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Abstract: In this paper, we consider the class of strongly bi-close-to-convex functions of order α and
bi-close-to-convex functions of order β. We obtain an upper bound estimate for the second Hankel
determinant for functions belonging to these classes. The results in this article improve some earlier
result obtained for the class of bi-convex functions.
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1. Introduction
1.1. Bi-Univalence

If f is in the class S , then f is one-to-one in D = {z ∈ C : |z| < 1}, and

f (z) = z + a2z2 + a3z3 + · · · , (1)

then the inverse f−1 of f has Maclaurin expansion in a disk of radius at least 1/4, say

f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2)

An analytic function f of the form (1) is said to be bi-univalent in D if both f and
f−1 are univalent in D, in the sense that f−1 has an univalent analytic continuation to D.
Let Σ denote the class of all bi-univalent functions in D, given by the Taylor–Maclaurin
series expansion (1). Family Σ has been the focus of attention for more than fifty years.
In [1], Lewin established that for f ∈ Σ, |a2| ≤ 1.51. Later on, Brannan and Clunie [2]
hypothesized that |a2| ≤

√
2; however, their hypothesis has not been proved. One of the

results which deserves more attention but somehow unnoticed is that of Netanyahu [3]

who obtained a sharp upper bound |a2| ≤
4
3

for a class Σ1 ⊂ Σ, consisting of the func-
tions that are bi-univalent and its range contain D. However, the sharp lower bound of
the second coefficient |a2| in the class Σ is not known, as well as bounds for successive

coefficients |an| (n > 2). Some examples of bi-univalent functions are
z

1− z
,

1
2

log
(

1 + z
1− z

)
or − log(1− z); however, the familiar Koebe function, or

z
1− z2 , which are the members of

S , are not the elements of the class Σ.

1.2. Subfamilies of S and Related Bi-Univalent Functions

Let 0 ≤ β < 1. The subclasses of S consisting of starlike functions of order β (and
convex functions of order β, respectively) are denoted by ST (β) (CV(β), resp.), and are
defined analytically
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ST (β) =
{

f ∈ S : <
(
z f ′(z)/ f (z)

)
> β, z ∈ D

}
, (3)

CV(β) =
{

f ∈ S : <
(
1 + z f ′′(z)/ f ′(z)

)
> β, z ∈ D

}
. (4)

A function f of the form (1) is said close-to-convex in D, if and only if there exists a

function Φ ∈ CV = CV(0) such that <
(

f ′(z)
Φ′(z)

)
> 0, z ∈ D. The family of normalized

close-to-convex functions was first introduced by Kaplan [4] and denoted K.
Brannan and Taha [5] introduced the classes ST Σ(β) (and CVΣ(β)) of bi-starlike func-

tions of order β (and bi-convex functions of order β, resp.) corresponding to ST (β) and CV(β)
defined by (3) and (4). They also found non-sharp estimates on |a2| and |a3| for its members
of the form (1). Following Brannan and Taha [5], many researchers (see, for example,
in [6,7]) have recently introduced and investigated several interesting subclasses of Σ and
found non-sharp estimates on the first two Taylor–Maclaurin coefficients. Furthermore,
in [5] the class of strongly bi-starlike functions of order α, where 0 < α ≤ 1 has been defined
and denoted ST Σ[α]. A function f is in the class ST Σ[α], if∣∣∣∣arg

(
z f ′(z)

f (z)

)∣∣∣∣ < απ

2
and

∣∣∣∣arg
(

wg′(w)

g(w)

)∣∣∣∣ < απ

2
(z, w ∈ D),

where g is the analytic continuation of f−1 to D.
For 0 ≤ α ≤ 1, let Kα denote the family of functions f of the form (1), analytic and

locally univalent in D, for which there exists a convex function φ such that∣∣∣∣arg
(

f ′(z)
φ′(z)

)∣∣∣∣ < απ

2
(z ∈ D). (5)

The above class has been introduced by Kaplan [4] and later studied by Reade [8].
In particular, K0 is the family of convex univalent functions and K1 is the family of close-
to-convex functions. Moreover, Kα1 is a proper subclass of Kα2 whenever α1 < α2. An
extension of Kα is a class Kα(β) of close-to-convex functions of order β [8], given by

<
(

f ′(z)
φ′(z)

)
> β (z ∈ D). (6)

Following Brannan and Taha, the related families of bi-univalent functions have been
considered, for example, a classKΣ of bi-close-to-convex functions [9]; a class of strongly bi-
close-to-convex functions of order α, denoted by KΣ[α]; and the class of bi-close-to-convex
functions of order β, denoted by KΣ(β).

