, for each $\epsilon > 0$, there exists $n_0 = n_0(\epsilon) \in \mathbb{N}$ such that $d_{\theta}(x_n, x) < \epsilon$, for all $n \ge n_0$, and we write $\lim_{n \to \infty} x_n = x$;

(*ii*) $\{x_n\}$ is called a Cauchy sequence, if, for each $\epsilon > 0$, there exists $n_0 = n_0(\epsilon) \in \mathbb{N}$ such that $d_{\theta}(x_n, x_m) < \epsilon$, for all $n, m \ge n_0$;

(iii) (X, d_{θ}) is said to be complete if every Cauchy sequence is convergent in X.

As we know, the limit of convergent sequence in extended *b*-metric space (X, d_{θ}) is unique provided that d_{θ} is a continuous mapping (see [3]).

Definition 5 ([20,21]). *Let T* be a self mapping on an extended b-metric space (X, d_{θ}) . For $x_0 \in X$, *the set*

$$O(x_0, T) = \{x_0, Tx_0, T^2x_0, T^3x_0, \cdots\}$$

is said to be an orbit of T at x_0 . T is said to be orbitally continuous at $\xi \in X$ if $\lim_{k\to\infty} T^k x_0 = \xi$ implies $\lim_{k\to\infty} TT^k x_0 = T\xi$. Moreover, if every Cauchy sequence of the form $\{T^k x_0\}_{k=1}^{\infty}$ is convergent to some point in X, then (X, d_θ) is said to be a T-orbitally complete space.

Note that, if (X, d_{θ}) is complete extended *b*-metric space, then *X* is *T*-orbitally complete for any self-mapping *T* on *X*. Moreover, if *T* is continuous, then it is obviously orbitally continuous in *X*. However, the converse may not be true.

In the sequel, unless otherwise specified, we always denote $Fix(T) = \{x \in X | Tx = x\}$.

Definition 6 ([22]). Let X be a nonempty set and $\alpha : X \times X \to \mathbb{R}$ be a mapping. A mapping $T : X \to X$ is called α -admissible, if for all $x, y \in X$, $\alpha(x, y) \ge 1$ implies $\alpha(Tx, Ty) \ge 1$.

Definition 7 ([23]). Let X be a nonempty set and $\alpha : X \times X \to \mathbb{R}$ be a mapping. Then, $T : X \to X$ is called α^* -admissible if it is a α -admissible mapping and $\alpha(x, y) \ge 1$ holds for all $x, y \in Fix(T) \neq \emptyset$.

Example 6. Let $X = [0, +\infty)$ and $T : X \to X$ be a mapping defined by $Tx = \frac{x(1+x)}{2}$. Let $\alpha : X \times X \to \mathbb{R}$ be a function defined by

$$\alpha(x,y) = \begin{cases} 1, & x,y \in [0,1], \\ 0, & otherwise. \end{cases}$$

Then, T is α -admissible and $Fix(T) = \{0,1\}$. Moreover, $\alpha(x,y) \ge 1$ is satisfied for all $x, y \in Fix(T)$. Consequently, T is α^* -admissible.

Example 7 ([23]). Let $X = [0, +\infty)$ and $T : X \to X$ be a mapping defined by $Tx = \sqrt{\frac{x(x^2+2)}{3}}$. Let $\alpha : X \times X \to [0, +\infty)$ be a function defined by

$$\alpha(x,y) = \begin{cases} 1, & x,y \in [0,1], \\ 0, & otherwise. \end{cases}$$

Then, T is a α *-admissible mapping and Fix*(*T*) = {0,1,2}. *However,* $\alpha(x,2) = \alpha(2,x) = 0$ *is satisfied for x* \in {0,1}. *Thus, T is not* α ^{*}*-admissible.*

Definition 8 ([24]). Let T be a self mapping on a nonempty set X. Then, T is called α -orbitally admissible if, for all $x \in X$, $\alpha(x, Tx) \ge 1$ leads to $\alpha(Tx, T^2x) \ge 1$.

It is mentioned that each α -admissible mapping must be an α -orbitally admissible mapping (for more details, see [24]). For the uniqueness of fixed point, we will use the following definition frequently.

Definition 9. An α -orbitally admissible mapping T is called α^* -orbitally admissible if $x, x^* \in Fix(T) \neq \emptyset$ implies $\alpha(x, x^*) \ge 1$.

Definition 10 ([17,25]). A function $\psi : [0, +\infty) \to [0, +\infty)$ is said to be a comparison function, *if it is nondecreasing and* $\lim_{n\to\infty} \psi^n(t) = 0$ for all t > 0, where ψ^n denotes the n^{th} iteration of ψ .

In what follows, the set of all comparison functions is denoted by Ψ . Some examples for comparison functions, the reader may refer to [26].

Lemma 1 ([27]). Let $\psi \in \Psi$. Then, $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$.

The following lemmas will be used in the sequel.

Lemma 2 ([28]). Let (X, d_{θ}) be an extended b-metric space, $x_0 \in X$ and $\{x_n\}$ be a sequence in X. If $\psi \in \Psi$ satisfies

$$\lim_{n,m\to\infty} \frac{\theta(x_n, x_m)\psi^n(d_\theta(x_0, x_1))}{\psi^{n-1}(d_\theta(x_0, x_1))} < 1$$
(1)

and

$$0 < d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n))$$

for all $m > n \ge 2$, $n, m \in \mathbb{N}$, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. From the given conditions, we get

$$0 < d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n)) \leq \cdots \leq \psi^n(d_{\theta}(x_0, x_1)).$$

On taking limit as $n \to \infty$, we have

$$\lim_{n\to\infty}d_{\theta}(x_n,x_{n+1})=0$$

Setting $\theta_i = \theta(x_i, x_{n+p})$ for each $i \in \mathbb{N}$, $p \ge 1$ and $d_{\theta}(x_0, x_1) = t$, we obtain

