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Abstract: Amidation is an important post translational modification where a peptide ends with
an amide group (–NH2) rather than carboxyl group (–COOH). These amidated peptides are less
sensitive to proteolytic degradation with extended half-life in the bloodstream. Amides are used
in different industries like pharmaceuticals, natural products, and biologically active compounds.
The in-vivo, ex-vivo, and in-vitro identification of amidation sites is a costly and time-consuming
but important task to study the physiochemical properties of amidated peptides. A less costly and
efficient alternative is to supplement wet lab experiments with accurate computational models.
Hence, an urgent need exists for efficient and accurate computational models to easily identify
amidated sites in peptides. In this study, we present a new predictor, based on deep neural networks
(DNN) and Pseudo Amino Acid Compositions (PseAAC), to learn efficient, task-specific, and effective
representations for valine amidation site identification. Well-known DNN architectures are used
in this contribution to learn peptide sequence representations and classify peptide chains. Of all
the different DNN based predictors developed in this study, Convolutional neural network-based
model showed the best performance surpassing all other DNN based models and reported literature
contributions. The proposed model will supplement in-vivo methods and help scientists to determine
valine amidation very efficiently and accurately, which in turn will enhance understanding of the
valine amidation in different biological processes.

Keywords: amidation; convolutional neural network; deep features; PseAAC; recurrent neural
networks; valine amide; 5-steps rule

1. Introduction

Amidation is regarded as a change in organic molecules where, instead of the carboxyl
group (–COOH), the amide group (–NH2) is incorporated in the molecule [1,2]. Amidated
peptides have a longer half-life in the blood and are less susceptible to proteolysis. When
a carboxyl group becomes an amide group, which may be a proton or a deproton, the
peptide’s properties become less susceptible to physiological pH changes. Besides, the
binding of peptide to G-protein-associated receptors is highly influenced by amidation [3,4].
In certain cases, the C-terminus of the amidated peptide is closely aligned with the GPCR
transmembrane, resulting in enhanced coordination and signal transmission. Moreover,
peptides’ biological activity such as vasopressin, oxytocin, and TRH is substantially de-
creased in the absence of a C-terminus amide moiety [5,6]. Alpha-amides in the C-terminus
comprise about half of the physiologically active peptides and peptide hormones. This
is important for complete bioactivity. Amidation occurs through a sequential reaction of
two enzymes encoded with a single-function peptide glycine α-amidated monooxygenase
(PAM or α-amide) [7–9]. PAM catalyzes the formation of peptide amides from precursors of
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C-terminal glycine-containing peptides and requires copper, ascorbic acid, and molecular
oxygen. PAM is the only enzyme in the body, which generates peptide amides.

Nonetheless, various strategies have been developed using PAM, carboxypeptidase Y
enzyme, and chemical synthesis to produce peptide amides in vitro [10,11]. The growing
demand and the importance of peptide amide medicines indicate the necessity for effective
industrial in-vitro amidation systems. In recent years, there have been questions about the
synthesis of peptide hormones such as calcitonin and oxytocin in recombinant enzymatic
amidation systems [12,13]. All this requires the study of the mechanism of amidation.
However, in vivo, ex vivo, in vitro studies are tedious, time-consuming, and expensive.
Therefore, the research community has devised in silico approaches using advances in
machine learning to solve prediction problems in the fields of computational biology and
bioinformatics [14–22]. Scarce research is available on the prediction of Valine amida-
tion, which is an important phenomenon in the amidation mechanism study. Notable
contributions for predicting sites of amidation are proposed in [8,23], which use machine
learning to develop in-silico predictors of amidation sites. Current models of protein
prediction are limited by their functionality, as they depend on the quality of features
used to develop the model. Yau et al. [24] proposed a 2-D graphical representation for
protein sequences, constructed the moment vectors for protein sequences, and showed
one-to-one correspondence between moment vectors and protein sequences. Yu et al. [25]
proposed an evolutionary protein map by incorporating physicochemical properties of
amino acids to achieve greater evolutionary significance of protein classification at amino
acid sequence level. Although these feature extraction approaches are promising, they are
calculated independently of the learning system, and their quality cannot be determined
in advance, as there is no feedback mechanism between feature selection and learning
subsystems. Another limitation of these approaches is the requirement of expert human
intervention and domain knowledge for extraction and selection of features which can
produce prediction models with improved performance.