Definition 1. ([9]) A function f ∈ Σ of the form (1) belongs to the class of bi-close to convex
functions KΣ, if there exist a function φ, convex and univalent for z ∈ D, such that

<
{

f ′(z)
φ′(z)

}
≥ 0, and <

{
g′(w)

φ′(w)

}
≥ 0 (z, w ∈ D),

where g is the analytic continuation of f−1 to D with a series expansion (2).

Definition 2. [9] Let 0 ≤ α ≤ 1. A function f ∈ Σ, given by (1), is said to be strongly
bi-close-to-convex of order α if there exist bi-convex functions φ and ψ such that∣∣∣∣arg

(
f ′(z)
φ′(z)

)∣∣∣∣ < απ/2 and
∣∣∣∣arg

(
g′(w)

ψ′(w)

)∣∣∣∣ < απ/2 (z, w ∈ D). (7)

Here, g is the analytic continuation of f−1 to D. We denote the class of strongly bi-close-to-
convex functions of order α by KΣ[α].
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Remark 1. We note that KΣ[1] ≡ KΣ and KΣ[0] ≡ CVΣ [5].

Definition 3. [9] Let 0 ≤ β < 1. A function f ∈ Σ, given by (1), is said to be bi-close-to-convex
of order β if there exist the bi-convex functions φ and ψ ∈ CVΣ such that

<
(

f ′(z)
φ′(z)

)
> β and <

(
g′(w)

ψ′(w)

)
> β (z, w ∈ D), (8)

where g is the analytic continuation of f−1 to D. We denote the class of bi-close-to-convex functions
of order β by KΣ(β).

Remark 2. We note that KΣ(0) ≡ KΣ. Furthermore, for φ(z) = z, the class NΣ(α) (0 ≤ α ≤
1) reduces to the family of functions f ∈ Σ, satisfying the condition∣∣arg f ′(z)

∣∣ < απ/2 and
∣∣arg g′(w)

∣∣ < απ/2 (z, w ∈ D),

and KΣ(β) reduces to NΣ(β) defined by the conditions

<
(

f ′(z)
)
> β and <

(
g′(w)

)
> β (z, w ∈ D),

where the function g is defined by (2). These classes were studied by Çağlar et al. [10]

Observe that if f is given by (1), then g = f−1 is given by (2), and if

φ(z) = z + c2z2 + c3z3 + c4z4 + · · · , (9)

then

ψ(w) = φ−1(w) = w− c2w2 + (2c2
2 − c3)w3 − (5c3

2 − 5c2c3 + c4)w4 + · · · . (10)

In the sequel, we assume that g, φ, ψ have Taylor expansions as in (2), (9), and (10).

1.3. Hankel Determinant

Towards the full understanding of a behavior of bi-univalence, it is necessary to
extend our attention to the Hankel determinants, that is one of the most important tool in
Geometric Function Theory, defined by Pommerenke [11,12]. Noonan and Thomas [13]
defined the qth Hankel determinant of f given by (1) for natural n ≥ 1 and q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

: : : :
: : : :

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣
.

The importance of the Hankel determinants was recognized over half a century ago,
and it has been studied in great details, see, for example, in [11,12]. The significance
of the Hankel determinants follows from the study of singularities of analytic functions
([14], p. 329), see also in [15], and from the fact that it contains the Fekete-Szegö functional
with its generalization [16]. Moreover, H2(2) = a2a4 − a2

3 is the well-known second Hankel
determinant. The Hankel determinant is useful for estimating the modulus of coefficients
and the rate of growth of the coefficients. Both estimates determine the behavior of the
studied function when the function itself and its properties are unknown. Extensive studies
of the Hankel determinant in the theory of meromorphic functions are due to Wilson [17];
numerous applications in mathematical physics are given by Vein and Dale [18]. Recently,
many authors have discussed upper bounds of the Hankel determinant and Fekete-Szegö
functional for numerous subclasses of univalent functions [13,14,19–22] and references
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therein. Very recently, the upper bounds of H2(2) for the classes S∗Σ(α) and KΣ(α) were
investigated by Deniz et al. [23], and extended by Orhan et al. [24,25].