$$\begin{split} d_{\theta}(x_{n}, x_{n+p}) &\leq \theta(x_{n}, x_{n+p}) \left[d_{\theta}(x_{n}, x_{n+1}) + d_{\theta}(x_{n+1}, x_{n+p}) \right] \\ &\leq \theta(x_{n}, x_{n+p}) d_{\theta}(x_{n}, x_{n+1}) + \theta(x_{n}, x_{n+p}) \\ &\quad \cdot \theta(x_{n+1}, x_{n+p}) \left[d_{\theta}(x_{n+1}, x_{n+2}) + d_{\theta}(x_{n+2}, x_{n+p}) \right] \\ &\leq \cdots \cdots \\ &\leq \theta(x_{n}, x_{n+p}) d_{\theta}(x_{n}, x_{n+1}) + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) d_{\theta}(x_{n+1}, x_{n+2}) \\ &\quad + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \theta(x_{n+2}, x_{n+p}) d_{\theta}(x_{n+2}, x_{n+3}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+p-2}, x_{n+p-1}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+1}, x_{n+p}) \\ &\leq \theta(x_{n}, x_{n+p}) d_{\theta}(x_{n}, x_{n+1}) + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) d_{\theta}(x_{n+2}, x_{n+3}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+p-2}, x_{n+p-1}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+p-2}, x_{n+p-1}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+p-2}, x_{n+p-1}) \\ &\quad + \cdots + \theta(x_{n}, x_{n+p}) \theta(x_{n+1}, x_{n+p}) \cdots \theta(x_{n+p-2}, x_{n+p}) d_{\theta}(x_{n+p-1}, x_{n+p}) \\ &\leq \theta_{n} \psi^{n}(d_{\theta}(x_{0}, x_{1})) + \theta_{n} \theta_{n+1} \psi^{n+1}(d_{\theta}(x_{0}, x_{1})) \\ &\quad + \cdots + \theta_{n} \theta_{n+1} \cdots \theta_{n+p-1} \psi^{n+p-1}(d_{\theta}(x_{0}, x_{1})) \\ &\quad = \theta_{n} \psi^{n}(t) + \theta_{n} \theta_{n+1} \psi^{n+1}(t) + \cdots + \theta_{n} \theta_{n+1} \cdots \theta_{n+p-1} \psi^{n+p-1}(t) \\ &= \sum_{i=n}^{n+p-1} \psi^{i}(t) \prod_{j=n}^{i} \theta_{j} \leq \sum_{i=n}^{n+p-1} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j} \end{aligned}$$

$$=\sum_{i=1}^{n+p-1}\psi^{i}(t)\prod_{j=1}^{i}\theta_{j}-\sum_{i=1}^{n-1}\psi^{i}(t)\prod_{j=1}^{i}\theta_{j}.$$

Notice that

$$\lim_{n\to\infty}\frac{\theta(x_n,x_{n+p})\psi^n\Big(d_\theta(x_0,x_1)\Big)}{\psi^{n-1}\Big(d_\theta(x_0,x_1)\Big)}=\lim_{n\to\infty}\frac{\theta_n\psi^n(t)}{\psi^{n-1}(t)}<1,$$

then, by the Ratio test the series, $\sum_{i=1}^{\infty} \psi^i(t) \prod_{j=1}^{i} \theta_j$ converges.

Let $S = \sum_{i=1}^{\infty} \psi^i(t) \prod_{j=1}^{i} \theta_j$ and $S_n = \sum_{i=1}^{n} \psi^i(t) \prod_{j=1}^{i} \theta_j$ be the sequence of partial sum. Consequently, for any $n \ge 1$ and $p \ge 1$, we obtain

$$d_{\theta}(x_n, x_{n+p}) \leq S_{n+p-1} - S_{n-1}$$

Taking the limit as $n \to \infty$ from both side of the above inequality, we make a conclusion that $\{x_n\}$ is a Cauchy sequence in *X*. \Box

Lemma 3 ([29]). Let $\{x_n\}$ be a sequence in an extended b-metric space (X, d_θ) such that

$$\lim_{n,m\to\infty}\theta(x_n,x_m)<\frac{1}{k}$$

and

$$0 < d_{\theta}(x_n, x_{n+1}) \leq k d_{\theta}(x_{n-1}, x_n)$$

for any $m > n \ge 2$, $n, m \in \mathbb{N}$, where $k \in [0, 1)$, then $\{x_n\}$ is a Cauchy sequence in X.

Proof. Choose $\psi(t) = kt$, where $k \in [0, 1)$ in Lemma 2. Then, the proof is completed. \Box

2. Fixed Points of Rational Type Contractions

In this section, we assume that (X, d_{θ}) is an extended *b*-metric space with the continuous functional d_{θ} . Let $T : X \to X$ be a mapping. For $x, y \in X$, we always denote

$$\begin{split} \mathcal{N}(x,y) &= \max \left\{ d_{\theta}(x,y), \frac{d_{\theta}(y,Ty)d_{\theta}(x,Tx)}{d_{\theta}(x,y)}, \frac{d_{\theta}(x,Tx)[1+d_{\theta}(y,Ty)]}{1+d_{\theta}(x,y)} \right\}, \\ & \frac{d_{\theta}(y,Ty)[1+d_{\theta}(x,Tx)]}{1+d_{\theta}(x,y)} \right\}, \\ \mathcal{K}(x,y) &= \max \left\{ d_{\theta}(x,y), \frac{d_{\theta}(x,Tx)d_{\theta}(x,Ty)+d_{\theta}(y,Ty)d_{\theta}(y,Tx)}{\max\{d_{\theta}(x,Ty),d_{\theta}(y,Tx)\}}, \\ & \frac{d_{\theta}(x,Tx)d_{\theta}(y,Ty)+d_{\theta}(x,Ty)d_{\theta}(y,Tx)}{\max\{d_{\theta}(y,Ty),d_{\theta}(y,Tx)\}} \right\}. \end{split}$$

Theorem 6. Let *T* be a self mapping on a *T*-orbitally complete extended b-metric space (X, d_{θ}) . Assume that there exist two functions $\alpha : X \times X \to [0, +\infty), \psi \in \Psi$ such that

$$\alpha(x, y)d_{\theta}(Tx, Ty) \le \psi(\mathcal{N}(x, y))$$
(2)

for all $x, y \in X$, $x \neq y$. That is, T is a rational type contraction. If (i) T is α -orbitally admissible; (ii) there exists $x_0 \in X$ satisfying $\alpha(x_0, Tx_0) \ge 1$; (iii) (1) is satisfied for $x_n = T^n x_0$ $(n = 0, 1, 2, \cdots)$;

(iv) T is either continuous or, orbitally continuous on X.

Then, T possesses a fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to $z \in X$.

Proof. By (ii), define a sequence $\{x_n\}$ in X such that $x_{n+1} = Tx_n = T^{n+1}x_0$, for all $n \in \mathbb{N} \cup \{0\}.$

If $x_n = x_{n+1}$, for, some $n \in \mathbb{N} \cup \{0\}$, then x_n is a fixed point of *T*. This completes the proof. Without loss of generality, we therefore assume that $x_n \neq x_{n+1}$, for all $n \in \mathbb{N} \cup \{0\}$. Based on (i), $\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1$ implies that $\alpha(x_1, x_2) = \alpha(Tx_0, Tx_1) \ge 1$.

Then, $\alpha(x_2, x_3) = \alpha(Tx_1, Tx_2) \ge 1$. Continuing this process, one has $\alpha(x_n, x_{n+1}) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$.