Advances in machine learning have led to the emergent discipline of deep learning,
which is related to the study of different deep neural network architectures developed using
neurologically inspired mathematical functions, dubbed as neurons, for learning tasks [26].
Deep learning has enabled breakthroughs in different research areas, including computer
vision [27,28], natural language processing [29], and information security [30,31] to mention
a few. In essence, all models of deep learning are composed of multilayer neural networks.
These models are developed by stacking multiple layers of neurons in a manner that each
layer receives the inputs from preceding layer, transform it using neurons to create the
output of layer, and provide this output as input to following layers. All DNNs contain an
input layer, which serves as the entry point of input and an output layer which transform
the input of preceding layers to predictions. Transformations performed by layers of DNN
are nonlinear and enable the creation of abstract, task-specific representations of input
data in a hierarchical manner which ignore trivial deviations but retain the imperative
features of input to enable effective predictions [32]. After adequate training of the neural
network on input/output pairs of the peptide sequences, resultant output label is given
by last fully connected layer of the model using classifiers such as logistic regression and
softmax to predict the outputs. Current models of deep learning offer a very powerful
structure for solving learning problems. DNN based models can automatically learn the
optimal low-dimensional hierarchical representation from the raw PseAAC sequences.
The Gradient descent optimizer of the DNN model uses the loss score between actual
and predicted labels as the feedback to adjust the subsequent weights of neurons in DNN
layers, enabling better representations, resulting in accurate predictions [31].

In this study, we propose a new predictor for determining sites of valine amide (V-
amide) in proteins by integrating Chou’s Pseudo Amine Acid Composition
(PseAAC) [33,34] with deep neural networks to learn deep representations resulting in
better site identification. DNN based predictors were developed and compared using
standard model evaluation parameters to identify the best performing model of V-amide
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site predictions. We adopted Chou’s 5-step Rule [34] that is widely used in research con-
tributions [3,35–39] and consists of five stages. i.e., (i) collection of benchmark dataset (ii)
mathematical formulation of biological samples and feature selection (iii) implementation
and training of prediction algorithm to create predictor (iv) cross-validation of results, and
(v) development of webserver. Figure 1 shows different phases of Chou’s 5-step rule. Our
methodology is derived from Chou’s 5-step rule, but we combine the feature selection and
model training step by employing deep neural networks (DNNs). The advantage of DNN
is the automatic learning of meaningful and effective representations from raw PseAAC
sequences. That is, no additional steps are required to extract or select the representations
for developing a predictor model [40]. To obtain the best V-Amide prediction model,
several DNN-based prediction models are implemented using different DNN algorithms
and evaluated against each other using the standard model evaluation parameters.

Figure 1. 5-step rule of Chou for Valine Amidation Prediction.

Instead of relying on human-engineered features, our methodology, as shown in
Figure 2, combines the feature extraction and model training step using DNNs. Once the
DNN model is sufficiently trained, the intermediate layers of DNN transform raw peptide
sequences of PseAAC to meaningful deep representations and an output layer of DNN
perform prediction using the deep representation learned by earlier layers. Since both, the
representation learning subsystem and prediction subsystem work in unison, the optimizer
uses the loss score as the feedback signal to improve both the subsystems of DNN.

Figure 2. Adopted Methodology for valine amidation prediction.

This paper is organized as follows. Section 2 describes the research methodology of
the proposed study. Section 3 provides the results and findings. Section 4 provides the
discussion while the conclusion and the future work are given in Section 5.

2. Materials and Methods

Our methodology utilizes the intrinsic hierarchical capabilities of DNN feature extrac-
tion and combines both feature extraction (representation learning) and model training
steps of Chou’s methodology. Different DNN-based models were trained and evaluated
using standard model evaluation parameters to achieve an optimal predictor of V-amide
sites. Figure 2 outlines the methodology adopted in this study. This section focuses on
the first three steps of our methodology, and the last two steps have been explained in
earlier sections.