Sivasubramanian et al. [9] found the estimates of |a2| and |a3| in the classes KΣ, KΣ[α]
and KΣ(β). Further, they verified Brannan and Clunie’s conjecture |a2| ≤

√
2 for some of

their subclasses.
Therefore, a naturally arising problem addressed in this paper is to investigate the

behavior of the Hankel determinants in the newly defined families.

1.4. Some Useful Bounds

Let P denote the class of functions p(z) of the form

p(z) = 1 + p1z + p2z2 + p3z3 + ..., (11)

which are analytic in the open unit disk D and such that < p(z) > 0, z ∈ D.

Lemma 1. [26] If the function p ∈ P is given by the series (11), then |pk| ≤ 2, k = 1, 2, ... .

Lemma 2. [27] If the function p ∈ P is given by the series (11), then

2p2 = p2
1 + x(4− p2

1),
4p3 = p3

1 + 2p1(4− p2
1)x− p1(4− p2

1)x2 + 2(4− p2
1)(1− |x|2)z,

for some x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 3. [28] If the function φ ∈ CV , then for λ ∈ R,

|c3 − λc2
2| ≤


1− λ for λ < 2/3,

1 for 2/3 ≤ λ ≤ 4/3,
λ− 1 for λ > 4/3.

(12)

Lemma 4. [29] If the function φ ∈ CV , then |c2c4 − c2
3| ≤

1
8 .

Lemma 5. [30] If the function φ ∈ CV , then |c2c3 − c4| ≤ 1
6 .

2. Second Hankel Determinant in Class KΣ[α] and KΣ(β)

The first aim of this section is to find the best bound of the second Hankel determinant
in the class KΣ[α]. A successful method of finding such bound has been exploited in [9]
and other related publications.

2.1. The Class KΣ(β)

In the family of strongly bi-close-to-convex of order α, we have the following non-
sharp estimates of H2(2); however, this bound, for a particular selection of α, improves the
earlier results in [23].

Theorem 1. Let 0 ≤ α ≤ 1, and let the function f , given by (1), be in the class KΣ[α]. Then,

|a2a4 − a2
3| ≤

1
8
+

3
2

α +
43
9

α2 +
1
3

α3 +
4
3

α4. (13)

Proof. From the condition (7) it follows that there exists p, q ∈ P such that

f ′(z) = φ′(z)[p(z)]α and g′(w) = ψ′(w)[q(w)]α. (14)

Let p be given by (11) and q has a series representations

q(w) = 1 + q1w + q2w2 + q3w3 + · · · . (15)
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Then, equating the coefficients of both sides of (14), when f , p, q, φ, and ψ have given
power series, we obtain a number of equalities, below.

2a2 = 2c2 + αp1, −2a2 = −2c2 + αq1, (16)

3a3 = 3c3 + 2αc2 p1 + αp2 +
1
2

α(α− 1)p2
1, (17)

4a4 = 4c4 + 3c3αp1 + 2αc2 p2 + αp3 + α(α− 1)c2 p2
1 + α(α− 1)p1 p2 +

α(α− 1)(α− 2)
6

p3
1, (18)

6a2
2 − 3a3 = 6c2

2 − 3c3 − 2αc2q1 + αq2 +
1
2

α(α− 1)q2
1, (19)

− 20a3
2 + 20a2a3 − 4a4 = −20c3

2 + 20c2c3 − 4c4 + 6c2
2αq1 − 3c3αq1 − 2αc2q2

+ αq3 − α(α− 1)c2q2
1 + α(α− 1)q1q2 +

α(α− 1)(α− 2)
6

q3
1.

