Rational Type Contractions in Extended b-Metric Spaces

Huaping Huang ${ }^{1, *}{ }^{(D)}$, Yumnam Mahendra Singh ${ }^{2}$ (D), Mohammad Saeed Khan ${ }^{3}$ (D) and Stojan Radenović ${ }^{4}$ (D)
1 School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404020, China
2 Department of Basic Sciences and Humanities, Manipur Institute of Technology, A Constituent College of Manipur University, Takelpat 795004, Manipur, India; ymahenmit@rediffmail.com
3 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa; mohammad@squ.edu.om or drsaeed9@gmail.com
4 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia; radens@beotel.net
* Correspondence: huaping@sanxiau.edu.cn

check for updates

Citation: Huang, H.; Singh, Y.M.; Khan, M.S.; Radenović, S. Rational Type Contractions in Extended b-Metric Spaces. Symmetry 2021, 13, 614. https://doi.org/10.3390/ sym13040614

Academic Editors: Wei-Shih Du, Huaping Huang, Juan Ramón Torregrosa Sánchez, Sun Young Cho and Alicia Cordero Barbero

Received: 28 February 2021
Accepted: 1 April 2021
Published: 7 April 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

In this paper, we establish the existence of fixed points of rational type contractions in the setting of extended b-metric spaces. Our results extend considerably several well-known results in the existing literature. We present some nontrivial examples to show the validity of our results. Furthermore, as applications, we obtain the existence of solution to a class of Fredholm integral equations.

Keywords: comparison function; α-admissible; rational type contraction; extended b-metric space; Fredholm integral equation

1. Introduction and Preliminaries

The concept of distance between two abstract objects has received importance not only for mathematical analysis but also for its related fields. Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces (see also Czerwik [2]). Recently, Kamran et al. [3] gave the notion of extended b-metric space and presented a counterpart of Banach contraction mapping principle. On the other hand, fixed point results dealing with general contractive conditions involving rational type expression are also interesting. Some well-known results in this direction are involved (see [4-10]).

First, of all, we recall some fixed point theorems for rational type contractions in metric spaces.

Theorem 1 ([5]). Let T be a continuous self mapping on a complete metric space (X, d). If T is a rational type contraction, there exist $\alpha, \beta \in[0,1)$, where $\alpha+\beta<1$ such that

$$
d(T x, T y) \leq \alpha d(x, y)+\beta \frac{d(x, T x) d(y, T y)}{d(x, y)}
$$

for all $x, y \in X, x \neq y$, then T has a unique fixed point in X.
Theorem 2 ([4]). Let T be a continuous self mapping on a complete metric space (X, d). If T is a rational type contraction, there exist $\alpha, \beta \in[0,1)$, where $\alpha+\beta<1$ such that

$$
d(T x, T y) \leq \alpha d(x, y)+\beta \cdot \frac{d(y, T y)[1+d(x, T x)]}{1+d(x, y)}
$$

for all $x, y \in X$, then T has a unique fixed point in X.
Fisher [11] refined the result of Khan [6] in the following way.

Theorem 3 ([11]). Let T be a self mapping on a complete metric space (X, d). If T is a rational type contraction, T satisfies the inequality

$$
d(T x, T y) \leq k \begin{cases}\frac{d(x, T x) d(x, T y)+d(y, T y) d(y, T x)}{d(x, T y)+d(y, T x)}, & \text { if } d(x, T y)+d(y, T x) \neq 0 \\ 0, & \text { if } d(x, T y)+d(y, T x)=0\end{cases}
$$

for all $x, y \in X$, where $0 \leq k<1$. Then, T has a unique fixed point in X.
Ahmad et al. [12] extended Theorem 3 from metric spaces to generalized metric spaces (see [13] for more details). Piri et al. [14] extended the result of Ahmad et al. [12] in the following way.

Theorem 4 ([14]). Let T be a self mapping on a complete generalized metric space $\left(X, d_{g}\right)$. If T is a rational type contraction, T satisfies the inequality

$$
d_{g}(T x, T y) \leq k \begin{cases}\max \left\{d_{g}(x, y), \frac{d_{g}(x, T x) d_{g}(x, T y)+d_{g}(y, T y) d_{g}(y, T x)}{\mathcal{A}_{0}(x, y)}\right\}, & \text { if } \mathcal{A}_{0}(x, y) \neq 0 \\ 0, & \text { if } \mathcal{A}_{0}(x, y)=0,\end{cases}
$$

for all $x, y \in X, x \neq y$, where $0 \leq k<1$ and $\mathcal{A}_{0}(x, y)=\max \left\{d_{g}(x, T y), d_{g}(y, T x)\right\}$. Then, T has a unique fixed point in X.

Let us recall some basic concepts in b-metric spaces as follows.
Definition 1 ([1,2]). Let X be a nonempty set and $s \geq 1$ be a given real number. A function d_{b} : $X \times X \rightarrow[0,+\infty)$ is called a b-metric on X, if, for all $x, y, z \in X$, the following conditions hold:
$\left(d_{b} 1\right) d_{b}(x, y)=0$ if and only if $x=y$;
$\left(d_{b} 2\right) d_{b}(x, y)=d_{b}(y, x)$;
$\left(d_{b} 3\right) d_{b}(x, y) \leq s\left[d_{b}(x, z)+d_{b}(z, y)\right]$.
In this case, the pair $\left(X, d_{b}\right)$ is called a b-metric space.
It is well-known that any b-metric space will become a metric space if $s=1$. However, any metric space does not necessarily be a b-metric space if $s>1$. In other words, b-metric spaces are more general than metric spaces (see [15]).

The following example gives us evidence that b-metric space is indeed different from metric space.

Example 1 ([16]). Let (X, d) be a metric space and $d_{b}(x, y)=(d(x, y))^{p}$ for all $x, y \in X$, where $p>1$ is a real number. Then, $\left(X, d_{b}\right)$ is a b-metric space with $s=2^{p-1}$. However, $\left(X, d_{b}\right)$ is not a metric space.

Definition 2 ([17]). Let $\left\{x_{n}\right\}$ be a sequence in a b-metric space $\left(X, d_{b}\right)$. Then,
(i) $\left\{x_{n}\right\}$ is called a convergent sequence, if, for each $\epsilon>0$, there exists $n_{0}=n_{0}(\epsilon) \in \mathbb{N}$ such that $d_{b}\left(x_{n}, x\right)<\epsilon$, for all $n \geq n_{0}$, and we write $\lim _{n \rightarrow \infty} x_{n}=x$;
(ii) $\left\{x_{n}\right\}$ is called a Cauchy sequence, if, for each $\epsilon>0$, there exists $n_{0}=n_{0}(\epsilon) \in \mathbb{N}$ such that $d_{b}\left(x_{n}, x_{m}\right)<\epsilon$, for all $n, m \geq n_{0}$;
(iii) $\left(X, d_{b}\right)$ is said to be complete if every Cauchy sequence is convergent in X.

The following theorem is a basic theorem for Banach type contraction in b-metric space.
Theorem 5 ([18]). Let T be a self mapping on a complete b-metric space $\left(X, d_{b}\right)$. Then, T has a unique fixed point in X if

$$
d_{b}(T x, T y) \leq k d_{b}(x, y)
$$

holds for all $x, y \in X$, where $k \in[0,1)$ is a constant. Moreover, for any $x_{0} \in X$, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to the fixed point.

Note that the distance function d_{b} utilized in b-metric spaces is generally discontinuous (see $[15,19]$). For fixed point results and more examples in b-metric spaces, the readers may refer to [15-18].

In what follows, we recall the concept of extend b-metric space and some examples.
Definition 3 ([3]). Let X be a nonempty set. Suppose that $\theta: X \times X \rightarrow[1,+\infty)$ and d_{θ} : $X \times X \rightarrow[0,+\infty)$ are two mappings. If for all $x, y, z \in X$, the following conditions hold:
$\left(d_{\theta} 1\right) d_{\theta}(x, y)=0$ if and only if $x=y$;
$\left(d_{\theta} 2\right) d_{\theta}(x, y)=d_{\theta}(y, x)$;
$\left(d_{\theta} 3\right) d_{\theta}(x, y) \leq \theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right]$,
then d_{θ} is called an extended b-metric, and the pair $\left(X, d_{\theta}\right)$ is called an extended b-metric space.
Note that, if $1 \leq \theta(x, y)=s$ (a finite constant), for all $x, y \in X$, then extended b-metric space reduces to a b-metric space. That is to say, b-metric space is a generalization of metric space, and extended b-metric space is a generalization of b-metric space.