2.1. Collection of Benchmark Dataset

We used the advanced search and annotation capabilities of UniProt to create bench-
mark dataset for this analysis [41]. Quality of benchmark dataset was ensured by selecting
protein sequences where V-Amide was detected and investigated experimentally. Us-
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ing Chou’sPseAAC [34], a peptide sequence with a V-Amide positive site can be shown
as follows:

fn(P) = G−nG−(n−1) . . . G−2G−1VG+1G+2 . . . G+(n−1)G+n

where V represents PTM site for amidation of Valine and G’s represent the neighboring
amino acid of positive site. The symbol “n” is a sequence index, where negative indexes
are the left-hand side residues and positive indexes represent the right-side neighboring
residue around the amidation site. We derived positive and negative samples of length β
from experimentally verified protein PseAAC sequences. Based on empirical observations,
the length β is fixed at 41 for both positive and negative samples. This methodology to
develop benchmark dataset was recommended by Chou [42]. Positive sequences were
produced by fixing the index of V-amide site at n = 21 and attaching twenty leftside and
twenty rightside neighbor residues of the site to achieve the standard-length sequence. For
positive samples with β < 41, symbol X was used as a dummy amino acid residue and
attached on both sides of the sequence to achieve standard length. The same methodology
was adopted to extract negative samples from acquired protein PseAAC sequences.

The sample preparation process described above resulted in a total of 441 positive
samples and 943 negative samples, resulting in a total of 1384 peptide samples in the
benchmark data collection. Application of CD-Hit to remove homology resulted in a
severely reduced dataset with 49 positive sequences and 89 negative sequences, even at the
threshold of 0.8, so we chose not to remove homologous samples. The final benchmark
dataset, which consisted of 1384 samples, can be presented as follows:

V = V+ ∪V−

where V+ represents positive sample sequences and V− represents negative sample se-
quences. The class ratio between positive and negative samples was found to be 22% and
68%, respectively. The dataset is made available by authors at https://mega.nz/folder/
wxETTaBD#RaFQA1T-jn9uNdWLFx0i5Q.

In order to help answer a question about sequence biases around Valine amidation
sites, a two sample logo, proposed by vacic et al. [43], was generated to visualize residues
that are significantly enriched or depleted in the set of Vamide fragments.The Two Sam-
ple Logo of benchmark dataset, as shown in Figure 3, contains 41 residue fragments,
20 upstream and 20 downstream, from all Valines found in experimentally verified ami-
dated proteins. The positive sample contains 441 fragments around experimentally verified
valine amidation sites, while the negative sample contains all remaining valines from the
same set of proteins, 1384 in total. Significant variances in the nearby Valines were found
between the amidated and nonamidated sites. In the depleted position residues L, R, and G
were more frequently observed while in enriched region R and G were observed frequently.
Multiple amino acid residues were found stacked at some over- or under-represented
positions of the surrounding sequences suggesting minimal information between the posi-
tive and negative samples. The above results indicate that more abstract and task specific
features are required to identify between the samples of two classes.

Figure 3. Two sample logo of Valine amidation sites.

https://mega.nz/folder/wxETTaBD#RaFQA1T-jn9uNdWLFx0i5Q
https://mega.nz/folder/wxETTaBD#RaFQA1T-jn9uNdWLFx0i5Q
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2.2. Sample Encoding

Almost all DNNs require data in the quantitative format before the neuron layers
inside DNN process it. We applied a very basic quantitative encoding of PseAAC se-
quences, shown in Table 1, where 1st row displays the IUPAC symbols of amino acids, and
corresponding entries in 2nd row show the integer used to represent the amino acid in
the encoded sample. Since this encoding is the simplest possible amino acid numerical
representation, it has no significant effects on the final results. The benchmark dataset
was split into a training set of 968 PseAAC sequences (871 training sequences and 97
validation sequences) and a test set of 416 samples with a 70/30 ratio in the train set and
test set. That is, for models training, 70% of the data was used, and the rest 30% was used
for independent model testing. In all training and test sets, the initial 68/22 class ratio
was preserved.

Table 1. Encoding of amino acid used in this study.

X A C D E F G H I K L M N O P Q R S T U V W Y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2.3. Candidate Deep Model Training and Optimization

The training and optimization of DNN models for V-amide site prediction are de-
scribed in this section. The study conducted experiments using well-known neural network
architectures such as Fully Connected Neural Networks (FCNs), Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs) with simple RNN units, Gated
Recurrent Units (GRU), and Long Short-Term Memory (LSTM) units respectively. For
optimization of DNN candidate models, we adopted the Randomized Hyperparameter
search methodology of Bergstra et al. [44]. Randomized Hyperparameter search offers
better hyperparameters for DNNs with the limited computational budget by performing a
random search over large hyperparameter space. This is achieved by randomly sampling
the hyperparameters from the space and evaluating the performance of models created
using these parameters. For each DNN used to predict the V-Amide site, the following
subparagraphs provide a brief introduction and architecture.