(20)

The equality (16) immediately gives p1 = −q1. Next, by (17) and (19), we obtain

a3 = c3 + αc2 p1 +
1
4

α2 p2
1 +

α

6
(p2 − q2). (21)

Similarly, making necessary calculations of (18) and (20), we get

a4 = c4 +
α

8
(p3 − q3) +

1
4

c2α(p2 + q2) +
5

24
α2 p1(p2 − q2)

+
5

12
αc2(p2 − q2) +

5
4

c3αp1 +
1
4

α(α− 1)c2 p2
1

+
1
8

α(α− 1)p1(p2 + q2)−
1
2

c2
2αp1 +

1
24

α(α− 1)(α− 2)p3
1.

(22)

Therefore,∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣c2c4 − c2
3 +

1
2

αc4 p1 −
3
4

c2c3αp1 +
1
8

c3α2 p2
1 −

5
4

α2 p2
1c2

2

− 1
3

c3α(p2 − q2) +
5

12
c2

2α(p2 − q2)−
1
2

c3
2αp1 −

1
16

α4 p4
1

+
1

12
c2α2 p1(p2 − q2) +

1
48

α2(α− 1)(α− 2)p4
1

+
1
8

α2(α− 1)c2 p3
1 +

1
24

c2α(α− 1)(α− 2)p3
1

+
1
8

αc2(p3 − q3) +
1
8

c2α2 p1(p2 + q2)

+
1

48
α3 p2

1(p2 − q2) +
1
4

α(α− 1)c2
2 p2

1 −
1
2

c2α3 p3
1

+
1

16
α2 p1(p3 − q3) +

1
16

α2(α− 1)p2
1(p2 + q2)

+
1
4

c2
2α(p2 + q2) +

1
8

c2α(α− 1)p1(p2 + q2)−
1
36

α2(p2 − q2)
2
∣∣∣∣.

(23)

Let us apply Lemma 2 to p2 and q2. Then, for some x, y such that |x| ≤ 1, |y| ≤ 1,
it holds

2p2 = p2
1 + x(4− p1)

2, 2q2 = q2
1 + y(4− q1)

2,

from which we have

p2 − q2 =
(4− p2

1)(x− y)
2

; p2 + q2 = p2
1 +

(4− p2
1)(x + y)
2

. (24)
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Apply now Lemma 2 to p3, q3 and obtain

p3 − q3 =
p3

1
2

+
p1(4− p2

1)(x + y)
2

−
p1(4− p2

1)(x2 + y2)

4
+

(4− p2
1)

2

[
(1− |x|2)z− (1− |y|2)w

]
, (25)

for some x, y, z, and w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, and |w| ≤ 1. Making use of (24)
and (25) to (23) gives

∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣c2c4 − c2
3 +

α

2
(c4 − c2c3)p1 −

1
4

αc2c3 p1 +
1
8

α2(c3 − 10c2
2)p2

1

− 1
3

α

(
c3 −

5
4

c2
2

)
(p2 − q2) +

1
12

c2α2 p1(p2 − q2)−
1
2

c3
2αp1 −

1
2

c2α3 p3
1

− 1
16

α4 p4
1 +

1
16

α2(α− 1)p2
1(p2 − q2) +

1
4

α(α− 1)c2
2 p2

1 +
1

48
α2(α− 1)(α− 2)p4

1

+
1
8

α2(α− 1)c2 p3
1 +

1
24

c2α(α− 1)(α− 2)p3
1 +

1
8

αc2(p3 − q3)

+
1
8

c2α(α− 1)p1(p2 + q2) +
1
8

c2α2 p1(p2 + q2) +
1

48
α3 p2

1(p2 − q2)

+
1
16

α2 p1(p3 − q3) +
1
4

c2
2α(p2 + q2)−

1
36

α2(p2 − q2)
2
∣∣∣∣.

(26)

Without lost of generality, we can restrict our considerations to p1 := p ∈ [0, 2].
Applying this and the triangle inequality to (26), we have∣∣∣a2a4 − a2