Taking $x = x_{n-1}$ and $y = x_n$, for all $n \in \mathbb{N}$ in (2), we have

$$d_{\theta}(x_{n}, x_{n+1}) = d_{\theta}(Tx_{n-1}, Tx_{n}) \\ \leq \alpha(x_{n-1}, x_{n})d_{\theta}(Tx_{n-1}, Tx_{n}) \\ \leq \psi(\mathcal{N}(x_{n-1}, x_{n})),$$
(3)

where

. . .

$$\mathcal{N}(x_{n-1}, x_n) = \max \left\{ d_{\theta}(x_{n-1}, x_n), \frac{d_{\theta}(x_n, Tx_n)d_{\theta}(x_{n-1}, Tx_{n-1})}{d_{\theta}(x_{n-1}, x_n)}, \frac{d_{\theta}(x_{n-1}, Tx_{n-1})[1 + d_{\theta}(x_n, Tx_n)]}{1 + d_{\theta}(x_{n-1}, x_n)}, \frac{d_{\theta}(x_n, Tx_n)[1 + d_{\theta}(x_{n-1}, Tx_{n-1})]}{1 + d_{\theta}(x_{n-1}, x_n)} \right\}$$

$$= \max \left\{ d_{\theta}(x_{n-1}, x_n), \frac{d_{\theta}(x_n, x_{n+1})d_{\theta}(x_{n-1}, x_n)}{d_{\theta}(x_{n-1}, x_n)}, \frac{d_{\theta}(x_n, x_{n+1})[1 + d_{\theta}(x_{n-1}, x_n)]}{1 + d_{\theta}(x_{n-1}, x_n)}, \frac{d_{\theta}(x_n, x_{n+1})]}{1 + d_{\theta}(x_{n-1}, x_n)} \right\}$$

$$= \max \left\{ d_{\theta}(x_{n-1}, x_n), d_{\theta}(x_n, x_{n+1}), \frac{d_{\theta}(x_{n-1}, x_n)[1 + d_{\theta}(x_n, x_{n+1})]}{1 + d_{\theta}(x_{n-1}, x_n)} \right\}.$$
(4)

Similar to ([10], Theorem 2.1), we can prove

$$0 < d_{\theta}(x_n, x_{n+1}) \le \psi(d_{\theta}(x_{n-1}, x_n)), \text{ for all } n \in \mathbb{N}.$$
(5)

In fact, we finish the proof via three cases.

(i) If $\mathcal{N}(x_{n-1}, x_n) = d_{\theta}(x_{n-1}, x_n)$, then by (3), it follows that

$$0 < d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n)).$$

This is (5).

(ii) If $\mathcal{N}(x_{n-1}, x_n) = d_{\theta}(x_n, x_{n+1})$, then by (3), we have

$$0 < d_{\theta}(x_n, x_{n+1}) \le \psi(d_{\theta}(x_n, x_{n+1})) < d_{\theta}(x_n, x_{n+1}),$$

which is a contradiction. (iii) If $\mathcal{N}(x_{n-1}, x_n) = \frac{d_{\theta}(x_{n-1}, x_n)[1+d_{\theta}(x_n, x_{n+1})]}{1+d_{\theta}(x_{n-1}, x_n)}$, then by (4), it is easy to say that

$$\max\{d_{\theta}(x_{n-1}, x_n), d_{\theta}(x_n, x_{n+1})\} \le \frac{d_{\theta}(x_{n-1}, x_n)[1 + d_{\theta}(x_n, x_{n+1})]}{1 + d_{\theta}(x_{n-1}, x_n)}.$$
(6)

In this case, we discuss it with two subcases.

(i) If $\max\{d_{\theta}(x_{n-1}, x_n), d_{\theta}(x_n, x_{n+1})\} = d_{\theta}(x_{n-1}, x_n)$, then

$$d_{\theta}(x_{n-1}, x_n) > d_{\theta}(x_n, x_{n+1}).$$
(7)

By (6), we get

$$d_{\theta}(x_{n-1}, x_n) \leq \frac{d_{\theta}(x_{n-1}, x_n)[1 + d_{\theta}(x_n, x_{n+1})]}{1 + d_{\theta}(x_{n-1}, x_n)},$$

which means that

$$d_{\theta}(x_{n-1}, x_n) \leq d_{\theta}(x_n, x_{n+1}).$$

This is in contradiction with (7). (ii) If $\max\{d_{\theta}(x_{n-1}, x_n), d_{\theta}(x_n, x_{n+1})\} = d_{\theta}(x_n, x_{n+1})$, then

$$d_{\theta}(x_{n}, x_{n+1}) > d_{\theta}(x_{n-1}, x_{n}).$$
(8)

By (6), we get

$$d_{\theta}(x_n, x_{n+1}) \leq \frac{d_{\theta}(x_{n-1}, x_n)[1 + d_{\theta}(x_n, x_{n+1})]}{1 + d_{\theta}(x_{n-1}, x_n)},$$

which establishes that

$$d_{\theta}(x_n, x_{n+1}) \leq d_{\theta}(x_{n-1}, x_n).$$

This is in contradiction with (8).

This is to say, (iii) does not occur.

Thus, (5) is satified. Accordingly, we speculate that

$$d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n)) \leq \cdots \leq \psi^n(d_{\theta}(x_0, x_1)).$$

Letting $n \to \infty$, we obtain that $\lim_{n \to \infty} d_{\theta}(x_n, x_{n+1}) = 0$.

It follows from Lemma 2 that $\{T^n x_0\}$ is a Cauchy sequence in *X*. Since (X, d_θ) is *T*-orbitally complete, then there is $z \in X$ such that $\lim_{n \to \infty} T^n x_0 = z$.

Assume that T is continuous, then

$$d_{\theta}(z,Tz) = \lim_{n \to \infty} d_{\theta}(x_n,Tx_n) = \lim_{n \to \infty} d_{\theta}(x_n,x_{n+1}) = 0.$$

Therefore, *T* possesses a fixed point *z* in *X*.

Assume that *T* is orbitally continuous on *X*, thus, $x_{n+1} = Tx_n = T(T^n x_0) \rightarrow Tz$ as $n \rightarrow \infty$. Since the limit of sequence in extended *b*-metric space is unique, then z = Tz. Thus, *T* possesses a fixed point *z* in *X*, i.e., $Fix(T) \neq \emptyset$. \Box

Example 8. Under all the conditions of Example 3, let $T : X \to X$ be a continuous mapping defined by

$$Tx = \begin{cases} \frac{2x}{3}, & 0 \le x \le 1, \\ 2x - \frac{4}{3}, & otherwise. \end{cases}$$

In addition, we define a mapping $\alpha : X \times X \to [0, +\infty)$ as

$$\alpha(x,y) = \begin{cases} 1, & x,y \in [0,1], \\ 0, & otherwise. \end{cases}$$

Let $x_0 \in X$ be a point with $\alpha(x_0, Tx_0) \ge 1$, then $x_0 \in [0, 1] \subset X$ and $\alpha(Tx_0, T^2x_0) = \alpha\left(\frac{2x_0}{3}, \frac{4}{9}x_0\right) \ge 1$. Therefore, *T* is α -orbitally admissible.