In the following, we introduce some examples for extended b-metric spaces.
Example 2. Let $X=[0,+\infty)$. Define two mappings $\theta: X \times X \rightarrow[1,+\infty)$ and $d_{\theta}: X \times X \rightarrow$ $[0,+\infty)$ as follows: $\theta(x, y)=1+x+y$, for all $x, y \in X$, and

$$
d_{\theta}(x, y)= \begin{cases}x+y, & x, y \in X, x \neq y \\ 0, & x=y\end{cases}
$$

Then, $\left(X, d_{\theta}\right)$ is an extended b-metric space.
Indeed, $\left(d_{\theta} 1\right)$ and $\left(d_{\theta} 2\right)$ in Definition 3 are clear. Let $x, y, z \in X$. We prove that $\left(d_{\theta} 3\right)$ in Definition 3 is satisfied.
(i) If $x=y$, then $\left(d_{\theta} 3\right)$ is clear.
(ii) If $x \neq y, x=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+x+y)[0+(z+y)] \\
& =(1+x+y)(x+y) \\
& \geq x+y=d_{\theta}(x, y) .
\end{aligned}
$$

(iii) If $x \neq y, y=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+x+y)[(x+z)+0] \\
& =(1+x+y)(x+y) \\
& \geq x+y=d_{\theta}(x, y) .
\end{aligned}
$$

(iv) If $x \neq y, y \neq z, x \neq z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+x+y)[(x+z)+(z+y)] \\
& \geq x+2 z+y \\
& \geq x+y=d_{\theta}(x, y)
\end{aligned}
$$

Consider the above cases, it follows that $\left(d_{\theta} 3\right)$ holds. Hence, the claim holds.

Example 3. Let $X=\mathbb{R}$. Define two mappings $\theta: X \times X \rightarrow[1,+\infty)$ and $d_{\theta}: X \times X \rightarrow[0,+\infty)$ as follows: $\theta(x, y)=1+|x|+|y|$, for all $x, y \in X$ and

$$
d_{\theta}(x, y)= \begin{cases}x^{2}+y^{2}, & x, y \in X, x \neq y \\ 0, & x=y\end{cases}
$$

Then, $\left(X, d_{\theta}\right)$ is an extended b-metric space.
Indeed, $\left(d_{\theta} 1\right)$ and $\left(d_{\theta} 2\right)$ in Definition 3 are obvious. Let $x, y, z \in X$. We prove that $\left(d_{\theta} 3\right)$ in Definition 3 is satisfied.
(i) If $x=y$, then $\left(d_{\theta} 3\right)$ is obvious.
(ii) If $x \neq y, x=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left[0+\left(z^{2}+y^{2}\right)\right] \\
& =(1+|x|+|y|)\left(x^{2}+y^{2}\right) \\
& \geq x^{2}+y^{2}=d_{\theta}(x, y) .
\end{aligned}
$$

(iii) If $x \neq y, y=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left[\left(x^{2}+z^{2}\right)+0\right] \\
& =(1+|x|+|y|)\left(x^{2}+y^{2}\right) \\
& \geq x^{2}+y^{2}=d_{\theta}(x, y) .
\end{aligned}
$$

(iv) If $x \neq y, y \neq z, x \neq z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left[\left(x^{2}+z^{2}\right)+\left(z^{2}+y^{2}\right)\right] \\
& \geq(1+|x|+|y|)\left(x^{2}+y^{2}\right) \\
& \geq x^{2}+y^{2}=d_{\theta}(x, y)
\end{aligned}
$$

Consider the above cases, it follows that $\left(d_{\theta} 3\right)$ holds. Hence, the claim holds.
Example 4. Let $X=\mathbb{R}$. Define two mappings $d_{\theta}: X \times X \rightarrow[0,+\infty)$ and $\theta: X \times X \rightarrow[1,+\infty)$ as follows:

$$
d_{\theta}(x, y)= \begin{cases}\frac{|x|+|y|}{1+|x|+|y|}, & x, y \in X, x \neq y \\ 0, & x=y\end{cases}
$$

and $\theta(x, y)=1+|x|+|y|$,for all $x, y \in X$. Then, $\left(X, d_{\theta}\right)$ is an extended b-metric space.
Indeed, $\left(d_{\theta} 1\right)$ and $\left(d_{\theta} 2\right)$ in Definition 3 are valid. Let $x, y, z \in X$. We prove that $\left(d_{\theta} 3\right)$ in Definition 3 is satisfied.
(i) If $x=y$, then $\left(d_{\theta} 3\right)$ holds.
(ii) If $x \neq y, x=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left(0+\frac{|z|+|y|}{1+|z|+|y|}\right) \\
& =(1+|x|+|y|) \cdot \frac{|x|+|y|}{1+|x|+|y|} \\
& \geq \frac{|x|+|y|}{1+|x|+|y|} \\
& =d_{\theta}(x, y) .
\end{aligned}
$$

(iii) If $x \neq y, y=z$, then

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left(\frac{|x|+|z|}{1+|x|+|z|}+0\right) \\
& =(1+|x|+|y|) \cdot \frac{|x|+|y|}{1+|x|+|y|} \\
& \geq \frac{|x|+|y|}{1+|x|+|y|} \\
& =d_{\theta}(x, y) .
\end{aligned}
$$

(iv) If $x \neq y, y \neq z, x \neq z$, then, by the fact that $f(t)=\frac{t}{1+t}$ is nondecreasing on $[0,+\infty)$ and $|x|+|y| \leq|x|+|z|+|y|$, it follows that

$$
\begin{aligned}
\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right] & =(1+|x|+|y|)\left(\frac{|x|+|z|}{1+|x|+|z|}+\frac{|z|+|y|}{1+|z|+|y|}\right) \\
& \geq(1+|x|+|y|)\left(\frac{|x|+|z|}{1+|x|+|z|+|y|}+\frac{|z|+|y|}{1+|x|+|z|+|y|}\right) \\
& =(1+|x|+|y|) \cdot \frac{|x|+2|z|+|y|}{1+|x|+|z|+|y|} \\
& \geq \frac{|x|+|z|+|y|}{1+|x|+|z|+|y|} \\
& \geq \frac{|x|+|y|}{1+|x|+|y|}=d_{\theta}(x, y) .
\end{aligned}
$$

Consider the above cases, it follows that $\left(d_{\theta} 3\right)$ holds. Hence, the claim holds.
Example 5. Let $X=[0,+\infty)$ and $\theta(x, y)=\frac{3+x+y}{2}$ be a function on $X \times X$. Define a mapping $d_{\theta}: X \times X \rightarrow[0,+\infty)$ as follows:

$$
\begin{aligned}
& d_{\theta}(x, y)=0, \text { for all } x, y \in X, x=y \\
& d_{\theta}(x, y)=d_{\theta}(y, x)=5, \text { for all } x, y \in X \backslash\{0\}, x \neq y, \\
& d_{\theta}(x, 0)=d_{\theta}(0, x)=2, \text { for all } x \in X \backslash\{0\} .
\end{aligned}
$$

Then, $\left(X, d_{\theta}\right)$ is an extended-b metric space.
As a matter of fact, obviously, $\left(d_{\theta} 1\right)$ and $\left(d_{\theta} 2\right)$ hold. For $\left(d_{\theta} 3\right)$, we have the following cases:
(i) Let $x, y, z \in X \backslash\{0\}$ such that x, y and z are distinct each other, then

$$
d_{\theta}(x, y)=5 \leq 5(3+x+y)=\theta(x, y)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right]
$$

(ii) Let $x, y \in X \backslash\{0\}, x \neq y$ and $z=0$, then

$$
d_{\theta}(x, y)=5 \leq 2(3+x+y)=\theta(x, y)\left[d_{\theta}(x, 0)+d_{\theta}(0, y)\right] .
$$

(iii) Let $x, z \in X \backslash\{0\}, x \neq z$ and $y=0$, then

$$
d_{\theta}(x, 0)=2 \leq \frac{7}{2}(3+x)=\theta(x, 0)\left[d_{\theta}(x, z)+d_{\theta}(z, y)\right]
$$

Therefore, $\left(d_{\theta} 3\right)$ in Definition 3 holds. Thus, the claims hold.
Remark 1. Examples 2-5 are extended b-metric spaces but not b-metric spaces.
Similar to Definition 2, we recall some concepts in extended b-metric spaces as follows.
Definition 4 ([3]). Let $\left\{x_{n}\right\}$ be a sequence in an extended b-metric space $\left(X, d_{\theta}\right)$. Then,
(i) $\left\{x_{n}\right\}$ is called a convergent sequence, if, for each $\epsilon>0$, there exists $n_{0}=n_{0}(\epsilon) \in \mathbb{N}$ such that $d_{\theta}\left(x_{n}, x\right)<\epsilon$, for all $n \geq n_{0}$, and we write $\lim _{n \rightarrow \infty} x_{n}=x$;
(ii) $\left\{x_{n}\right\}$ is called a Cauchy sequence, if, for each $\epsilon>0$, there exists $n_{0}=n_{0}(\epsilon) \in \mathbb{N}$ such that $d_{\theta}\left(x_{n}, x_{m}\right)<\epsilon$, for all $n, m \geq n_{0}$;
(iii) $\left(X, d_{\theta}\right)$ is said to be complete if every Cauchy sequence is convergent in X.

As we know, the limit of convergent sequence in extended b-metric space $\left(X, d_{\theta}\right)$ is unique provided that d_{θ} is a continuous mapping (see [3]).