3

∣∣∣ ≤ ∣∣∣c2c4 − c2
3

∣∣∣+ α

2
|(c4 − c2c3)|p +

1
2
|c3

2|αp +
α

4
|c2c3|p

+
1
8

α2|c3 − 10c2
2|p2 +

1
2
|c2|α3 p3 +

1
16

α4 p4 +
1
4
|α(α− 1)||c2

2|p2

+
1

48
|α2(α− 1)(α− 2)|p4 +

1
8
|α2(α− 1)||c2|p3 +

1
24
|c2||α(α− 1)(α− 2)|p3

+
1

16
|α2(α− 1)|p4 +

1
16

α|c2|p3 +
1
8
|c2|α2 p3 +

1
8
|c2||α(α− 1)|p3 +

1
32

α2 p4

+
1
4
|c2

2|αp2 + (|x|+ |y|)
[

α

6

∣∣∣∣c3 −
5
4

c2
2

∣∣∣∣+ 1
8
|c2

2|α
]
(4− p2)

+

[
1

16
|c2|α +

5
48
|c2|α2 +

1
16
|c2||α(α− 1)|

]
p(4− p2)

+

[
1

32
α2 +

1
96

α3 +
1

32
|α2(α− 1)|

]
p2(4− p2)

]
+ (|x|2 + |y|2)

[
α2

64
p2(4− p2) +

α

32
|c2|p(4− p2)

]
+ (1− |x|2)

[
α

16
|c2|(4− p2) +

α2

32
p(4− p2)

]
+ (1− |y|2)

[
α

16
|c2|(4− p2) +

α2

32
p(4− p2)

]
+

α2

144
(4− p2)2(|x|+ |y|)2.

(27)

We now apply Lemma 3 and Lemma 4 with Lemma 5 to (27), and deduce that∣∣∣a2a4 − a2
3

∣∣∣ ≤ 1
8
+

5
6

αp +

(
9
8

α2 +
1
4

α(1− α) +
1
4

α

)
p2

+

(
1
16

α +
1
8

α2 +
1
2

α3 +
1
8

α(1− α)
2α + 5

3

)
p3

+

[
1
16

α4 +
1

32
α2 +

α2(1− α)(5− α)

48

]
p4

+
(α)

8
(4− p2) +

(α)2

16
p(4− p2)
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+(|x|+ |y|)
[(

α3

96
+

α2

32
+

1
32

α2(1− α)

)
p2(4− p2)

+

(
5α2

48
+

α

16
+

α(1− α)

16

)
p(4− p2) +

α

6
(4− p2)

]
+(|x|2 + |y|2)

[
α2

64
(p2 − 4)(4− p2)

]
+

α2

144
(4− p2)2(|x|+ |y|)2.

Taking γ1 = |x| ≤ 1, γ2 = |y| ≤ 1, we rewrite the above as follows:

|a2a4 − a2
3| ≤ S1 + S2(γ1 + γ2) + S3(γ

2
1 + γ2

2) + S4(γ1 + γ2)
2 = F(γ1, γ2),

where

S1 = S1(p) =
1
8
+

5
6

αp +

(
9
8

α2 +
1
4

α(1− α) +
1
4

α

)
p2

+

(
1

16
α +

1
8

α2 +
1
2

α3 +
1
8

α(1− α)
2α + 5

3

)
p3

+

[
1

16
α4 +

1
32

α2 +
α2(1− α)(5− α)

48

]
p4

+
(α)

8
(4− p2) +

(α)2

16
p(4− p2) ≥ 0,

S2 = S2(p) =

(
α3

96
+

α2

32
+

1
32

α2(1− α)

)
p2(4− p2)

+

(
5α2

48
+

α

16
+

α(1− α)

16

)
p(4− p2) +

α

6
(4− p2) ≥ 0,

S3 = S3(p) =
α2

64
(p2 − 4)(4− p2) ≤ 0,

S4 = S4(p) =
α2

144
(4− p2)2 ≥ 0.

In order to obtain an estimate of |H2(2)|, we need to maximize F(γ1, γ2) in the
closed square

∆ := {(γ1, γ2) : 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1}.

As S3 < 0 and S3 + 2S4 > 0 and p ∈ (0, 2), we conclude that Fγ1γ1 Fγ2γ2 − (Fγ1γ2)
2 <

0 for all γ1, γ2 ∈ int∆, and thus the function F can attain a maximum only on the
boundary of ∆.

We first note that F is symmetric in γ1 and γ2, therefore it is enough to consider
0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ γ1. For γ2 = 0 and 0 ≤ γ1 ≤ 1, we obtain

F(γ1, 0) = G(γ1) = S1 + S2γ1 + (S3 + S4)γ
2
1.