Set $\psi(t) = kt$, for all t > 0, where $k = \frac{4}{9}$, then $\psi^n(t) = k^n t$.

For all distinct *x*, *y* in *X*, ones have

$$\alpha(x,y)d_{\theta}(Tx,Ty) \leq \frac{4}{9}(x^2+y^2) = kd_{\theta}(x,y) \leq k\mathcal{N}(x,y).$$

Moreover, there is $x_0 \in X$ with $\alpha(x_0, Tx_0) \ge 1$, then $\alpha(Tx_0, T^2x_0) \ge 1$. Now, we deduce inductively that $\alpha(x_n, x_{n+1}) \ge 1$, where $x_n = T^n x_0 = (\frac{2}{3})^n x_0$, for all $n \in \mathbb{N} \cup \{0\}$. Obviously, $x_n \to 0$ as $n \to \infty$. Thus, (X, d_θ) is T-orbitally complete.

Note that $\lim_{n,m\to\infty} \theta(x_n, x_m) = 1 < \frac{9}{4} = \frac{1}{k}$, where $k = \frac{4}{9}$, that is to say,

$$\lim_{n,m\to\infty} k\,\theta(x_n,x_m) = \lim_{n,m\to\infty} \frac{\theta(x_n,x_m)\psi^n\big(d_\theta(x_0,x_1)\big)}{\psi^{n-1}\big(d_\theta(x_0,x_1)\big)} < 1.$$

Thus, all the conditions of Theorem 6 hold and hence T possesses a fixed point in X and $Fix(T) = \{0, \frac{4}{3}\}.$

Theorem 7. In addition to all the conditions of Theorem 6, suppose that the T is α^* -orbitally admissible. Then, T possesses a unique fixed point $z \in X$.

Proof. Following Theorem 6, *T* possesses a fixed point in *X*. Thus, $Fix(T) \neq \emptyset$. Assume that *T* is α^* -orbitally admissible. If possible, there exist $z, z^* \in Fix(T), z \neq z^*$ such that Tz = z and $Tz^* = z^*$, then $\alpha(z, z^*) = \alpha(Tz, Tz^*) \ge 1$.

Taking x = z, $y = z^*$ in (2), we obtain

$$\begin{split} d_{\theta}(z, z^{*}) &= d_{\theta}(Tz, Tz^{*}) \leq \alpha(z, z^{*}) d_{\theta}(Tz, Tz^{*}) \leq \psi \big(\mathcal{N}(z, z^{*}) \big) \\ &= \psi \big(\max \Big\{ d_{\theta}(z, z^{*}), \frac{d_{\theta}(z^{*}, Tz^{*}) d_{\theta}(z, Tz)}{d_{\theta}(z, z^{*})}, \frac{d_{\theta}(z, Tz) [1 + d_{\theta}(z^{*}, Tz^{*})]}{1 + d_{\theta}(z, z^{*})} \Big\} \Big) \\ &= \psi \big(d_{\theta}(z, z^{*}) \big) \\ &= \psi \big(d_{\theta}(z, z^{*}) \big) \\ &< d_{\theta}(z, z^{*}), \end{split}$$

which is a contradiction. Therefore, *T* possesses a unique fixed point in *X*. \Box

Corollary 1. ([10], Theorem 2.1) Let T be a continuous self mapping on a complete extended *b*-metric space (X, d_{θ}) such that

$$d_{\theta}(Tx, Ty) \leq k\mathcal{N}(x, y)$$

for all $x, y \in X$, $x \neq y$, where $k \in [0, 1)$. That is, T is a rational type contraction. In addition, suppose that for all $x_0 \in X$,

$$\lim_{n,m\to\infty}\theta(x_n,x_m)<\frac{1}{k},\tag{9}$$

where $x_n = T^n x_0$, $m > n \ge 1$. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to $z \in X$.

Proof. Setting $\alpha(x, y) = 1$, for all $x, y \in X$, then $\alpha(x, Tx) \ge 1$ implies that $\alpha(Tx, T^2x) \ge 1$. Therefore, *T* is α -orbitally admissible.

Let $\psi(t) = kt$, for all t > 0, where $0 \le k < 1$, then $\psi^n(t) = k^n t$. Using (iii) of Theorem 6. In view of (9), then (iii) of Theorem 6 is satisfied. Thus, all the conditions of Theorem 6 hold. Therefore, *T* possesses a fixed point in *X*, i.e., $Fix(T) \ne \emptyset$. Because of $Fix(T) \subseteq X$, then *T* is α^* -orbitally admissible and hence, by Theorem 7, *T* has a unique fixed point in *X*. \Box **Remark 2.** (*i*) The uniqueness of fixed point is not guaranteed if T is not α^* -orbitally admissible. In Example 8, T is α -orbitally admissible and $Fix(T) = \{0, \frac{4}{3}\}$. However, $\alpha(\frac{4}{3}, T\frac{4}{3}) = 0$ so T is not α^* -orbitally admissible. Therefore, Theorem 7 is not applicable in this case. (*ii*) In Example 8, for x = 1 and y = 2, we obtain

$$d_{\theta}(T1, T2) = \frac{68}{9} > d_{\theta}(1, 2) = 5.$$

Therefore, ([3], Theorem 2) and ([10], Theorem 2.1) are not applicable in this case.

Motivated by Piri et al. [14], we extend a fixed point theorem for Khan type from metric spaces to extended *b*-metric spaces.

Theorem 8. Let *T* be a self mapping on a *T*-orbitally complete extended b-metric space (X, d_{θ}) . Suppose that $\alpha : X \times X \to [0, \infty), \psi \in \Psi$ are two functions satisfying

$$\alpha(x,y)d_{\theta}(Tx,Ty) \leq \begin{cases} \psi(\mathcal{K}(x,y)), & \text{whenever } \mathcal{A}(x,y) \neq 0 \text{ and } \mathcal{B}(x,y) \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$
(10)

for all $x, y \in X$, $x \neq y$, where

$$\mathcal{A}(x,y) = \max\{d_{\theta}(x,Ty), d_{\theta}(y,Tx)\}, \qquad \mathcal{B}(x,y) = \max\{d_{\theta}(y,Ty), d_{\theta}(y,Tx)\}.$$

If

 \vec{x} (*i*) *T* is α -orbitally admissible; (*ii*) there exists $x_0 \in X$ and $\alpha(x_0, Tx_0) \ge 1$; (*iii*) (1) is satisfied for $x_n = T^n x_0$ $(n = 0, 1, 2, \cdots)$. Then, *T* possesses a fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to $z \in X$.