Definition $5([20,21])$. Let T be a self mapping on an extended b-metric space $\left(X, d_{\theta}\right)$. For $x_{0} \in X$, the set

$$
O\left(x_{0}, T\right)=\left\{x_{0}, T x_{0}, T^{2} x_{0}, T^{3} x_{0}, \cdots\right\}
$$

is said to be an orbit of T at x_{0}. T is said to be orbitally continuous at $\xi \in X$ if $\lim _{k \rightarrow \infty} T^{k} x_{0}=\xi$ implies $\lim _{k \rightarrow \infty} T T^{k} x_{0}=T \xi$. Moreover, if every Cauchy sequence of the form $\left\{T^{k} x_{0}\right\}_{k=1}^{\infty}$ is convergent to some point in X, then $\left(X, d_{\theta}\right)$ is said to be a T-orbitally complete space.

Note that, if $\left(X, d_{\theta}\right)$ is complete extended b-metric space, then X is T-orbitally complete for any self-mapping T on X. Moreover, if T is continuous, then it is obviously orbitally continuous in X. However, the converse may not be true.

In the sequel, unless otherwise specified, we always denote $\operatorname{Fix}(T)=\{x \in X \mid T x=x\}$.
Definition 6 ([22]). Let X be a nonempty set and $\alpha: X \times X \rightarrow \mathbb{R}$ be a mapping. A mapping $T: X \rightarrow X$ is called α-admissible, if for all $x, y \in X, \alpha(x, y) \geq 1$ implies $\alpha(T x, T y) \geq 1$.

Definition 7 ([23]). Let X be a nonempty set and $\alpha: X \times X \rightarrow \mathbb{R}$ be a mapping. Then, $T: X \rightarrow X$ is called α^{*}-admissible if it is a α-admissible mapping and $\alpha(x, y) \geq 1$ holds for all $x, y \in \operatorname{Fix}(T) \neq \varnothing$.

Example 6. Let $X=[0,+\infty)$ and $T: X \rightarrow X$ be a mapping defined by $T x=\frac{x(1+x)}{2}$. Let $\alpha: X \times X \rightarrow \mathbb{R}$ be a function defined by

$$
\alpha(x, y)= \begin{cases}1, & x, y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Then, T is α-admissible and $\operatorname{Fix}(T)=\{0,1\}$. Moreover, $\alpha(x, y) \geq 1$ is satisfied for all $x, y \in \operatorname{Fix}(T)$. Consequently, T is α^{*}-admissible.

Example 7 ([23]). Let $X=[0,+\infty)$ and $T: X \rightarrow X$ be a mapping defined by $T x=\sqrt{\frac{x\left(x^{2}+2\right)}{3}}$. Let $\alpha: X \times X \rightarrow[0,+\infty)$ be a function defined by

$$
\alpha(x, y)= \begin{cases}1, & x, y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Then, T is a α-admissible mapping and Fix $(T)=\{0,1,2\}$. However, $\alpha(x, 2)=\alpha(2, x)=0$ is satisfied for $x \in\{0,1\}$. Thus, T is not α^{*}-admissible.

Definition 8 ([24]). Let T be a self mapping on a nonempty set X. Then, T is called α-orbitally admissible if, for all $x \in X, \alpha(x, T x) \geq 1$ leads to $\alpha\left(T x, T^{2} x\right) \geq 1$.

It is mentioned that each α-admissible mapping must be an α-orbitally admissible mapping (for more details, see [24]). For the uniqueness of fixed point, we will use the following definition frequently.

Definition 9. An α-orbitally admissible mapping T is called α^{*}-orbitally admissible if $x, x^{*} \in$ $\operatorname{Fix}(T) \neq \varnothing$ implies $\alpha\left(x, x^{*}\right) \geq 1$.

Definition $10([17,25])$. A function $\psi:[0,+\infty) \rightarrow[0,+\infty)$ is said to be a comparison function, if it is nondecreasing and $\lim _{n \rightarrow \infty} \psi^{n}(t)=0$ for all $t>0$, where ψ^{n} denotes the $n^{\text {th }}$ iteration of ψ.

In what follows, the set of all comparison functions is denoted by Ψ. Some examples for comparison functions, the reader may refer to [26].

Lemma 1 ([27]). Let $\psi \in \Psi$. Then, $\psi(t)<t$ for all $t>0$ and $\psi(0)=0$.
The following lemmas will be used in the sequel.
Lemma 2 ([28]). Let $\left(X, d_{\theta}\right)$ be an extended b-metric space, $x_{0} \in X$ and $\left\{x_{n}\right\}$ be a sequence in X. If $\psi \in \Psi$ satisfies

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \frac{\theta\left(x_{n}, x_{m}\right) \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}{\psi^{n-1}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}<1 \tag{1}
\end{equation*}
$$

and

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right)
$$

for all $m>n \geq 2, n, m \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Proof. From the given conditions, we get

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right) \leq \cdots \leq \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)
$$

On taking limit as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} d_{\theta}\left(x_{n}, x_{n+1}\right)=0
$$

Setting $\theta_{i}=\theta\left(x_{i}, x_{n+p}\right)$ for each $i \in \mathbb{N}, p \geq 1$ and $d_{\theta}\left(x_{0}, x_{1}\right)=t$, we obtain

$$
\begin{aligned}
d_{\theta}\left(x_{n}, x_{n+p}\right) \leq & \theta\left(x_{n}, x_{n+p}\right)\left[d_{\theta}\left(x_{n}, x_{n+1}\right)+d_{\theta}\left(x_{n+1}, x_{n+p}\right)\right] \\
\leq & \theta\left(x_{n}, x_{n+p}\right) d_{\theta}\left(x_{n}, x_{n+1}\right)+\theta\left(x_{n}, x_{n+p}\right) \\
& \cdot \theta\left(x_{n+1}, x_{n+p}\right)\left[d_{\theta}\left(x_{n+1}, x_{n+2}\right)+d_{\theta}\left(x_{n+2}, x_{n+p}\right)\right] \\
\leq & \cdots \cdots \\
\leq & \theta\left(x_{n}, x_{n+p}\right) d_{\theta}\left(x_{n}, x_{n+1}\right)+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) d_{\theta}\left(x_{n+1}, x_{n+2}\right) \\
& +\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \theta\left(x_{n+2}, x_{n+p}\right) d_{\theta}\left(x_{n+2}, x_{n+3}\right) \\
& +\cdots+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \cdots \theta\left(x_{n+p-2}, x_{n+p}\right) d_{\theta}\left(x_{n+p-2}, x_{n+p-1}\right) \\
& +\cdots+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \cdots \theta\left(x_{n+p-2}, x_{n+p}\right) d_{\theta}\left(x_{n+p-1}, x_{n+p}\right) \\
\leq & \theta\left(x_{n}, x_{n+p}\right) d_{\theta}\left(x_{n}, x_{n+1}\right)+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) d_{\theta}\left(x_{n+1}, x_{n+2}\right) \\
& +\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \theta\left(x_{n+2}, x_{n+p}\right) d_{\theta}\left(x_{n+2}, x_{n+3}\right) \\
& +\cdots+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \cdots \theta\left(x_{n+p-2}, x_{n+p}\right) d_{\theta}\left(x_{n+p-2}, x_{n+p-1}\right) \\
& +\cdots+\theta\left(x_{n}, x_{n+p}\right) \theta\left(x_{n+1}, x_{n+p}\right) \cdots \theta\left(x_{n+p-1}, x_{n+p}\right) d_{\theta}\left(x_{n+p-1}, x_{n+p}\right) \\
\leq & \theta_{n} \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)+\theta_{n} \theta_{n+1} \psi^{n+1}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right) \\
& +\cdots+\theta_{n} \theta_{n+1} \cdots \theta_{n+p-1} \psi^{n+p-1}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right) \\
= & \theta_{n} \psi^{n}(t)+\theta_{n} \theta_{n+1} \psi^{n+1}(t)+\cdots+\theta_{n} \theta_{n+1} \cdots \theta_{n+p-1} \psi^{n+p-1}(t) \\
= & \sum_{i=n}^{n+p-1} \psi^{i}(t) \prod_{j=n}^{i} \theta_{j} \leq \sum_{i=n}^{n+p-1} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}
\end{aligned}
$$

$$
=\sum_{i=1}^{n+p-1} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}-\sum_{i=1}^{n-1} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}
$$

Notice that

$$
\lim _{n \rightarrow \infty} \frac{\theta\left(x_{n}, x_{n+p}\right) \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}{\psi^{n-1}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}=\lim _{n \rightarrow \infty} \frac{\theta_{n} \psi^{n}(t)}{\psi^{n-1}(t)}<1
$$

then, by the Ratio test the series, $\sum_{i=1}^{\infty} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}$ converges.
Let $S=\sum_{i=1}^{\infty} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}$ and $S_{n}=\sum_{i=1}^{n} \psi^{i}(t) \prod_{j=1}^{i} \theta_{j}$ be the sequence of partial sum. Consequently, for any $n \geq 1$ and $p \geq 1$, we obtain

$$
d_{\theta}\left(x_{n}, x_{n+p}\right) \leq S_{n+p-1}-S_{n-1}
$$

Taking the limit as $n \rightarrow \infty$ from both side of the above inequality, we make a conclusion that $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Lemma 3 ([29]). Let $\left\{x_{n}\right\}$ be a sequence in an extended b-metric space $\left(X, d_{\theta}\right)$ such that

$$
\lim _{n, m \rightarrow \infty} \theta\left(x_{n}, x_{m}\right)<\frac{1}{k}
$$

and

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq k d_{\theta}\left(x_{n-1}, x_{n}\right)
$$

for any $m>n \geq 2, n, m \in \mathbb{N}$, where $k \in[0,1)$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Proof. Choose $\psi(t)=k t$, where $k \in[0,1)$ in Lemma 2. Then, the proof is completed.