Fix p ∈ [0, 2] and consider two separate cases:

(i) S3 + S4 ≥ 0. In this case, G′(γ1) = 2(S3 + S4)γ1 + S2 > 0, that is, G(γ1) is an increasing
function. Therefore, for fixed p ∈ [0, 2) the maximum of G(γ1) may occurs only at
γ1 = 1, and

max G(γ1) = G(1) = S1 + S2 + S3 + S4.

(ii) S3 + S4 < 0. As S2 + 2(S3 + S4) ≥ 0 for 0 < γ1 < 1, it is clear that S2 + 2(S3 + S4) <
2(S3 + S4)γ1 + S2 < S2 so that G′(γ1) > 0. Therefore, similarly as in the case (i) the
maximum of G(γ1) is attained for γ1 = 1.
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For γ1 = 1 and 0 ≤ γ2 ≤ 1, we obtain

F(1, γ2) = H(γ2) = (S3 + S4)γ
2
2 + (S2 + 2S4)γ2 + S1 + S2 + S3 + S4.

Similarly, to the above cases of S3 + S4, we get that

max H(γ2) = H(1) = S1 + 2S2 + 2S3 + 4S4.

As G(1) ≤ H(1) for p ∈ [0, 2], we have that max F(γ1, γ2) = F(1, 1) on the boundary
of ∆ and from this on the closed square ∆.

Next, let us define a function K : [0, 2]→ R as follows:

K(p) = max F(γ1, γ2) = F(1, 1) = S1 + 2S2 + 2S3 + 4S4, (28)

that is, in view of (28),

K(p) =
1
8
+

11
6

α− 1
18

α2 +

(
11
6

α +
7

12
α2
)

p

+

(
1

24
α +

101
72

α2 − 1
6

α3
)

p2

+

[
5

12
α3 − 19

48
α2 +

25
48

α

]
p3

+

[
1

12
α4 − 7

48
α3 +

11
144

α2 +
1

16
α

]
p4.

By an elementary calculation, we find that

K′(p) =

(
11
6

α +
7
12

α2
)
+

(
1
12

α +
101
36

α2 − 1
3

α3
)

p

+

[
5
4

α3 − 19
16

α2 +
25
16

α

]
p2 +

[
1
3

α4 − 7
12

α3 +
11
36

α2 +
1
4

α

]
p3,

that can be rewritten as

K′(p) =

(
11
6

α +
7

12
α2
)
+

α p
3

[
α(1− α) +

89
22

α +
1
4

]
+

α p2

4

[
5α2 +

19
4
(1− α) +

3
2

]
+

α p3

3

[
α

(
α2 − α +

11
12

)
+

3
4
(1− α2)

]
,

from which it is easily seen that K′(p) > 0 for 0 < α ≤ 1. Therefore, K(p) is an increasing
function of p so that K(p) attains its maximum at p = 2. Consequently, we have

max
0≤p≤2

K(p) = K(2) =
1
8
+

3
2

α +
43
9

α2 +
1
3

α3 +
4
3

α4.

This completes the proof of the theorem.

Remark 3. For α = 1, we have the following bound

|a2a4 − a2
3| ≤

581
72

,

and when φ(z) = z, Theorem 1 reduces to the Theorem 2 in [10]. Furthermore, when α = 0, we
get the estimate for the class of bi-convex functions, which significantly improves the bound due to
Deniz et al. [23], below. Unfortunately, we do not know if that result is sharp.
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Corollary 1. For 0 ≤ α < 1, and f ∈ KΣ ≡ KΣ[0] we have

|a2a4 − a2
3| ≤

1
8

. (29)

2.2. The Class KΣ(β)

In order to estimate the second Hankel determinate in KΣ(β) we apply consideration
similar to that used in the proof of 1.