Proof. By (ii), define a sequence $\{x_n\}$ in X such that $x_{n+1} = Tx_n = T^{n+1}x_0$, for all $n \in \mathbb{N} \cup \{0\}$. Since T is α -orbitally admissible, then $\alpha(x_0, x_1) = \alpha(x_0, Tx_0) \ge 1$ implies $\alpha(x_1, x_2) = \alpha(Tx_0, T^2x_0) \ge 1$. Thus, inductively, we obtain that $\alpha(x_n, x_{n+1}) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$. In order to show that T possesses a fixed point in X, we assume that $x_{n-1} \neq x_n$, for all $n \in \mathbb{N}$. We divide the proof into the following two cases:

Case 1

Suppose that

$$\max\{d_{\theta}(x_{n-1}, Tx_n), d_{\theta}(x_n, Tx_{n-1})\} \neq 0$$

and

$$\max\{d_{\theta}(x_n, Tx_n), d_{\theta}(x_n, Tx_{n-1})\} \neq 0,$$

for all $n \in \mathbb{N}$. From (10), we obtain that

$$d_{\theta}(x_{n}, x_{n+1}) = d_{\theta}(Tx_{n-1}, Tx_{n}) \leq \alpha(x_{n-1}, x_{n})d_{\theta}(Tx_{n-1}, Tx_{n}) \leq \psi(\mathcal{K}(x_{n-1}, x_{n})),$$

where

$$\begin{split} \mathcal{K}(x_{n-1}, x_n) &= \max \left\{ d_{\theta}(x_{n-1}, x_n), \\ \frac{d_{\theta}(x_{n-1}, Tx_{n-1})d_{\theta}(x_{n-1}, Tx_n) + d_{\theta}(x_n, Tx_n)d_{\theta}(x_n, Tx_{n-1})}{\max\{d_{\theta}(x_{n-1}, Tx_n), d_{\theta}(x_n, Tx_{n-1})\}}, \\ \frac{d_{\theta}(x_{n-1}, Tx_{n-1})d_{\theta}(x_n, Tx_n) + d_{\theta}(x_{n-1}, Tx_n)d_{\theta}(x_n, Tx_{n-1})}{\max\{d_{\theta}(x_n, Tx_n), d_{\theta}(x_n, Tx_{n-1})\}} \right\} \\ &= \max \left\{ d_{\theta}(x_{n-1}, x_n), \frac{d_{\theta}(x_{n-1}, x_n)d_{\theta}(x_{n-1}, x_{n+1}) + d_{\theta}(x_n, x_n)}{\max\{d_{\theta}(x_{n-1}, x_{n+1}), d_{\theta}(x_n, x_n)\}}, \\ \end{split}$$

$$\frac{d_{\theta}(x_{n-1}, x_n)d_{\theta}(x_n, x_{n+1}) + d_{\theta}(x_{n-1}, x_{n+1})d_{\theta}(x_n, x_n)}{\max\{d_{\theta}(x_n, x_{n+1}), d_{\theta}(x_n, x_n)\}} \Big\}$$

= $d_{\theta}(x_{n-1}, x_n).$

Therefore,

$$0 < d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n)).$$

Furthermore,

$$0 < d_{\theta}(x_n, x_{n+1}) \leq \psi(d_{\theta}(x_{n-1}, x_n)) \leq \cdots \leq \psi^n(d_{\theta}(x_0, x_1))$$

Letting $n \to \infty$, we have

$$\lim_{n\to\infty}d_{\theta}(x_n,x_{n+1})=0.$$

It follows from Condition (iii) and Lemma 2 that $\{T^n x_0\}$ is a Cauchy sequence in *X*. Notice that *X* is *T*-orbitally complete, thus, there is $z \in X$ with $x_n = T^n x_0 \rightarrow z$ as $n \rightarrow \infty$. Assume, if possible, $Tz \neq z$. From (10) and the triangular inequality, we obtain

$$d_{\theta}(z, Tz) \leq \theta(z, Tz) [d_{\theta}(Tz, Tx_{n}) + d_{\theta}(Tx_{n}, z)] = \theta(z, Tz) d_{\theta}(Tz, Tx_{n}) + \theta(z, Tz) d_{\theta}(Tx_{n}, z) \leq \theta(z, Tz) \alpha(z, x_{n}) d_{\theta}(Tz, Tx_{n}) + \theta(z, Tz) d_{\theta}(x_{n+1}, z) \leq \theta(z, Tz) \psi \Big(\mathcal{K}(z, x_{n}) \Big) + \theta(z, Tz) d_{\theta}(x_{n+1}, z) < \theta(z, Tz) \mathcal{K}(z, x_{n}) + \theta(z, Tz) d_{\theta}(x_{n+1}, z),$$
(11)

where

$$\begin{split} \mathcal{K}(z,x_{n}) &= \max \Big\{ d_{\theta}(z,x_{n}), \frac{d_{\theta}(z,Tz)d_{\theta}(z,Tx_{n}) + d_{\theta}(x_{n},Tx_{n})d_{\theta}(x_{n},Tz)}{\max\{d_{\theta}(z,Tx_{n}), d_{\theta}(x_{n},Tz)\}}, \\ & \frac{d_{\theta}(z,Tz)d_{\theta}(x_{n},Tx_{n}) + d_{\theta}(z,Tx_{n})d_{\theta}(x_{n},Tz)}{\max\{d_{\theta}(x_{n},Tx_{n}), d_{\theta}(x_{n},Tz)\}} \Big\} \\ &= \max \Big\{ d_{\theta}(z,x_{n}), \frac{d_{\theta}(z,Tz)d_{\theta}(z,x_{n+1}) + d_{\theta}(x_{n},x_{n+1})d_{\theta}(x_{n},Tz)}{\max\{d_{\theta}(z,x_{n+1}), d_{\theta}(x_{n},Tz)\}}, \\ & \frac{d_{\theta}(z,Tz)d_{\theta}(x_{n},x_{n+1}) + d_{\theta}(z,x_{n+1})d_{\theta}(x_{n},Tz)}{\max\{d_{\theta}(x_{n},x_{n+1}), d_{\theta}(x_{n},Tz)\}} \Big\}. \end{split}$$

Taking $n \to \infty$ from both sides of (11), we have $d_{\theta}(z, Tz) \le 0$, which is in contradiction with $Tz \neq z$.