2. Fixed Points of Rational Type Contractions

In this section, we assume that $\left(X, d_{\theta}\right)$ is an extended b-metric space with the continuous functional d_{θ}. Let $T: X \rightarrow X$ be a mapping. For $x, y \in X$, we always denote

$$
\begin{aligned}
\mathcal{N}(x, y)= & \max \left\{d_{\theta}(x, y), \frac{d_{\theta}(y, T y) d_{\theta}(x, T x)}{d_{\theta}(x, y)}, \frac{d_{\theta}(x, T x)\left[1+d_{\theta}(y, T y)\right]}{1+d_{\theta}(x, y)},\right. \\
& \left.\frac{d_{\theta}(y, T y)\left[1+d_{\theta}(x, T x)\right]}{1+d_{\theta}(x, y)}\right\} \\
\mathcal{K}(x, y)= & \max \left\{d_{\theta}(x, y), \frac{d_{\theta}(x, T x) d_{\theta}(x, T y)+d_{\theta}(y, T y) d_{\theta}(y, T x)}{\max \left\{d_{\theta}(x, T y), d_{\theta}(y, T x)\right\}}\right. \\
& \left.\frac{d_{\theta}(x, T x) d_{\theta}(y, T y)+d_{\theta}(x, T y) d_{\theta}(y, T x)}{\max \left\{d_{\theta}(y, T y), d_{\theta}(y, T x)\right\}}\right\}
\end{aligned}
$$

Theorem 6. Let T be a self mapping on a T-orbitally complete extended b-metric space $\left(X, d_{\theta}\right)$. Assume that there exist two functions $\alpha: X \times X \rightarrow[0,+\infty), \psi \in \Psi$ such that

$$
\begin{equation*}
\alpha(x, y) d_{\theta}(T x, T y) \leq \psi(\mathcal{N}(x, y)) \tag{2}
\end{equation*}
$$

for all $x, y \in X, x \neq y$. That is, T is a rational type contraction. If
(i) T is α-orbitally admissible;
(ii) there exists $x_{0} \in X$ satisfying $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) (1) is satisfied for $x_{n}=T^{n} x_{0}(n=0,1,2, \cdots)$;
(iv) T is either continuous or, orbitally continuous on X.

Then, T possesses a fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to $z \in X$.

Proof. By (ii), define a sequence $\left\{x_{n}\right\}$ in X such that $x_{n+1}=T x_{n}=T^{n+1} x_{0}$, for all $n \in \mathbb{N} \cup\{0\}$.

If $x_{n}=x_{n+1}$, for, some $n \in \mathbb{N} \cup\{0\}$, then x_{n} is a fixed point of T. This completes the proof. Without loss of generality, we therefore assume that $x_{n} \neq x_{n+1}$, for all $n \in \mathbb{N} \cup\{0\}$.

Based on (i), $\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \geq 1$ implies that $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(T x_{0}, T x_{1}\right) \geq 1$. Then, $\alpha\left(x_{2}, x_{3}\right)=\alpha\left(T x_{1}, T x_{2}\right) \geq 1$. Continuing this process, one has $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$.

Taking $x=x_{n-1}$ and $y=x_{n}$, for all $n \in \mathbb{N}$ in (2), we have

$$
\begin{align*}
d_{\theta}\left(x_{n}, x_{n+1}\right) & =d_{\theta}\left(T x_{n-1}, T x_{n}\right) \\
& \leq \alpha\left(x_{n-1}, x_{n}\right) d_{\theta}\left(T x_{n-1}, T x_{n}\right) \\
& \leq \psi\left(\mathcal{N}\left(x_{n-1}, x_{n}\right)\right), \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{N}\left(x_{n-1}, x_{n}\right) \\
= & \max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), \frac{d_{\theta}\left(x_{n}, T x_{n}\right) d_{\theta}\left(x_{n-1}, T x_{n-1}\right)}{d_{\theta}\left(x_{n-1}, x_{n}\right)},\right. \\
& \left.\frac{d_{\theta}\left(x_{n-1}, T x_{n-1}\right)\left[1+d_{\theta}\left(x_{n}, T x_{n}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}, \frac{d_{\theta}\left(x_{n}, T x_{n}\right)\left[1+d_{\theta}\left(x_{n-1}, T x_{n-1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}\right\} \\
= & \max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), \frac{d_{\theta}\left(x_{n}, x_{n+1}\right) d_{\theta}\left(x_{n-1}, x_{n}\right)}{d_{\theta}\left(x_{n-1}, x_{n}\right)},\right. \\
& \left.\frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}, \frac{d_{\theta}\left(x_{n}, x_{n+1}\right)\left[1+d_{\theta}\left(x_{n-1}, x_{n}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}\right\} \\
= & \max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), d_{\theta}\left(x_{n}, x_{n+1}\right), \frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}\right\} . \tag{4}
\end{align*}
$$

Similar to ([10], Theorem 2.1), we can prove

$$
\begin{equation*}
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right), \text { for all } n \in \mathbb{N} \tag{5}
\end{equation*}
$$

In fact, we finish the proof via three cases.
(i) If $\mathcal{N}\left(x_{n-1}, x_{n}\right)=d_{\theta}\left(x_{n-1}, x_{n}\right)$, then by (3), it follows that

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right) .
$$

This is (5).
(ii) If $\mathcal{N}\left(x_{n-1}, x_{n}\right)=d_{\theta}\left(x_{n}, x_{n+1}\right)$, then by (3), we have

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n}, x_{n+1}\right)\right)<d_{\theta}\left(x_{n}, x_{n+1}\right)
$$

which is a contradiction.
(iii) If $\mathcal{N}\left(x_{n-1}, x_{n}\right)=\frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}$, then by (4), it is easy to say that

$$
\begin{equation*}
\max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), d_{\theta}\left(x_{n}, x_{n+1}\right)\right\} \leq \frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)} \tag{6}
\end{equation*}
$$

In this case, we discuss it with two subcases.
(i) If $\max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), d_{\theta}\left(x_{n}, x_{n+1}\right)\right\}=d_{\theta}\left(x_{n-1}, x_{n}\right)$, then

$$
\begin{equation*}
d_{\theta}\left(x_{n-1}, x_{n}\right)>d_{\theta}\left(x_{n}, x_{n+1}\right) \tag{7}
\end{equation*}
$$

By (6), we get

$$
d_{\theta}\left(x_{n-1}, x_{n}\right) \leq \frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}
$$

which means that

$$
d_{\theta}\left(x_{n-1}, x_{n}\right) \leq d_{\theta}\left(x_{n}, x_{n+1}\right)
$$

This is in contradiction with (7).
(ii) If $\max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), d_{\theta}\left(x_{n}, x_{n+1}\right)\right\}=d_{\theta}\left(x_{n}, x_{n+1}\right)$, then

$$
\begin{equation*}
d_{\theta}\left(x_{n}, x_{n+1}\right)>d_{\theta}\left(x_{n-1}, x_{n}\right) \tag{8}
\end{equation*}
$$

By (6), we get

$$
d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \frac{d_{\theta}\left(x_{n-1}, x_{n}\right)\left[1+d_{\theta}\left(x_{n}, x_{n+1}\right)\right]}{1+d_{\theta}\left(x_{n-1}, x_{n}\right)}
$$

which establishes that

$$
d_{\theta}\left(x_{n}, x_{n+1}\right) \leq d_{\theta}\left(x_{n-1}, x_{n}\right)
$$

This is in contradiction with (8).
This is to say, (iii) does not occur.
Thus, (5) is satified. Accordingly, we speculate that

$$
d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right) \leq \cdots \leq \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right) .
$$

Letting $n \rightarrow \infty$, we obtain that $\lim _{n \rightarrow \infty} d_{\theta}\left(x_{n}, x_{n+1}\right)=0$.
It follows from Lemma 2 that $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. Since $\left(X, d_{\theta}\right)$ is T-orbitally complete, then there is $z \in X$ such that $\lim _{n \rightarrow \infty} T^{n} x_{0}=z$.

Assume that T is continuous, then

$$
d_{\theta}(z, T z)=\lim _{n \rightarrow \infty} d_{\theta}\left(x_{n}, T x_{n}\right)=\lim _{n \rightarrow \infty} d_{\theta}\left(x_{n}, x_{n+1}\right)=0
$$

Therefore, T possesses a fixed point z in X.
Assume that T is orbitally continuous on X, thus, $x_{n+1}=T x_{n}=T\left(T^{n} x_{0}\right) \rightarrow T z$ as $n \rightarrow \infty$. Since the limit of sequence in extended b-metric space is unique, then $z=T z$. Thus, T possesses a fixed point z in X, i.e., $\operatorname{Fix}(T) \neq \varnothing$.