2.3.1. Standard Neural Network

Classic deep neural network architectures are standard neural networks or fully
connected neural networks (FCNs). FCN is said to be fully connected because each neuron
in the previous layer is connected to each neuron in the next layer. The FCN is intended to
approximate the f ∗ function. This function f ∗ can be a classifier defined by y = f ∗(θ, x)
and assigns a class label y to input x. The function of the FCN is to learn the parameters θ
to offer the best possible approximation to f ∗ for predicting class label y for each input x.

The FCN used for the V-Amide identification is shown in Figure 4. It is comprised
of two dense layers, consisting of 20 and 10 rectified linear neurons (relu) respectively.
The output layer of FCN was based on a single Sigmoid unit for binary classification. The
architecture of FCN is shown in Table 2. To reduce negative logarithmic loss between actual
and predicted class labels, this model was optimized using stochastic gradient descent
(SGD) with a learning rate of 0.001. For training the FCN, only the training set was used,
which was further divided into trainset and validation set with 80/20 partition ratio. FCN
and other DNNs, used in this study, were never allowed to see the test set to ascertain
the generalization capability of resulting V-amide prediction models. Once trained, the
predictive model was independently tested on the test set, and performance was evaluated
using standard performance evaluation metrics.
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Figure 4. Architecture of Standard Neural Network for V-Amide site identification.

Table 2. Standard Neural Net (FCN) architecture for valine amidation identification.

Type of Neuron Layer No. of Weights

Dense layer with 20 relu units (41 + 1) × 20 = 840
Dense layer with 10 relu units (20 + 1) × 10 = 210

Model Output layer with one Sigmoid unit (10 + 1) × 1 = 11

2.3.2. Recurrent Neural Networks

The inherent weakness in conventional DNNs is the lack of sharing the weights
learned by individual neurons, resulting in failure to identify similar patterns occurring
at different positions of sequences [45]. RNN surmount this limitation by using a looping
mechanism with time steps [46]. RNNs perform computations on a series of vectors
x1, . . . , xn using a recurrence of the from at = fα(γt−1, xt) where f is an activation function,
φ is a collection of hyperparameters used at each phase t and x_t is input at timestep t.

This research utilizes three different RNN unit types to develop candidate models for
the V-Amide prediction, which include simple RNN units, gated recurrent units (GRU), and
long-short term memory unit (LSTM). In a simple RNN neuron, the parameters controlling
the connections, from the input to the hidden layer, the horizontal connection between the
activations and the hidden layer to the output layer, are shared. Forward pass in a simple
RNN neuron can be formulated by following set of equations:

at = g(Wa[at−1, Xt] + ba)

yt = f (Wy ∗ at + by)

where <t> denotes the current time step, g expresses an activation function, Xt represents
input at timestep t, ba describes the bias, at is activation output at timestep t, and Wa
denotes cumulative weights. This activation at can be used to calculate the predictions yt
at time t if desired. The architecture of the RNN model with simple RNN cells is shown
in Table 3. This model makes use of an embedding layer to project each amino acid in
vector space R20 which converts the semantic relationships of amino acids, prevalent in
sequences, to geometric relationships. These geometric relationships of sequence vectors
are interpreted by following layers of DNN model to learn deep feature representations.
These features are sent to the prediction output layer consisting of one sigmoid neuron.
The architecture of three RNNs is shown in Figure 5 where the green circles show RNN
units used in the network. Three different RNNs are used in this study comprising of
Simple units, GRU units, and LSTM units respectively. In Figure 5, the red squares show
different timesteps of the sequence being classified.
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Table 3. Simple RNN based model architecture for valine amidation identification.

Type of Neuron Layer No. of Weights

Embeddings to learn 20D vector representation of each amino acid (20 + 1) × 23 = 483
SimpleRNN layer with 8 neurons (28 + 1) × 8 = 232

Output Layer with One sigmoid unit (8 + 1) × 1 = 9

Figure 5. Architecture of RNNs for V-Amide site identification.

Although the simple RNN units in many applications have shown promising results,
they are prone to vanishing gradients and show limited capability to learn long-term
dependencies in input sequences. This restriction on SimpleRNN cells is rectified via the
GRU neurons [47] and the LSTM neurons [48].