Theorem 2. Let 0 ≤ β < 1, and let the function f given by (1) be in the class KΣ(β). Then,

|a2a4 − a2
3| ≤

1
8
+

19
6
(1− β) + 6(1− β)2 + 4(1− β)3 + (1− β)4. (30)

Proof. By (8) there exist p, q ∈ P such that

f ′(z)
φ′(z)

= β + (1− β)[p(z)] and
g′(w)

ψ′(w)
= β + (1− β)[q(w)]. (31)

Let p, q have series representations as in the previous section. Then, equating coeffi-
cients of z, z2 and z3 of both sides of (31), we obtain

2a2 = 2c2 + (1− β)p1 and − 2a2 = −2c2 + (1− β)q1, (32)

3a3 = 3c3 + 2(1− β)c2 p1 + (1− β)p2, (33)

4a4 = 4c4 + 3c3(1− β)p1 + 2(1− β)c2 p2 + (1− β)p3. (34)

6a2
2 − 3a3 = 6c2

2 − 3c3 − 2(1− β)c2q1 + (1− β)q2, (35)

− 20a3
2 + 20a2a3 − 4a4 = −20c3

2 + 20c2c3 − 4c4 + 6c2
2(1− β)q1 − 3c3(1− β)q1

− 2(1− β)c2q2 + (1− β)q3.
(36)

From (32), we get p1 = −q1, and a2 = c2 +
(1−β)p1

2 , and making use of (33), (35),
and (36), we have

a3 = c3 + (1− β)c2 p1 +
(1− β)(p2 − q2)

6
+

(1− β)2 p2
1

4
, (37)

a4 = c4 +
1
8
(1− β)(p3 − q3) +

1
4

c2(1− β)(p2 + q2)−
1
2

c2
2(1− β)p1

+
5
4

c3(1− β)p1 +
5

12
c2(1− β)(p2 − q2) +

5
24

(1− β)2 p1(p2 − q2).
(38)

Therefore,∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣c2c4 − c2
3 +

1
2
(1− β)c4 p1 −

3
4

c2c3(1− β)p1

+
1
8

c3(1− β)2 p2
1 −

5
4
(1− β)2 p2

1c2
2 −

1
3

c3(1− β)(p2 − q2)

+
5

12
c2

2(1− β)(p2 − q2)−
1
2

c2(1− β)3 p3
1 +

1
12

c2(1− β)2 p1(p2 − q2)

− 1
2

c3
2(1− β)p1 −

1
16

(1− β)4 p4
1 +

1
48

(1− β)3 p2
1(p2 − q2)

+
1

16
(1− β)2 p1(p3 − q3) +

1
8
(1− β)c2(p3 − q3)

+
1
4

c2
2(1− β)(p2 + q2) +

1
8

c2(1− β)2 p1(p2 + q2)−
1

36
(1− β)2(p2 − q2)

2
∣∣∣∣.

(39)



Symmetry 2021, 13, 567 10 of 12

Now, we apply the relations (24) and (25) to (39) and obtain

∣∣∣a2a4 − a2
3

∣∣∣ =

∣∣∣∣c2c4 − c2
3 +

(1− β)

2
(c4 − c2c3)p1 −

1
4
(1− β)c2c3 p1

+
1
8
(1− β)2(c3 − 10c2

2)p2
1 −

1
3
(1− β)

(
c3 −

5
4

c2
2

)(
4− p2

1
2

(x− y)

)

− 1
2

c2(1− β)3 p3
1 +

1
12

c2(1− β)2 p1

(
4− p2

1
2

(x− y)

)

− 1
2

c3
2(1− β)p1 −

1
16

(1− β)4 p4
1 +

1
48

(1− β)3 p2
1

(
4− p2

1
2

(x− y)

)

+
1

16
(1− β)2 p1

[
p3

1
2

+
(4− p2

1)p1

2
(x + y)

−
(4− p2

1)p1

4
(lx2 + y2l) +

4− p2
1

l2l

[
l(1− |x|2)z− (1− |y|2)wl

]]

+
1
8
(1− β)c2

[
p3

1
2

+
(4− p2

1)p1

2
(x + y)

−
(4− p2

1)p1

4
(x2 + y2) +

4− p2
1

2

[
(1− |x|2)z− (1− |y|2)w

]]

+
1
4

c2
2(1− β)

(
p2

1 +
4− p2

1
2

(x + y)

)
+

1
8

c2(1− β)2 p1

(
p2

1 +
4− p2

1
2

(x + y)

)

− 1
36

(1− β)2 l(4− p2
1)