Example 8. Under all the conditions of Example 3, let $T: X \rightarrow X$ be a continuous mapping defined by

$$
T x= \begin{cases}\frac{2 x}{3}, & 0 \leq x \leq 1 \\ 2 x-\frac{4}{3}, & \text { otherwise } .\end{cases}
$$

In addition, we define a mapping $\alpha: X \times X \rightarrow[0,+\infty)$ as

$$
\alpha(x, y)= \begin{cases}1, & x, y \in[0,1] \\ 0, & \text { otherwise }\end{cases}
$$

Let $x_{0} \in X$ be a point with $\alpha\left(x_{0}, T x_{0}\right) \geq 1$, then $x_{0} \in[0,1] \subset X$ and $\alpha\left(T x_{0}, T^{2} x_{0}\right)=$ $\alpha\left(\frac{2 x_{0}}{3}, \frac{4}{9} x_{0}\right) \geq 1$. Therefore, T is α-orbitally admissible.

Set $\psi(t)=k t$, for all $t>0$, where $k=\frac{4}{9}$, then $\psi^{n}(t)=k^{n} t$.

For all distinct x, y in X, ones have

$$
\alpha(x, y) d_{\theta}(T x, T y) \leq \frac{4}{9}\left(x^{2}+y^{2}\right)=k d_{\theta}(x, y) \leq k \mathcal{N}(x, y)
$$

Moreover, there is $x_{0} \in X$ with $\alpha\left(x_{0}, T x_{0}\right) \geq 1$, then $\alpha\left(T x_{0}, T^{2} x_{0}\right) \geq 1$. Now, we deduce inductively that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$, where $x_{n}=T^{n} x_{0}=\left(\frac{2}{3}\right)^{n} x_{0}$, for all $n \in \mathbb{N} \cup\{0\}$. Obviously, $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. Thus, $\left(X, d_{\theta}\right)$ is T-orbitally complete.

Note that $\lim _{n, m \rightarrow \infty} \theta\left(x_{n}, x_{m}\right)=1<\frac{9}{4}=\frac{1}{k}$, where $k=\frac{4}{9}$, that is to say,

$$
\lim _{n, m \rightarrow \infty} k \theta\left(x_{n}, x_{m}\right)=\lim _{n, m \rightarrow \infty} \frac{\theta\left(x_{n}, x_{m}\right) \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}{\psi^{n-1}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)}<1
$$

Thus, all the conditions of Theorem 6 hold and hence T possesses a fixed point in X and $\operatorname{Fix}(T)=\left\{0, \frac{4}{3}\right\}$.

Theorem 7. In addition to all the conditions of Theorem 6, suppose that the T is α^{*}-orbitally admissible. Then, T possesses a unique fixed point $z \in X$.

Proof. Following Theorem 6, T possesses a fixed point in X. Thus, $\operatorname{Fix}(T) \neq \varnothing$. Assume that T is α^{*}-orbitally admissible. If possible, there exist $z, z^{*} \in \operatorname{Fix}(T), z \neq z^{*}$ such that $T z=z$ and $T z^{*}=z^{*}$, then $\alpha\left(z, z^{*}\right)=\alpha\left(T z, T z^{*}\right) \geq 1$.

Taking $x=z, y=z^{*}$ in (2), we obtain

$$
\begin{aligned}
d_{\theta}\left(z, z^{*}\right)= & d_{\theta}\left(T z, T z^{*}\right) \leq \alpha\left(z, z^{*}\right) d_{\theta}\left(T z, T z^{*}\right) \leq \psi\left(\mathcal{N}\left(z, z^{*}\right)\right) \\
= & \psi\left(\operatorname { m a x } \left\{d_{\theta}\left(z, z^{*}\right), \frac{d_{\theta}\left(z^{*}, T z^{*}\right) d_{\theta}(z, T z)}{d_{\theta}\left(z, z^{*}\right)}, \frac{d_{\theta}(z, T z)\left[1+d_{\theta}\left(z^{*}, T z^{*}\right)\right]}{1+d_{\theta}\left(z, z^{*}\right)},\right.\right. \\
& \left.\left.\frac{d_{\theta}\left(z^{*}, T z^{*}\right)\left[1+d_{\theta}(z, T z)\right]}{1+d_{\theta}\left(z, z^{*}\right)}\right\}\right) \\
= & \psi\left(d_{\theta}\left(z, z^{*}\right)\right) \\
< & d_{\theta}\left(z, z^{*}\right)
\end{aligned}
$$

which is a contradiction. Therefore, T possesses a unique fixed point in X.
Corollary 1. ([10], Theorem 2.1) Let T be a continuous self mapping on a complete extended b-metric space $\left(X, d_{\theta}\right)$ such that

$$
d_{\theta}(T x, T y) \leq k \mathcal{N}(x, y)
$$

for all $x, y \in X, x \neq y$, where $k \in[0,1)$. That is, T is a rational type contraction. In addition, suppose that for all $x_{0} \in X$,

$$
\begin{equation*}
\lim _{n, m \rightarrow \infty} \theta\left(x_{n}, x_{m}\right)<\frac{1}{k} \tag{9}
\end{equation*}
$$

where $x_{n}=T^{n} x_{0}, m>n \geq 1$. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to $z \in X$.

Proof. Setting $\alpha(x, y)=1$, for all $x, y \in X$, then $\alpha(x, T x) \geq 1$ implies that $\alpha\left(T x, T^{2} x\right) \geq 1$. Therefore, T is α-orbitally admissible.

Let $\psi(t)=k t$, for all $t>0$, where $0 \leq k<1$, then $\psi^{n}(t)=k^{n} t$. Using (iii) of Theorem 6 . In view of (9), then (iii) of Theorem 6 is satisfied. Thus, all the conditions of Theorem 6 hold. Therefore, T possesses a fixed point in X, i.e., $\operatorname{Fix}(T) \neq \varnothing$. Because of $\operatorname{Fix}(T) \subseteq X$, then T is α^{*}-orbitally admissible and hence, by Theorem $7, T$ has a unique fixed point in X.

Remark 2. (i) The uniqueness of fixed point is not guaranteed if T is not α^{*}-orbitally admissible. In Example 8, T is α-orbitally admissible and Fix $(T)=\left\{0, \frac{4}{3}\right\}$. However, $\alpha\left(\frac{4}{3}, T \frac{4}{3}\right)=0$ so T is not α^{*}-orbitally admissible. Therefore, Theorem 7 is not applicable in this case.
(ii) In Example 8, for $x=1$ and $y=2$, we obtain

$$
d_{\theta}(T 1, T 2)=\frac{68}{9}>d_{\theta}(1,2)=5
$$

Therefore, ([3], Theorem 2) and ([10], Theorem 2.1) are not applicable in this case.
Motivated by Piri et al. [14], we extend a fixed point theorem for Khan type from metric spaces to extended b-metric spaces.

Theorem 8. Let T be a self mapping on a T-orbitally complete extended b-metric space $\left(X, d_{\theta}\right)$. Suppose that $\alpha: X \times X \rightarrow[0, \infty), \psi \in \Psi$ are two functions satisfying

$$
\alpha(x, y) d_{\theta}(T x, T y) \leq \begin{cases}\psi(\mathcal{K}(x, y)), & \text { whenever } \mathcal{A}(x, y) \neq 0 \text { and } \mathcal{B}(x, y) \neq 0 \tag{10}\\ 0, & \text { otherwise }\end{cases}
$$

for all $x, y \in X, x \neq y$, where

$$
\mathcal{A}(x, y)=\max \left\{d_{\theta}(x, T y), d_{\theta}(y, T x)\right\}, \quad \mathcal{B}(x, y)=\max \left\{d_{\theta}(y, T y), d_{\theta}(y, T x)\right\}
$$

If
(i) T is α-orbitally admissible;
(ii) there exists $x_{0} \in X$ and $\alpha\left(x_{0}, T x_{0}\right) \geq 1$;
(iii) (1) is satisfied for $x_{n}=T^{n} x_{0}(n=0,1,2, \cdots)$.