The GRU cells, proposed by Cho et al. [47], are superior to the Simple RNN cell in
reducing vanishing gradient problems. In each stage, the GRU cell uses the storage variable
Ct = at and contains summary of all the samples passed through the cell. At each timestep
t, the GRU unit considers overwriting the contents of Ct with a candidate value C̄t. This
Ct content overwriting is controlled by update gate Γu, which decides whether or not the
contents will be overwritten. Forward pass in GRU neuron can be described as follows:

C̄t = tanh(Wc[Γr ∗ Ct, Xt] + bc)

Γr = σ(Wr[Ct−1, Xt] + br)

Γu = σ(Wu[Ct−1, Xt] + bu)

Ct = Γu ∗ C̄t + (1− Γu) ∗ Ct−1

at = Ct

In the above set of equations, Wr, Wc and Wu denote respective weights, the corresponding
bias terms are illustrated by br, bc and bu, Xt represents the input at timestep t, σ is the
logistic regression function and at represents activations at time step t. For V-Amide
prediction, the RNN model architecture built with GRU is the same as the model based on
SimpleRNN. Table 4 displays the architecture of GRU-based RNN model.

LSTM, proposed by Hochreiter et al. [48], is a more powerful generalization of GRU.
Between GRU and LSTM neurons, the notable architectural differences are as follows:

1. For C̄t computation, generic LSTM units do not use relevance gate Γr.
2. Instead of Update gate Γu, LSTM units use two different gates including Output gate

Γo and Forget gate Γ f . Output gate monitors the exposure of the memory cell contents
Ct to compute activation outputs of LSTM unit for other hidden units in the network.
Forget gate manages the amount of overwrite on Ct−1 to achieve Ct, i.e., how much
memory cell content needs to be forgotten for memory cell.

3. In LSTM, the contents of the memory cell may not be equal to the activation at which
is contrary to GRU architecture.
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With the exception of recurrent layer weights, the RNN model, built with the LSTM units,
has the same architecture as that of SimpleRNN. The LSTM-based RNN model architecture
for V-Amide prediction is shown in Table 5.

Table 4. GRU-RNN based model architecture for valine amidation identification.

Type of Neuron Layer No. of Weights

Embeddings to learn 20-D vector representation of each amino acid (20 + 1) × 23 = 483
GRU units layer with 8 neurons (86 + 1)× 8 = 696

Output Layer with One Sigmoid neuron (8 + 1) × 1 = 9

Table 5. LSTM-RNN based model architecture for valine amidation identification.

Type of Neuron Layer No. of Weights

Embeddings to learn 20-D vector representation of each amino acid (20 + 1)× 23 = 483
LSTM unit layer with 8 neurons (115 + 1) × 8 = 928

Output Layer with One Sigmoid neuron (8 + 1) × 1 = 9

2.3.3. Convolutional Neural Network

CNN is a neural network structure primarily designed to analyze data with complex
spatial relationships like images or videos. CNN tries to learn a filter that can transform
input data into the right output prediction. In addition to its capacity for handling large
amounts of data, CNN can build local connections to learn feature maps, share training
parameters among connections, and reduce dimensions using the subsampling operations.
These characteristics help CNN to understand the spatial features of inputs despite their
locality in the input data, a property known as location invariance.

The architecture of the V-Amide prediction model based on CNN is shown in Figure 6.
The suggested CNN-based model was developed with an embedding layer, two convolution-
maxpool blocks, a global averaging layer, and an output layer of sigmoid neuron. Every
sample of the peptide x with a length of β = 41 is encoded by the embedding layer in
the form of tensor X ∈ Rρ∗β where ρ ∈ R20 is the representation vector of each amino
acid residue in R20. First conv-maxpool block consists of a convolution layer having six
1-D convolution neurons and a maxpooling layer. The second conv-maxpool block uses a
convolution layer having 16 1-D convolution neurons and a max-pooling layer. A Dropout
layer is introduced between two conv-maxpool blocks to mitigate overfitting during train-
ing phase. By averaging the complete feature map, GlobalAveragePooling layer flattens
the input into a one-dimensional array of 16 scalars used in the output layer to predict
the markings. The output layer consists of a single sigmoid unit that performs binary
classification. This detail is illustrated in Table 6 as well.

Figure 6. Architecture of CNN for V-Amide site identification.
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Table 6. CNN based model architecture for valine amidation identification.