Case 2

Assume that

$$\max\{d_{\theta}(x_{n-1}, Tx_n), d_{\theta}(x_n, Tx_{n-1})\} = 0$$

or

$$\max\{d_{\theta}(x_n, Tx_n), d_{\theta}(x_n, Tx_{n-1})\} = 0,$$

for all $n \in \mathbb{N}$. Consider (10), it follows that

$$x_n = x_{n+1} = Tx_n.$$

Thus, *T* possesses a fixed point in *X*, i.e., $Fix(T) \neq \emptyset$. \Box

Example 9. Under all the conditions of Example 5, let $T : X \to X$ be a mapping defined by

$$Tx = \begin{cases} 0, & 0 \le x < \frac{3}{2}, \\ 2, & \frac{3}{2} \le x < 500, \\ 100, & x \ge 500. \end{cases}$$

We also define a mapping $\alpha : X \times X \rightarrow [0, +\infty)$ *as*

$$\alpha(x,y) = \begin{cases} 1, & x, y \in [0, \frac{3}{2}), \\ 0, & otherwise. \end{cases}$$

Let $x \in X$ be a point such that $\alpha(x, Tx) \ge 1$, then $x \in [0, \frac{3}{2}) \subset X$ and $\alpha(Tx, T^2x) \ge 1$. Therefore, *T* is α -orbitally admissible.

Set $\psi(t) = kt$, for all t > 0, where $k = \frac{1}{2}$. For all $x, y \in X$, we obtain

$$\alpha(x,y)d_{\theta}(Tx,Ty) \leq k\mathcal{K}(x,y).$$

Clearly, there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$, then $\alpha(Tx_0, T^2x_0) \ge 1$. Therefore, by the mathematical induction, we have $\alpha(x_n, x_{n+1}) = \alpha(T^nx_0, T^{n+1}x_0) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$. Consequently, $T^nx_0 \to 0$ as $n \to \infty$. This shows that (X, d_θ) is a T-orbitally complete extended *b*-metric space.

Moreover, it is easy to see that

$$\lim_{n,m\to\infty} \theta(T^n x_0, T^m x_0) = \frac{3}{2} < 2 = \frac{1}{k}$$

Accordingly, all the conditions of Theorem 8 hold and, therefore, T possesses a fixed point and $Fix(T) = \{0, 2\}$.

Theorem 9. In addition to Theorem 8, suppose that T is α^* -orbitally admissible. Then, T possesses a unique fixed point $z \in X$.

Proof. By Theorem 8, *T* possesses a fixed point in *X*, i.e., $Fix(T) \neq \emptyset$. For the uniqueness, let $z, z^* \in Fix(T)$ such that $z \neq z^*$. Then, by the α^* -orbital admissibility of *T*, we have $\alpha^*(z, z^*) \ge 1$.

As in Theorem 8, we also divide the proof into two cases as follows: *Case 1*

Suppose that

and

$$\max\{d_{\theta}(z^*, Tz^*), d_{\theta}(z^*, Tz)\} \neq 0.$$

 $\max\{d_{\theta}(z, Tz^*), d_{\theta}(z^*, Tz)\} \neq 0$

From (10), we obtain

$$d_{\theta}(z, z^*) = d_{\theta}(Tz, Tz^*) \le \alpha(z, z^*) d_{\theta}(Tz, Tz^*) \le \psi(\mathcal{K}(z, z^*)),$$

where

$$\begin{split} \mathcal{K}(z,z^*) &= \max \left\{ d_{\theta}(z,z^*), \frac{d_{\theta}(z,Tz)d_{\theta}(z,Tz^*) + d_{\theta}(z^*,Tz^*)d_{\theta}(z^*,Tz)}{\max\{d_{\theta}(z,Tz^*), d_{\theta}(z^*,Tz)\}} \right\} \\ &= \frac{d_{\theta}(z,Tz)d_{\theta}(z^*,Tz^*) + d_{\theta}(z,Tz^*)d(z^*,Tz)}{\max\{d_{\theta}(z^*,Tz^*), d_{\theta}(z^*,Tz)\}} \right\} \\ &= d_{\theta}(z,z^*). \end{split}$$

Therefore,

$$d_{ heta}(z,z^*) \leq \psi\Big(d_{ heta}(z,z^*)\Big) < d_{ heta}(z,z^*).$$

This is a contradiction. *Case 2* Assume that

 $\max\{d_{\theta}(z,Tz^*),d_{\theta}(z^*,Tz)\}=0$

or

 $\max\{d_{\theta}(z^*, Tz^*), d_{\theta}(z^*, Tz)\} = 0.$

Consequently, $z = Tz^* = Tz = z^*$. Thus, *T* possesses a unique fixed point in *X*. This completes the proof. \Box

Corollary 2. Let T be a self mapping on a complete extended b-metric space (X, d_{θ}) such that

$$d_{\theta}(Tx,Ty) \leq k \begin{cases} \mathcal{K}(x,y), & \text{whenever } \mathcal{A}(x,y) \neq 0 \text{ and } \mathcal{B}(x,y) \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$

for all $x, y \in X$, $x \neq y$, where $0 \leq k < 1$, A(x, y) and $\mathcal{B}(x, y)$ are defined in Theorem 8. Furthermore, suppose, for all $x_0 \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to z.

Corollary 3. Let T be a self mapping on a complete extended b-metric space (X, d_{θ}) such that

$$d_{\theta}(Tx,Ty) \leq k \begin{cases} \max\left\{d_{\theta}(x,y), \frac{d_{\theta}(x,Tx)d_{\theta}(x,Ty)+d_{\theta}(y,Ty)d_{\theta}(y,Tx)}{\mathcal{A}(x,y)}\right\}, & \text{if } \mathcal{A}(x,y) \neq 0, \\ 0, & \text{if } \mathcal{A}(x,y) = 0, \end{cases}$$

for all $x, y \in X$, $x \neq y$, where $0 \leq k < 1$ and $\mathcal{A}(x, y) = \max\{d_{\theta}(x, Ty), d_{\theta}(y, Tx)\}$. Further suppose, for all $x_0 \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to z.

Corollary 4. ([10], Theorem 2.2) Let T be a self mapping on a complete extended b-metric space (X, d_{θ}) such that

$$d_{\theta}(Tx,Ty) \leq k \begin{cases} \max\left\{d_{\theta}(x,y), \frac{d_{\theta}(x,Tx)d_{\theta}(x,Ty)+d_{\theta}(y,Ty)d_{\theta}(y,Tx)}{\mathcal{C}(x,y)}\right\}, & \text{if } \mathcal{C}(x,y) \neq 0, \\ 0, & \text{if } \mathcal{C}(x,y) = 0, \end{cases}$$

for all $x, y \in X$, $x \neq y$, where $0 \leq k < 1$ and $C(x, y) = d_{\theta}(x, Ty) + d_{\theta}(y, Tx)$. Further assume, for all $x_0 \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ converges to z.

Remark 3. (*i*) In Example 9, T is α -orbitally admissible. Since $Fix(T) = \{0, 2\}$, but $\alpha(2, T2) = \alpha(2, 2) = 0$, T is not α^* -orbitally admissible. In this case, Theorem 9 is not applicable in Example 9. (*ii*) In Example 9, if x = 2 and y = 500, then

$$d_{\theta}(Tx, Ty) = d_{\theta}(T2, T500) = d_{\theta}(2, 100) = 5 > \frac{1}{2} \max\left\{5, \frac{5}{2}\right\}.$$

This shows that Corollaries 2–4 *are not applicable in Example* 9.