Then, T possesses a fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to $z \in X$.
Proof. By (ii), define a sequence $\left\{x_{n}\right\}$ in X such that $x_{n+1}=T x_{n}=T^{n+1} x_{0}$, for all $n \in \mathbb{N} \cup\{0\}$. Since T is α-orbitally admissible, then $\alpha\left(x_{0}, x_{1}\right)=\alpha\left(x_{0}, T x_{0}\right) \geq 1$ implies $\alpha\left(x_{1}, x_{2}\right)=\alpha\left(T x_{0}, T^{2} x_{0}\right) \geq 1$. Thus, inductively, we obtain that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$. In order to show that T possesses a fixed point in X, we assume that $x_{n-1} \neq x_{n}$, for all $n \in \mathbb{N}$. We divide the proof into the following two cases:

Case 1
Suppose that

$$
\max \left\{d_{\theta}\left(x_{n-1}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\} \neq 0
$$

and

$$
\max \left\{d_{\theta}\left(x_{n}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\} \neq 0
$$

for all $n \in \mathbb{N}$. From (10), we obtain that

$$
d_{\theta}\left(x_{n}, x_{n+1}\right)=d_{\theta}\left(T x_{n-1}, T x_{n}\right) \leq \alpha\left(x_{n-1}, x_{n}\right) d_{\theta}\left(T x_{n-1}, T x_{n}\right) \leq \psi\left(\mathcal{K}\left(x_{n-1}, x_{n}\right)\right)
$$

where

$$
\begin{aligned}
& \mathcal{K}\left(x_{n-1}, x_{n}\right)=\max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right),\right. \\
& \frac{d_{\theta}\left(x_{n-1}, T x_{n-1}\right) d_{\theta}\left(x_{n-1}, T x_{n}\right)+d_{\theta}\left(x_{n}, T x_{n}\right) d_{\theta}\left(x_{n}, T x_{n-1}\right)}{\max \left\{d_{\theta}\left(x_{n-1}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\}}, \\
& \left.\frac{d_{\theta}\left(x_{n-1}, T x_{n-1}\right) d_{\theta}\left(x_{n}, T x_{n}\right)+d_{\theta}\left(x_{n-1}, T x_{n}\right) d_{\theta}\left(x_{n}, T x_{n-1}\right)}{\max \left\{d_{\theta}\left(x_{n}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\}}\right\} \\
& =\max \left\{d_{\theta}\left(x_{n-1}, x_{n}\right), \frac{d_{\theta}\left(x_{n-1}, x_{n}\right) d_{\theta}\left(x_{n-1}, x_{n+1}\right)+d_{\theta}\left(x_{n}, x_{n+1}\right) d_{\theta}\left(x_{n}, x_{n}\right)}{\max \left\{d_{\theta}\left(x_{n-1}, x_{n+1}\right), d_{\theta}\left(x_{n}, x_{n}\right)\right\}},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{d_{\theta}\left(x_{n-1}, x_{n}\right) d_{\theta}\left(x_{n}, x_{n+1}\right)+d_{\theta}\left(x_{n-1}, x_{n+1}\right) d_{\theta}\left(x_{n}, x_{n}\right)}{\max \left\{d_{\theta}\left(x_{n}, x_{n+1}\right), d_{\theta}\left(x_{n}, x_{n}\right)\right\}}\right\} \\
= & d_{\theta}\left(x_{n-1}, x_{n}\right) .
\end{aligned}
$$

Therefore,

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right)
$$

Furthermore,

$$
0<d_{\theta}\left(x_{n}, x_{n+1}\right) \leq \psi\left(d_{\theta}\left(x_{n-1}, x_{n}\right)\right) \leq \cdots \leq \psi^{n}\left(d_{\theta}\left(x_{0}, x_{1}\right)\right)
$$

Letting $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} d_{\theta}\left(x_{n}, x_{n+1}\right)=0
$$

It follows from Condition (iii) and Lemma 2 that $\left\{T^{n} x_{0}\right\}$ is a Cauchy sequence in X. Notice that X is T-orbitally complete, thus, there is $z \in X$ with $x_{n}=T^{n} x_{0} \rightarrow z$ as $n \rightarrow \infty$.

Assume, if possible, $T z \neq z$. From (10) and the triangular inequality, we obtain

$$
\begin{align*}
d_{\theta}(z, T z) & \leq \theta(z, T z)\left[d_{\theta}\left(T z, T x_{n}\right)+d_{\theta}\left(T x_{n}, z\right)\right] \\
& =\theta(z, T z) d_{\theta}\left(T z, T x_{n}\right)+\theta(z, T z) d_{\theta}\left(T x_{n}, z\right) \\
& \leq \theta(z, T z) \alpha\left(z, x_{n}\right) d_{\theta}\left(T z, T x_{n}\right)+\theta(z, T z) d_{\theta}\left(x_{n+1}, z\right) \\
& \leq \theta(z, T z) \psi\left(\mathcal{K}\left(z, x_{n}\right)\right)+\theta(z, T z) d_{\theta}\left(x_{n+1}, z\right) \\
& <\theta(z, T z) \mathcal{K}\left(z, x_{n}\right)+\theta(z, T z) d_{\theta}\left(x_{n+1}, z\right), \tag{11}
\end{align*}
$$

where

$$
\begin{aligned}
\mathcal{K}\left(z, x_{n}\right)= & \max \left\{d_{\theta}\left(z, x_{n}\right), \frac{d_{\theta}(z, T z) d_{\theta}\left(z, T x_{n}\right)+d_{\theta}\left(x_{n}, T x_{n}\right) d_{\theta}\left(x_{n}, T z\right)}{\max \left\{d_{\theta}\left(z, T x_{n}\right), d_{\theta}\left(x_{n}, T z\right)\right\}}\right. \\
& \left.\frac{d_{\theta}(z, T z) d_{\theta}\left(x_{n}, T x_{n}\right)+d_{\theta}\left(z, T x_{n}\right) d_{\theta}\left(x_{n}, T z\right)}{\max \left\{d_{\theta}\left(x_{n}, T x_{n}\right), d_{\theta}\left(x_{n}, T z\right)\right\}}\right\} \\
= & \max \left\{d_{\theta}\left(z, x_{n}\right), \frac{d_{\theta}(z, T z) d_{\theta}\left(z, x_{n+1}\right)+d_{\theta}\left(x_{n}, x_{n+1}\right) d_{\theta}\left(x_{n}, T z\right)}{\max \left\{d_{\theta}\left(z, x_{n+1}\right), d_{\theta}\left(x_{n}, T z\right)\right\}},\right. \\
& \left.\frac{d_{\theta}(z, T z) d_{\theta}\left(x_{n}, x_{n+1}\right)+d_{\theta}\left(z, x_{n+1}\right) d_{\theta}\left(x_{n}, T z\right)}{\max \left\{d_{\theta}\left(x_{n}, x_{n+1}\right), d_{\theta}\left(x_{n}, T z\right)\right\}}\right\} .
\end{aligned}
$$

Taking $n \rightarrow \infty$ from both sides of (11), we have $d_{\theta}(z, T z) \leq 0$, which is in contradiction with $T z \neq z$.

Case 2
Assume that

$$
\max \left\{d_{\theta}\left(x_{n-1}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\}=0
$$

or

$$
\max \left\{d_{\theta}\left(x_{n}, T x_{n}\right), d_{\theta}\left(x_{n}, T x_{n-1}\right)\right\}=0
$$

for all $n \in \mathbb{N}$. Consider (10), it follows that

$$
x_{n}=x_{n+1}=T x_{n} .
$$

Thus, T possesses a fixed point in X, i.e., $\operatorname{Fix}(T) \neq \varnothing$.
Example 9. Under all the conditions of Example 5, let $T: X \rightarrow X$ be a mapping defined by

$$
T x= \begin{cases}0, & 0 \leq x<\frac{3}{2} \\ 2, & \frac{3}{2} \leq x<500 \\ 100, & x \geq 500\end{cases}
$$

We also define a mapping $\alpha: X \times X \rightarrow[0,+\infty)$ as

$$
\alpha(x, y)= \begin{cases}1, & x, y \in\left[0, \frac{3}{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Let $x \in X$ be a point such that $\alpha(x, T x) \geq 1$, then $x \in\left[0, \frac{3}{2}\right) \subset X$ and $\alpha\left(T x, T^{2} x\right) \geq 1$. Therefore, T is α-orbitally admissible.

Set $\psi(t)=k t$, for all $t>0$, where $k=\frac{1}{2}$. For all $x, y \in X$, we obtain

$$
\alpha(x, y) d_{\theta}(T x, T y) \leq k \mathcal{K}(x, y)
$$

Clearly, there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$, then $\alpha\left(T x_{0}, T^{2} x_{0}\right) \geq 1$. Therefore, by the mathematical induction, we have $\alpha\left(x_{n}, x_{n+1}\right)=\alpha\left(T^{n} x_{0}, T^{n+1} x_{0}\right) \geq 1$, for all $n \in \mathbb{N} \cup\{0\}$. Consequently, $T^{n} x_{0} \rightarrow 0$ as $n \rightarrow \infty$. This shows that $\left(X, d_{\theta}\right)$ is a T-orbitally complete extended b-metric space.

Moreover, it is easy to see that

$$
\lim _{n, m \rightarrow \infty} \theta\left(T^{n} x_{0}, T^{m} x_{0}\right)=\frac{3}{2}<2=\frac{1}{k}
$$

Accordingly, all the conditions of Theorem 8 hold and, therefore, T possesses a fixed point and $\operatorname{Fix}(T)=\{0,2\}$.

Theorem 9. In addition to Theorem 8, suppose that T is α^{*}-orbitally admissible. Then, T possesses a unique fixed point $z \in X$.

Proof. By Theorem $8, T$ possesses a fixed point in X, i.e., $F i x(T) \neq \varnothing$. For the uniqueness, let $z, z^{*} \in \operatorname{Fix}(T)$ such that $z \neq z^{*}$. Then, by the α^{*}-orbital admissibility of T, we have $\alpha^{*}\left(z, z^{*}\right) \geq 1$.