Type of Neuron Layer No. of Weights

Embeddings to learn 20-D vector representation of each amino acid (20 + 1) × 23 = 483
Conv-1D with 6 kernels of size 3 ((3 × 20) + 1) × 6 = 366

Maxpool-1D No weights
Regularisation with 25% of probability No weights

Conv-1D with 16 kernels of size 3 ((3 × 6) + 1) × 16 = 304
Maxpool-1D No weights

GlobalAveragePooling 1D No weights
Output Layer with One Sigmoid neuron (8 + 1) × 1 = 9

3. Results

This section explains the performance results of multiple DNN based predictors
developed in this research to predict V-Amide site location. Notable evaluation metrics
used in this study include receiver operating characteristics curve (ROC) curve, precision-
recall curve and point metrics, including mean average precision (mAP), accuracy, F1
measurements, and Matthew’s correlation coefficient (MCC) to find the best DNN-based
V-Amide prediction model. All models were evaluated on test data which was not used
during the predictor training phase. This was done to ensure the fairness of results and to
evaluate the generalization capability of predictors being evaluated. An overview of the
model evaluation parameters used in this study is given in the following subsection, which
illuminates adequate discussion of the results of the evaluation. To ensure fairness, all
evaluation results come from independent test samples that were not used in the training
phase of DNN based models.

3.1. Precision-Recall Curve and Mean Average Precision

For the evaluation of prediction models, precision and recall are essential indicators.
Precision measures the relevance of the positive outcomes predicted by the model while
recall measures the sensitivity of the model for positive samples. A high precision and recall
rating imply that returned positive class predictions contain a high ratio of true positives
(high Precision) while predicting the majority of positive class samples in the dataset (High
Recall). Precision-Recall curve is achieved by plotting both of these metrics against each
other and it evaluates the fraction of true positives among positive predictions [49]. In
precision-recall space, the closer a score is to the perfect classification point (1,1), the better
the predictor is and contrariwise.

Figure 7 shows the precision-recall curve of the candidate deep models for predicting
the V-Amide PTM sites. As shown in Figure 7, the CNN-based predictive model performed
best because it was closest to the perfect ranking point (1,1) in the precision-recall space.
Worst performance was shown by the model trained using an FCN followed by the GRU-
based prediction model.

The mean average precision values for the four models are shown in the legend
section of Figure 7. Mean average precision (mAP) provides a single-digit summary of
precision-recall curves, which is the area under the precision-recall curve. The higher the
value of the mAP, the better the practical performance and vice versa. As can be seen from
Figure 7, the optimal mAP value of 0.992 is shown by the CNN-based model while simple
RNN predictor showed runner-up performance. FCN based model turned out to be the
least performing model followed by the GRU with values of 0.893 and 0.908, respectively.
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Figure 7. Prec-Recall Curve and mAP scores achieved by DNN based V-amide identification models.

3.2. Receiver Operating Characteristics and Area under ROC

The receiver operating characteristics curve (ROC) is a summary metric that represents
the trade-off between the detection-rate (true positive rate) and the false alarm rate (false
positive rate). According to Lasko et al. [50], ROC is a popular measure in Bioinformatics
studies to evaluate predictor models. The ROC curve outlines the cost-benefit analysis of
predictor where false-positive results depict costs, and true positives rate depicts the benefit
of the classifier [51]. Some important points in the ROC space are (0,0), (1,1), and (0,1).
The lowest point on the left (0,0) represents models that do not predict positive samples.
The contrasting strategy, represented by a point (1,1), is to unconditionally classify each
positive sample. The point (0,1) expresses the perfect classification with a false positive
rate of 0 and a true positive rate score of 1. For predictors, the closer the curve is to the
point (0,1) in ROC space, the better the performance of the corresponding predictor and
vice versa.

The ROC curves of the predictive V-Amide models are shown in Figure 8. As shown
in Figure 8, the ROC results confirm the results of the evaluation of the precision-recall
curve. Here, too, the results of the CNN model dominate the results of the other models.
Prediction models based on FCN, LSTM, RNN, and GRU gave slightly lower results. For
model comparison, it may be useful to reduce the ROC curve to a single scalar value that
shows the result of model performance is evaluated. One of these common methods is to
calculate the area under the ROC curve called the AuC. AuC not only reduces the results of
the ROC curve to a single value but is also statistically significant. This is because the AuC
score corresponds to the probability of the evaluated model to rank randomly selected
positive sample higher than randomly selected negative samples. The AuC values for the
developed predictive model are shown in the legend section of Figure 8. The CNN-based
predictive model indicates the highest AuC value with a value of 0.99. The model depicted
the least score developed using FCN. This shows the capability of CNNs to learn better
deep representations as compared to other DNN-based models. AuC scores of RNN based
models were distributed between the two extremes, but it is notable to mention that all
the results shown in Figure 8 have AUC value above 0.90. The comparison of the overall
diagnostic accuracy of two models is frequently addressed by comparing the resulting
paired AuCs using Delong’s method [52] of nonparametric comparison of two or more RoC
curves. We used the fast implementation of Delong’s method by Sun et al. [53] to calculate



Symmetry 2021, 13, 560 11 of 19

the p-values by comparing each AuC with our best performing CNN based model. We also
constructed the 95% Confidence interval using AuC for DNN based predictors developed
in this study. Delong p-value scores and 95% confidence Intervals are shown in Table 7.