3. Applications

In this section, by using fixed point theorems mentioned above, we cope with some problems for the unique solution to a class of Fredholm integral equations.

Let X = C[a, b] be a set of all real valued continuous functions on [a, b]. Define two mappings $d_{\theta} : X \times X \to [0, +\infty)$ by

$$d_{\theta}(x,y) = \sup_{t \in [a,b]} |x(t) - y(t)|^p,$$

and $\theta: X \times X \rightarrow [1, +\infty)$ by

$$\theta(x,y) = 2^{p-1} + |x(t)| + |y(t)|,$$

where p > 1 is a constant. Then, (X, d_{θ}) is a complete extended *b*-metric space.

Define a Fredholm integral equation by

$$x(t) = \eta(t) + \lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) ds,$$

where $t \in [a, b]$, $|\lambda| > 0$ and $\mathcal{I} : [a, b] \times [a, b] \times X \to \mathbb{R}$ and $\eta : [a, b] \to \mathbb{R}$ are continuous functions. Let $T : X \to X$ be an integral operator defined by

$$Tx(t) = \eta(t) + \lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) ds.$$
(12)

Theorem 10. Let $T : X \to X$ be an integral operator defined in (12). Suppose that the following assumptions hold:

(*i*) for any $x_0 \in X$, $\lim_{n,m\to\infty} \theta(T^n x_0, T^m x_0) < \frac{1}{k}$, where $k = \frac{1}{2^p}$, (*ii*) for any $x, y \in X$, $x \neq y$, it satisfies

$$\left|\mathcal{I}(t,s,x(s)) - \mathcal{I}(t,s,y(s))\right| \le \xi(t,s)|x(s) - y(s))|,\tag{13}$$

where $(s,t) \in [a,b] \times [a,b]$ and $\xi : [a,b] \times [a,b] \to \mathbb{R}$ is a continuous function satisfying

$$\sup_{t \in [a,b]} \int_{a}^{b} \xi^{p}(t,s) ds < \frac{1}{2^{p} |\lambda|^{p} (b-a)^{p-1}}.$$
(14)

Then, the integral operator T has a unique solution in X.

Proof. Let $x_0 \in X$ and define a sequence $\{x_n\}$ in X by $x_n = T^n x_0$, $n \ge 1$. From (12), we obtain

$$x_{n+1} = Tx_n(t) = \eta(t) + \lambda \int_a^b \mathcal{I}(t, s, x_n(s)) ds.$$

Let q > 1 be a constant with $\frac{1}{p} + \frac{1}{q} = 1$. Making full use of (13) and the Hölder's inequality, we speculate that

$$\begin{aligned} \left| Tx(t) - Ty(t) \right|^{p} &= \left| \lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) ds - \lambda \int_{a}^{b} \mathcal{I}(t, s, y(s)) ds \right|^{p} \\ &\leq \left(\int_{a}^{b} |\lambda| |\mathcal{I}(t, s, x(s)) - \mathcal{I}(t, s, y(s))| ds \right)^{p} \\ &\leq \left(\int_{a}^{b} |\lambda|^{q} ds \right)^{\frac{p}{q}} \left(\left(\int_{a}^{b} |\mathcal{I}(t, s, x(s)) - \mathcal{I}(t, s, y(s))|^{p} ds \right)^{\frac{1}{p}} \right)^{p} \\ &= |\lambda|^{p} (b - a)^{p-1} \left(\int_{a}^{b} |\mathcal{I}(t, s, x(s)) - \mathcal{I}(t, s, y(s))|^{p} ds \right) \\ &\leq |\lambda|^{p} (b - a)^{p-1} \int_{a}^{b} \xi^{p} (t, s) |x(s) - y(s)|^{p} ds. \end{aligned}$$
(15)

Making the most of (15) and (14), we deduce that

$$\begin{aligned} d_{\theta}(Tx,Ty) &= \sup_{t \in [a,b]} \left| Tx(t) - Ty(t) \right|^p \\ &\leq |\lambda|^p (b-a)^{p-1} \sup_{t \in [a,b]} \left[\int_a^b \xi^p(t,s) |x(s) - y(s)|^p ds \right] \\ &\leq |\lambda|^p (b-a)^{p-1} \sup_{s \in [a,b]} |x(s) - y(s)|^p \Big(\sup_{t \in [a,b]} \int_a^b \xi^p(t,s) ds \Big) \\ &\leq \frac{1}{2^p} \mathcal{N}(x,y). \end{aligned}$$

Setting $k = \frac{1}{2^p}$, we obtain that

$$d_{\theta}(Tx, Ty) \leq k\mathcal{N}(x, y)$$

Thus, all the conditions of Corollary 1 are satisfied and hence *T* possesses a unique fixed point in *X*. \Box

Theorem 11. Let $T : X \to X$ be an integral operator defined by (12). Assume that the following assumptions hold:

(i) $\lim_{n,m\to\infty} \theta(T^n x_0, T^m x_0) < \frac{1}{k}$, where $k = \frac{1}{2^p}$ for any $x_0 \in X$; *(ii)* for all distinct x, y in X, ones have

$$\left|\mathcal{I}(t,s,x(s)) - \mathcal{I}(t,s,y(s))\right| \leq \begin{cases} \xi(t,s)\mathcal{K}(x(s),y(s)), & \text{where } \mathcal{A} \neq 0 \text{ and } \mathcal{B} \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$

where

$$\mathcal{A} = \mathcal{A}(x(s), y(s)) = \sup\{|x(s) - Ty(s)|^{p}, |y(s) - Tx(s)|^{p}\},\$$

$$\mathcal{B} = \mathcal{B}(x(s), y(s)) = \sup\{|y(s) - Ty(s)|^{p}, |y(s) - Tx(s)|^{p}\},\$$

 $(s,t) \in [a,b] \times [a,b]$ and $\xi : [a,b] \times [a,b] \to \mathbb{R}$ is a continuous function such that

$$\sup_{t\in[a,b]}\int_a^b\xi^p(t,s)ds<\frac{1}{2^p|\lambda|^p(b-a)^{p-1}}$$

Then, the integral operator T has a unique solution in X.