As in Theorem 8, we also divide the proof into two cases as follows:
Case 1
Suppose that

$$
\max \left\{d_{\theta}\left(z, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\} \neq 0
$$

and

$$
\max \left\{d_{\theta}\left(z^{*}, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\} \neq 0
$$

From (10), we obtain

$$
d_{\theta}\left(z, z^{*}\right)=d_{\theta}\left(T z, T z^{*}\right) \leq \alpha\left(z, z^{*}\right) d_{\theta}\left(T z, T z^{*}\right) \leq \psi\left(\mathcal{K}\left(z, z^{*}\right)\right),
$$

where

$$
\begin{aligned}
\mathcal{K}\left(z, z^{*}\right)= & \max \left\{d_{\theta}\left(z, z^{*}\right), \frac{d_{\theta}(z, T z) d_{\theta}\left(z, T z^{*}\right)+d_{\theta}\left(z^{*}, T z^{*}\right) d_{\theta}\left(z^{*}, T z\right)}{\max \left\{d_{\theta}\left(z, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\}}\right. \\
& \left.\frac{d_{\theta}(z, T z) d_{\theta}\left(z^{*}, T z^{*}\right)+d_{\theta}\left(z, T z^{*}\right) d\left(z^{*}, T z\right)}{\max \left\{d_{\theta}\left(z^{*}, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\}}\right\} \\
= & d_{\theta}\left(z, z^{*}\right)
\end{aligned}
$$

Therefore,

$$
d_{\theta}\left(z, z^{*}\right) \leq \psi\left(d_{\theta}\left(z, z^{*}\right)\right)<d_{\theta}\left(z, z^{*}\right)
$$

This is a contradiction.
Case 2
Assume that

$$
\max \left\{d_{\theta}\left(z, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\}=0
$$

or

$$
\max \left\{d_{\theta}\left(z^{*}, T z^{*}\right), d_{\theta}\left(z^{*}, T z\right)\right\}=0
$$

Consequently, $z=T z^{*}=T z=z^{*}$.
Thus, T possesses a unique fixed point in X. This completes the proof.
Corollary 2. Let T be a self mapping on a complete extended b-metric space $\left(X, d_{\theta}\right)$ such that

$$
d_{\theta}(T x, T y) \leq k \begin{cases}\mathcal{K}(x, y), & \text { whenever } \mathcal{A}(x, y) \neq 0 \text { and } \mathcal{B}(x, y) \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

for all $x, y \in X, x \neq y$, where $0 \leq k<1, \mathcal{A}(x, y)$ and $\mathcal{B}(x, y)$ are defined in Theorem 8. Furthermore, suppose, for all $x_{0} \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to z.

Corollary 3. Let T be a self mapping on a complete extended b-metric space $\left(X, d_{\theta}\right)$ such that

$$
d_{\theta}(T x, T y) \leq k \begin{cases}\max \left\{d_{\theta}(x, y), \frac{d_{\theta}(x, T x) d_{\theta}(x, T y)+d_{\theta}(y, T y) d_{\theta}(y, T x)}{\mathcal{A}(x, y)}\right\}, & \text { if } \mathcal{A}(x, y) \neq 0 \\ 0, & \text { if } \mathcal{A}(x, y)=0\end{cases}
$$

for all $x, y \in X, x \neq y$, where $0 \leq k<1$ and $\mathcal{A}(x, y)=\max \left\{d_{\theta}(x, T y), d_{\theta}(y, T x)\right\}$. Further suppose, for all $x_{0} \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to z.

Corollary 4. ([10], Theorem 2.2) Let T be a self mapping on a complete extended b-metric space $\left(X, d_{\theta}\right)$ such that

$$
d_{\theta}(T x, T y) \leq k \begin{cases}\max \left\{d_{\theta}(x, y), \frac{d_{\theta}(x, T x) d_{\theta}(x, T y)+d_{\theta}(y, T y) d_{\theta}(y, T x)}{\mathcal{C}(x, y)}\right\}, & \text { if } \mathcal{C}(x, y) \neq 0 \\ 0, & \text { if } \mathcal{C}(x, y)=0\end{cases}
$$

for all $x, y \in X, x \neq y$, where $0 \leq k<1$ and $\mathcal{C}(x, y)=d_{\theta}(x, T y)+d_{\theta}(y, T x)$. Further assume, for all $x_{0} \in X$, that (9) is satisfied. Then, T has a unique fixed point $z \in X$. Moreover, the sequence $\left\{T^{n} x_{0}\right\}_{n \in \mathbb{N}}$ converges to z.

Remark 3. (i) In Example 9, T is α-orbitally admissible. Since Fix $(T)=\{0,2\}$, but $\alpha(2, T 2)=$ $\alpha(2,2)=0, T$ is not α^{*}-orbitally admissible. In this case, Theorem 9 is not applicable in Example 9.
(ii) In Example 9, if $x=2$ and $y=500$, then

$$
d_{\theta}(T x, T y)=d_{\theta}(T 2, T 500)=d_{\theta}(2,100)=5>\frac{1}{2} \max \left\{5, \frac{5}{2}\right\}
$$

This shows that Corollaries 2-4 are not applicable in Example 9.

3. Applications

In this section, by using fixed point theorems mentioned above, we cope with some problems for the unique solution to a class of Fredholm integral equations.

Let $X=\mathcal{C}[a, b]$ be a set of all real valued continuous functions on $[a, b]$. Define two mappings $d_{\theta}: X \times X \rightarrow[0,+\infty)$ by

$$
d_{\theta}(x, y)=\sup _{t \in[a, b]}|x(t)-y(t)|^{p}
$$

and $\theta: X \times X \rightarrow[1,+\infty)$ by

$$
\theta(x, y)=2^{p-1}+|x(t)|+|y(t)|
$$

where $p>1$ is a constant. Then, $\left(X, d_{\theta}\right)$ is a complete extended b-metric space.
Define a Fredholm integral equation by

$$
x(t)=\eta(t)+\lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) d s
$$

where $t \in[a, b],|\lambda|>0$ and $\mathcal{I}:[a, b] \times[a, b] \times X \rightarrow \mathbb{R}$ and $\eta:[a, b] \rightarrow \mathbb{R}$ are continuous functions. Let $T: X \rightarrow X$ be an integral operator defined by

$$
\begin{equation*}
T x(t)=\eta(t)+\lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) d s \tag{12}
\end{equation*}
$$

Theorem 10. Let $T: X \rightarrow X$ be an integral operator defined in (12). Suppose that the following assumptions hold:
(i) for any $x_{0} \in X, \lim _{n, m \rightarrow \infty} \theta\left(T^{n} x_{0}, T^{m} x_{0}\right)<\frac{1}{k}$, where $k=\frac{1}{2^{p}}$,
(ii) for any $x, y \in X, x \neq y$, it satisfies

$$
\begin{equation*}
|\mathcal{I}(t, s, x(s))-\mathcal{I}(t, s, y(s))| \leq \xi(t, s) \mid x(s)-y(s)) \mid \tag{13}
\end{equation*}
$$

where $(s, t) \in[a, b] \times[a, b]$ and $\xi:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is a continuous function satisfying

$$
\begin{equation*}
\sup _{t \in[a, b]} \int_{a}^{b} \xi^{p}(t, s) d s<\frac{1}{2^{p}|\lambda|^{p}(b-a)^{p-1}} \tag{14}
\end{equation*}
$$

Then, the integral operator T has a unique solution in X.
Proof. Let $x_{0} \in X$ and define a sequence $\left\{x_{n}\right\}$ in X by $x_{n}=T^{n} x_{0}, n \geq 1$. From (12), we obtain

$$
x_{n+1}=T x_{n}(t)=\eta(t)+\lambda \int_{a}^{b} \mathcal{I}\left(t, s, x_{n}(s)\right) d s
$$

Let $q>1$ be a constant with $\frac{1}{p}+\frac{1}{q}=1$. Making full use of (13) and the Hölder's inequality, we speculate that

$$
\begin{align*}
|T x(t)-T y(t)|^{p} & =\left|\lambda \int_{a}^{b} \mathcal{I}(t, s, x(s)) d s-\lambda \int_{a}^{b} \mathcal{I}(t, s, y(s)) d s\right|^{p} \\
& \leq\left(\int_{a}^{b}|\lambda||\mathcal{I}(t, s, x(s))-\mathcal{I}(t, s, y(s))| d s\right)^{p} \\
& \leq\left(\int_{a}^{b}|\lambda|^{q} d s\right)^{\frac{p}{q}}\left(\left(\int_{a}^{b}|\mathcal{I}(t, s, x(s))-\mathcal{I}(t, s, y(s))|^{p} d s\right)^{\frac{1}{p}}\right)^{p} \\
& =|\lambda|^{p}(b-a)^{p-1}\left(\int_{a}^{b}|\mathcal{I}(t, s, x(s))-\mathcal{I}(t, s, y(s))|^{p} d s\right) \\
& \leq|\lambda|^{p}(b-a)^{p-1} \int_{a}^{b} \xi^{p}(t, s)|x(s)-y(s)|^{p} d s \tag{15}
\end{align*}
$$

Making the most of (15) and (14), we deduce that

$$
\begin{aligned}
d_{\theta}(T x, T y) & =\sup _{t \in[a, b]}|T x(t)-T y(t)|^{p} \\
& \leq|\lambda|^{p}(b-a)^{p-1} \sup _{t \in[a, b]}\left[\int_{a}^{b} \xi^{p}(t, s)|x(s)-y(s)|^{p} d s\right] \\
& \leq|\lambda|^{p}(b-a)^{p-1} \sup _{s \in[a, b]}|x(s)-y(s)|^{p}\left(\sup _{t \in[a, b]} \int_{a}^{b} \xi^{p}(t, s) d s\right) \\
& \leq \frac{1}{2^{p}} \mathcal{N}(x, y) .
\end{aligned}
$$

Setting $k=\frac{1}{2^{p}}$, we obtain that

$$
d_{\theta}(T x, T y) \leq k \mathcal{N}(x, y)
$$

Thus, all the conditions of Corollary 1 are satisfied and hence T possesses a unique fixed point in X.