Figure 8. ROC Curve and AUC Scores achieved by DNN based valine amidation identification models.

3.3. Accuracy, F1-Score, and Matthew’s Correlation

Accuracy, a popular classifier evaluation measure, highlights the fraction of results
correctly classified by the model being evaluated. For independent testing, Figure 9
shows the results of the accuracy scores for the V-Amide prediction models developed
in this study. As shown in Figure 9, the results are consistent with previously discussed
evaluation metrics. CNN based prediction model showed an accuracy value of 95.9% while
a minimum score of 89.4% is achieved by LSTM based model. Although accuracy is a
standard measure, F1 results are used when an optimal precision and recall summary is
required in the form of single scalar value.

Figure 9 shows the value F1 of the predictive V-Amide model. The F1 score also
confirms the AuC and mAP scores. The best result in F1 was shown by the model CNN
with a result of 93.7% and the second place from the simple RNN model with a result of F1
with a result of 88.8%. The LSTM based model gave a poor rating of 82.9%.

Matthews correlation coefficient (MCC) is a more accurate statistical metric that
generates a high score only if good results were obtained in the prediction in all four
groups of the confusion matrix [54]. MCC-scores of all DNN models are shown in Figure 9.
The best MCC-score was achieved by CNN based model with a score of 0.908 while the
second best score of 0.83 was shown by RNN model with simple neurons. Least score was
shown by LSTM with the value of 0.75, making the CNN based model the clear choice for
predicting V-Amide PTM sites.
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Figure 9. Accuracy, F1-Measure and MCC achieved by DNN based valine amidation identifica-
tion models.

4. Discussion
4.1. Comparison with Literature

For predicting the location of V-Amide sites in sequences, we were unable to find any
research contribution, but we have compared the results with the two recently proposed
predictors of amidation sites [8,23] shown in Table 7. The comparison is only shown for
metrics available but essentially it shows the reader the promising results of proposed CNN
based predictor. The results show that the proposed method surpasses the two previous
methods for predicting V-Amide PTM sites.

Table 7. Comparison of the proposed approach with related literature contributions.

Prediction Model Area Under Curve 95%CI p-Value of DeLong Test Accuracy%

Proposed CNN Predictor 0.995 [0.991–0.999] 3.68× 10−6 95.9
Proposed FCN Predictor 0.909 [0.87–0.94] 8.3× 10−7 90.4

Proposed SRNN Predictor 0.957 [0.93–0.98] 0.0016 92.3
Proposed GRU Predictor 0.931 [0.90–0.96] 2.81× 10−6 89.9
Proposed LSTM Predictor 0.927 [0.89–0.96] 1.83× 10−5 89.4

Wang et al. [8] 0.96 Not Reported Not Reported 92.1
Zhao et al. [23] 0.964 Not Reported Not Reported 94.2

As can be seen from Table 7, the proposed predictor performs better result using
PseAAC sequences without requiring any complex and labor-intensive feature extraction.
This is possible due to the inherent capability of DNNs to learn task-specific feature
representations automatically.

4.2. Deep Feature Space Visualizations

To understand the deep feature representations, learned by the nonlinear transfor-
mation of iAmideV-Deep models, visualization of feature space serves as an important
tool. For creating visualizations, we computed the output from penultimate layer of each
trained model for test set sequences and projected this output to 2-D space using T-SNE,
proposed by Maaten and Hinton [55]. T-SNE uses a nonlinear statistical approach to project
data from higher dimensions to lower dimensions. This 2-D data was plotted based on
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class labels to understand the distribution of sequences belonging to both classes. For
plotting the visualizations, we used matplotlib package of Python. The feature space of
raw sequences is shown in Figure 10. As illustrated, raw sequences of V-amide are not
that mixed up, to begin with, which means any decent binary classification model will be
able to separate them comparatively easy compared to the case where both classes are com-
pletely jumbled up and inseparable. Nonlinear transformations of DNN models gradually
segregate positive and negative data points and learn a more amenable representation to
binary classification.