Example 10. Let X = C[0,1] be a set of all real valued continuous functions defined on [0,1]. Then, (X, d_{θ}) is a complete extended b-metric space equipped with $d_{\theta}(x, y) = \sup_{\substack{t \in [0,1] \\ t \in [0,1]}} |x(t) - y(t)|^2$, where $\theta(x, y) = 2 + |x(t)| + |y(t)|$, for all $x, y \in X$. Let $T : X \to X$ be an operator defined by

$$Tx(t) = \eta(t) + \int_0^1 \mathcal{I}(t, s, x(s)) ds,$$

where $\eta(t) = \frac{t}{4}$ and $\mathcal{I}(t, s, x(s)) = \frac{t(1+x^2(s))}{3}$, for all $(t, s) \in [0, 1] \times [0, 1]$. We have

$$|Tx(t) - Ty(t)|^{2} = \left| \int_{0}^{1} \mathcal{I}(t, s, x(s)) ds - \int_{0}^{1} \mathcal{I}(t, s, y(s)) ds \right|^{2} \\ \leq \int_{0}^{1} \left| \frac{t}{3} (x^{2}(s) - y^{2}(s)) \right|^{2} ds.$$
(16)

Taking the supremum on both sides of (16)*, for all* $t \in [0, 1]$ *, we obtain*

$$d_{\theta}(Tx, Ty) = \sup_{t \in [0,1]} |Tx(t) - Ty(t)|^2 \le \frac{1}{9} d_{\theta}(x, y) < \frac{1}{6} \mathcal{N}(x, y).$$

In addition, $\lim_{m,n\to\infty} \theta(T^m x_0, T^n x_0) = 2 < \frac{1}{k}$, where $k = \frac{1}{6}$ and $x_0(t) = \frac{t}{4}$. Thus, all the conditions of Theorem 10 are satisfied and hence the integral operator T has a unique solution.

Author Contributions: H.H. designed the research and wrote the paper. Y.M.S. offered the draft preparation and gave the methodology, M.S.K. and S.R. co-wrote and made revisions to the paper. H.H. gave the support of funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: The first author acknowledges the financial support from the Natural Science Foundation of Chongqing of China (No. cstc2020jcyj-msxmX0762), and the Initial Funding of Scientific Research for High-level Talents of Chongqing Three Gorges University of China (No. 2104/09926601).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the corresponding author.

Acknowledgments: The authors thank the editor and the referees for their valuable comments and suggestions which greatly improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 1989, 30, 26–37.
- 2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav.o 1993, 1, 5–11.
- 3. Kamran, T.; Samreen, M.; Ul Ain, Q. A generalization of *b*-metric space and some fixed point theorems. *Mathematics* **2017**, *5*, 19. [CrossRef]
- Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. *Indian J. Pure Appl. Math.* 1975, 6, 1455–1458.
- 5. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230.
- 6. Khan, M.S. A fixed point theorems for metric spaces. *Rendiconti Dell'Istituto Matematica Dell'Università Trieste Int. J. Math.* **1976**, *8*, 69–72. [CrossRef]
- 7. Sarwar, M.; Humaira, Huang H. Fuzzy fixed point results with rational type contractions in partially ordered complex-valued metric spaces. *Commentat. Math.* **2018**, *58*, 5–78. [CrossRef]
- Choudhury, B.S.; Metiya, N.; Konar, P. Fixed point results for rational type contraction in partially ordered complex-valued metric spaces. *Bull. Int. Math. Virtual. Inst.* 2015, 5, 73–80.
- 9. Cabrera, I.; Harjani, J.; Sadarangani, K. A fixed point theorem for contractions of rational type in partially ordered metric spaces. *Ann. Univ. Ferrara.* **2013**, *59*, 251–258. [CrossRef]
- 10. Alqahtani, B.; Fulga, A.; Karapinar, E.; Rakočević, V. Contractions with rational inequalities in the extended *b*-metric spaces. *J. Inequal. Appl.* **2019**, 2019, 220. [CrossRef]
- 11. Fisher, B. A note on a theorem of Khan. Rendiconti Dell'Istituto Matematica Dell'Università Trieste Int. J. Math. 1978, 10, 1-4.
- 12. Ahmad, J.; Arshad, M.; Vetro, C. On a theorem of Khan in a generalized metric space. Int. J. Anal. 2013, 852727. [CrossRef]
- 13. Branciari, A. A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces. *Publ. Math. Debrecen.* **2000**, *57*, 31–37.
- 14. Piri, H.; Rahrovi, S.; Kumam, P. Khan type fixed point theorems in a generalized metric space. *J. Math. Computer Sci.* **2016**, *16*, 211–217. [CrossRef]
- 15. Boriceanu, M.; Bota, M.; Petruşusel, A. Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 2010, 8, 367–377. [CrossRef]
- 16. Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered *b*-metric spaces. *Math. Slovaca.* **2014**, *64*, 941–960. [CrossRef]
- 17. Berinde, V. Generalized contractions in quasimetric spaces. Semin. Fixed Point Theory Babes Bolyai Univ. 1993, 3, 3–9.
- Huang, H; Radenović, S.; Deng, G. A sharp generalization on cone *b*-metric space over Banach algebra. *J. Nonlinear Sci. Appl.* 2017, 10, 429–435. [CrossRef]
- Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadeburg, Z. Fixed points of cyclic weakly (ψ, φ, L, A, B)-contractive mappings ordered b-metric spaces with applications. *Fixed Point Theory Appl.* 2013, 2013, 256. [CrossRef]

- 20. Alsulami, H.H.; Karapınar, E.; Rakočević, V. Ćirić type non-unique fixed point theorems on *b*-metric spaces. *Filomat* **2017**, *3*, 3147–3156. [CrossRef]
- 21. Ćirić, L.B. Generalized contraction and fixed point theoremss. *Publications L'Institut Mathématique* 1971, 12, 19–26.
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for *α*-*ψ*-contractive type mappings. *Nonlinear Anal.* 2012, *75*, 2154–2165. [CrossRef]
- 23. Mahendra Singh, Y.; Khan, M.S.; Kang, S.M. *F*-convex contraction via admissible mapping and related fixed point theorems with an application. *Mathematics* **2018**, *6*, 105. [CrossRef]
- 24. Popescu, O. Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. *Fixed Point Theory Appl.* **2014**, 2014, 190. [CrossRef]
- 25. Berinde, V. Sequences of operators and fixed points in quasimetric spaces. Studia Univ. Babeş-Bolyai Math. 1996, 41, 23–27.
- 26. Berinde, V. On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 2003, 19, 7–22.
- 27. Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. *Proc. Amer. Math. Soc.* **1977**, *62*, 344–348. [CrossRef]
- Khan, M.S.; Mahendra Singh, Y.; Abbas, M.; Rakočević V. On non-unique fixed point of Ćirić type operators in extended b-metric spaces and applications. *Rend. Circ. Mat. Palermo II. Ser.* 2020, 69, 1221–1241. [CrossRef]
- 29. Alqahtani, B.; Fulga, A.; Karapınar, E. Non-unique fixed point results in extended *b*-metric space. *Mathematics* **2018**, *6*, 68. [CrossRef]