Theorem 11. Let $T: X \rightarrow X$ be an integral operator defined by (12). Assume that the following assumptions hold:
(i) $\lim _{n, m \rightarrow \infty} \theta\left(T^{n} x_{0}, T^{m} x_{0}\right)<\frac{1}{k}$, where $k=\frac{1}{2^{p}}$ for any $x_{0} \in X$;
(ii) for all distinct x, y in X, ones have

$$
|\mathcal{I}(t, s, x(s))-\mathcal{I}(t, s, y(s))| \leq \begin{cases}\xi(t, s) \mathcal{K}(x(s), y(s)), & \text { where } \mathcal{A} \neq 0 \text { and } \mathcal{B} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
\mathcal{A} & =\mathcal{A}(x(s), y(s)) \\
\mathcal{B} & =\sup \left\{|x(s)-T y(s)|^{p},|y(s)-T x(s)|^{p}\right\}, \\
\mathcal{B}(s), y(s)) & =\sup \left\{|y(s)-T y(s)|^{p},|y(s)-T x(s)|^{p}\right\},
\end{aligned}
$$

$(s, t) \in[a, b] \times[a, b]$ and $\xi:[a, b] \times[a, b] \rightarrow \mathbb{R}$ is a continuous function such that

$$
\sup _{t \in[a, b]} \int_{a}^{b} \xi^{p}(t, s) d s<\frac{1}{2^{p}|\lambda|^{p}(b-a)^{p-1}}
$$

Then, the integral operator T has a unique solution in X.
Example 10. Let $X=C[0,1]$ be a set of all real valued continuous functions defined on $[0,1]$. Then, $\left(X, d_{\theta}\right)$ is a complete extended b-metric space equipped with $d_{\theta}(x, y)=\sup _{t \in[0,1]}|x(t)-y(t)|^{2}$, where $\theta(x, y)=2+|x(t)|+|y(t)|$, for all $x, y \in X$. Let $T: X \rightarrow X$ be an operator defined by

$$
T x(t)=\eta(t)+\int_{0}^{1} \mathcal{I}(t, s, x(s)) d s
$$

where $\eta(t)=\frac{t}{4}$ and $\mathcal{I}(t, s, x(s))=\frac{t\left(1+x^{2}(s)\right)}{3}$, for all $(t, s) \in[0,1] \times[0,1]$.
We have

$$
\begin{align*}
|T x(t)-T y(t)|^{2} & =\left|\int_{0}^{1} \mathcal{I}(t, s, x(s)) d s-\int_{0}^{1} \mathcal{I}(t, s, y(s)) d s\right|^{2} \\
& \leq \int_{0}^{1}\left|\frac{t}{3}\left(x^{2}(s)-y^{2}(s)\right)\right|^{2} d s \tag{16}
\end{align*}
$$

Taking the supremum on both sides of (16), for all $t \in[0,1]$, we obtain

$$
d_{\theta}(T x, T y)=\sup _{t \in[0,1]}|T x(t)-T y(t)|^{2} \leq \frac{1}{9} d_{\theta}(x, y)<\frac{1}{6} \mathcal{N}(x, y)
$$

In addition, $\lim _{m, n \rightarrow \infty} \theta\left(T^{m} x_{0}, T^{n} x_{0}\right)=2<\frac{1}{k}$, where $k=\frac{1}{6}$ and $x_{0}(t)=\frac{t}{4}$. Thus, all the conditions of Theorem 10 are satisfied and hence the integral operator T has a unique solution.

> Author Contributions: H.H. designed the research and wrote the paper. Y.M.S. offered the draft preparation and gave the methodology, M.S.K. and S.R. co-wrote and made revisions to the paper. H.H. gave the support of funding acquisition. All authors have read and agreed to the published version of the manuscript.
> Funding: The first author acknowledges the financial support from the Natural Science Foundation of Chongqing of China (No. cstc2020jcyj-msxmX0762), and the Initial Funding of Scientific Research for High-level Talents of Chongqing Three Gorges University of China (No. 2104/09926601).
> Institutional Review Board Statement: Not applicable.
> Informed Consent Statement: Not applicable.
> Data Availability Statement: The data presented in this study are available upon request from the corresponding author.
> Acknowledgments: The authors thank the editor and the referees for their valuable comments and suggestions which greatly improved the quality of this paper.
> Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 1989, 30, 26 -37.
2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav.o 1993, 1, 5-11.
3. Kamran, T.; Samreen, M.; Ul Ain, Q. A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [CrossRef]
4. Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expressions. Indian J. Pure Appl. Math. 1975, 6, 1455-1458.
5. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223-230.
6. Khan, M.S. A fixed point theorems for metric spaces. Rendiconti Dell'Istituto Matematica Dell'Università Trieste Int. J. Math. 1976, 8, 69-72. [CrossRef]
7. Sarwar, M.; Humaira, Huang H. Fuzzy fixed point results with rational type contractions in partially ordered complex-valued metric spaces. Commentat. Math. 2018, 58, 5-78. [CrossRef]
8. Choudhury, B.S.; Metiya, N.; Konar, P. Fixed point results for rational type contraction in partially ordered complex-valued metric spaces. Bull. Int. Math. Virtual. Inst. 2015, 5, 73-80.
9. Cabrera, I.; Harjani, J.; Sadarangani, K. A fixed point theorem for contractions of rational type in partially ordered metric spaces. Ann. Univ. Ferrara. 2013, 59, 251-258. [CrossRef]
10. Alqahtani, B.; Fulga, A.; Karapinar, E.; Rakočević, V. Contractions with rational inequalities in the extended b-metric spaces. J. Inequal. Appl. 2019, 2019, 220. [CrossRef]
11. Fisher, B. A note on a theorem of Khan. Rendiconti Dell'lstituto Matematica Dell'Università Trieste Int. J. Math. 1978, 10, 1-4.
12. Ahmad, J.; Arshad, M.; Vetro, C. On a theorem of Khan in a generalized metric space. Int. J. Anal. 2013, 2013, 852727. [CrossRef]
13. Branciari, A. A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces. Publ. Math. Debrecen. 2000, 57, 31-37.
14. Piri, H.; Rahrovi, S.; Kumam, P. Khan type fixed point theorems in a generalized metric space. J. Math. Computer Sci. 2016, 16, 211-217. [CrossRef]
15. Boriceanu, M.; Bota, M.; Petruşusel, A. Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 2010, 8, 367-377. [CrossRef]
16. Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca. 2014, 64, 941-960. [CrossRef]
17. Berinde, V. Generalized contractions in quasimetric spaces. Semin. Fixed Point Theory Babes Bolyai Univ. 1993, 3, 3-9.
18. Huang, H; Radenović, S.; Deng, G. A sharp generalization on cone b-metric space over Banach algebra. J. Nonlinear Sci. Appl. 2017, 10, 429-435. [CrossRef]
19. Hussain, N.; Parvaneh, V.; Roshan, J.R.; Kadeburg, Z. Fixed points of cyclic weakly (ψ, φ, L, A, B)-contractive mappings ordered b-metric spaces with applications. Fixed Point Theory Appl. 2013, 2013, 256. [CrossRef]
20. Alsulami, H.H.; Karapınar, E.; Rakočević, V. Ćirić type non-unique fixed point theorems on b-metric spaces. Filomat 2017, 3, 3147-3156. [CrossRef]
21. Ćirić, L.B. Generalized contraction and fixed point theoremss. Publications L'Institut Mathématique 1971, 12, 19-26.
22. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for $\alpha-\psi$-contractive type mappings. Nonlinear Anal. 2012, 75, 2154-2165. [CrossRef]
23. Mahendra Singh, Y.; Khan, M.S.; Kang, S.M. F-convex contraction via admissible mapping and related fixed point theorems with an application. Mathematics 2018, 6, 105. [CrossRef]
24. Popescu, O. Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 190. [CrossRef]
25. Berinde, V. Sequences of operators and fixed points in quasimetric spaces. Studia Univ. Babeş-Bolyai Math. 1996, 41, 23-27.
26. Berinde, V. On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 2003, 19, 7-22.
27. Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 1977, 62, 344-348. [CrossRef]
28. Khan, M.S.; Mahendra Singh, Y.; Abbas, M.; Rakočević V. On non-unique fixed point of Ćirić type operators in extended b-metric spaces and applications. Rend. Circ. Mat. Palermo II. Ser. 2020, 69, 1221-1241. [CrossRef]
29. Alqahtani, B.; Fulga, A.; Karapınar, E. Non-unique fixed point results in extended b-metric space. Mathematics 2018, 6, 68. [CrossRef]