2(x− y)2l
l4l

∣∣∣∣∣, (40)

where x, y, z, and w are such that |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, and |w| ≤ 1.
According to Lemma 4, we may assume without any restriction that p1 ∈ [0, 2]. Thus,

applying the triangle inequality and taking p1 = p, we find that

∣∣∣a2a4 − a2
3

∣∣∣ ≤ ∣∣∣c2c4 − c2
3

∣∣∣+ (1− β)

2
|(c4 − c2c3)|p

+
1
4
(1− β)|c2c3|p +

1
8
(1− β)2

∣∣∣(c3 − 10c2
2)
∣∣∣p2

+
1
2
|c2|(1− β)3 p3 +

1
2
|c3

2|(1− β)p +
(1− β)4

16
p4

+
(1− β)2

32
p4 +

1− β

16
|c2|p3 +

1
4
|c2

2|(1− β)p2 +
1
8
|c2|(1− β)2 p3

+ (|x|+ |y|)
[

1− β

24
|c3 −

5
4

c2
2|(4− p2) +

1
24
|c2|(1− β)2 p(4− p2)

+
1

96
(1− β)3 p2(4− p2) +

(1− β)2

32
p2(4− p2) +

(1− β)

16
|c2|p(4− p2)

+
1
8
|c2

2|(1− β)(4− p2) +
(1− β)

16
c2 p(4− p2)

]
+ (|x|2 + |y|2)

[
(1− β)2

64
p2(4− p2) +

(1− β)

32
|c2|p(4− p2)

]
+ (1− |x|2)

[
1− β

16
|c2|(4− p2) +

1− β)2

32
p(4− p2)

]
+ (1− |y|2)

[
1− β

16
|c2|(4− p2) +

1− β)2

32
p(4− p2)

]
+

(1− β)2

144
(4− p2)2(|x|+ |y|)2.

(41)

We now apply the Lemmas 3–5, and set γ1 = |x| ≤ 1, γ2 = |y| ≤ 1. Then, (41) can be
rewritten in the form

|a2a4 − a2
3| ≤ S1 + S2(γ1 + γ2) + S3(γ

2
1 + γ2

2) + S4(γ1 + γ2)
2 = F(γ1, γ2),
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where

S1 = S1(p) =
1
8
+

5
6
(1− β)p +

[
9
8
(1− β)2 +

(1− β)

4

]
p2

+

(
1− β

16
+

(1− β)3

2
+

(1− β)2

8

)
p3

+

[
(1− β)4

16
+

(1− β)2

32

]
p4

+
(1− β)

8
(4− p2) +

(1− β)2

16
p(4− p2) ≥ 0,

S2 = S2(p) =

(
(1− β)2

32
+

(1− β)3

96

)
p2(4− p2)

+

(
1− β

16
+

5(1− β)2

48

)
p(4− p2) +

(1− β)

6
(4− p2) ≥ 0,

S3 = S3(p) =
(1− β)2

64
(p2 − 4)(4− p2) ≤ 0,

S4 = S4(p) =
(1− β)2

144
(4− p2)2 ≥ 0.

Maximizing F(γ1, γ2) in a square ∆ := {(γ1, γ2) : 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1} we
conclude that max F(γ1, γ2) = F(1, 1). Defining now a function K : [0, 2] → R as in
Theorem 1 defined by

K(p) = max F(γ1, γ2) = F(1, 1) = S1 + 2S2 + 2S3 + 4S4, (42)

and analyzing its behavior, we infer that K(p) is an increasing function of p and attains its
maximum at p = 2. Consequently, we have

max
0≤p≤2

K(p) = K(2) =
1
8
+

19
6
(1− β) + 6(1− β)2 + 4(1− β)3 + (1− β)4,

that completes the proof of the theorem.

Remark 4. For φ(z) = z, Theorem 2 reduces to the Theorem 1 [10].

3. Conclusions

In the present paper, we have estimated a smaller upper bound and more accurate
estimation for the functional |a2a4 − a2

3| for functions in the class of strongly bi-close-to-
convex functions of order α, (0 ≤ α ≤ 1) and the class of bi-close-to convex functions of
order β, (0 ≤ β < 1). Obtaining a sharp estimate for |a2a4 − a2

3| in these classes are still
open and keeps the researcher interested.
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