(a) Visualization of Raw V-amide sequence Space (b) Visualization of FCN feature space

(c) Visualization of RNN feature space (d) Visualization of GRU feature space

(e) Visualization of LSTM feature space (f) Visualization of CNN feature space

Figure 10. Feature Space Visualizations of deep representations for positive and negative valine amide samples.

Deep representations for iAmideV-Deep models are shown in Figure 10. Figure 10b
shows the deep feature representation learned by FCN. Figure 10c–e show that of RNN
based models and Figure 10f shows the feature space of CNN representations. It can
be deduced from the visual comparison of aforementioned figures that the best class
separation is achieved by the CNN based representations and the output layer of CNN,
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which is a binary classifier, consume this deep feature representation to perform better
predictions. It is relevant to mention that the feature representations used in this work
are created from raw PseAAC sequences and do not require any domain expertise and
human intervention. The data distribution of positive and negative samples in CNN
representation is shown as violin plot and swarm plot in Figures 11 and 12. As can be seen
in aforementioned figures, the CNN model was able to learn the representation in which
the positive and negative samples are sufficiently separated from each other enabling better
V-amide site identification by output layer. The violin plot shown in Figure 12 further
corroborate this conclusion by showing minimal overlap between the positive and negative
samples in data distributions of different deep features of best performing CNN based
model. Research contributions, shown in Table 7, use different feature extraction techniques
which require domain knowledge and human intervention to predict the V-amide sites.
Our approach automatically learns feature representation using stochastic gradient descent
and removes the need to use expensive feature engineering process. Furthermore, the
proposed deep models in this work demonstrate only the initial step towards DNN usage
for V-amide PTM site prediction and additional research can build on work presented in
this study to devise better DNN predictors for V-amide PTM site prediction.

Figure 11. Swarm-plot showing the data distribution of positive and negative samples in CNN deep representation.
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Figure 12. Violin plot showing the data distribution of deep features learned by CNN Model.

4.3. Model Deployment as Web Service

The final step of Chou’s 5-step rule is to develop a web application for the public
deployment of prediction model so that the latest advances become accessible to the
collective research community. To this end, we developed a web application for our
best performing CNN based prediction model, which can accept peptides and return
the PTM sites along with corresponding β length sequence of residues. Homepage of
the aforementioned webserver is shown in Figure 13a. Figure 13b illustrates sequence
submission procedure for computing amidation sites. Figure 13c demonstrates the result
page showing the site and the corresponding length sequence of residues. Web service is
temporarily deployed at http://3.19.14.13/. We believe our humble effort will improve the
predictability of valine amidation and will be of service to the research community.

http://3.19.14.13/
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(a) (b)

(c)
Figure 13. iAmideV-Deep Webserver functionalities for identification of valine amidation. (a) Homepage of iAmideV-Deep
Webserver. (b) Submission of protein sequence for amidation site prediction. (c) Valine Amidation site prediction results for
the submitted sequence.

5. Conclusions

In this study, a new approach was proposed to identify valine amidation PTM sites,
based on Chou’s Pseudo Amino Acid Composition (PseAAC) and deep neural networks.
The study of the V-Amide mechanism is significant because amidated peptides are less
sensitive to proteolytic degradation and have extended half-life in the bloodstream. Identi-
fying in vitro, ex vivo, and in vivo can be tedious, time-consuming, and costly. We proposed
a supplemental approach using well-known deep neural networks to learn efficient and
task-specific representations and use these representations to develop predictor models. All
DNN models, developed in this study, were evaluated using well-known model evaluation
metrics with each other and literature contributions. Among the various DNNs, the con-
volution neural network learned best deep feature representation separating both classes
and CNN based predictor achieved the best scores for all evaluation metrics, including an
accuracy score of 95.9%. Owing to these results, it is concluded that the proposed model
will help scientists to identify valine amidation in a very efficient and accurate way to
understand the mechanism of this protein modification.

6. Limitation and Future Research

Like every experimental research work, our study also suffers from some limitations.
The primary limitation of this study stems from the fact that deep neural networks mostly
work like a black box and little information is available regarding the decision-making
process of various neurons working together to make predictions. Although the research
community is working on Explainable Artificial Intelligence (XAI), most research contribu-
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tions in (XAI) including Grad-Cam and Activation maps are targeted towards computer
vision and have very limited application on sequence based predictors. Future research
in this area could overcome the XAI limitation discussed above. In the future, we seek to
develop XAI for sequence based protein predictors to enhance their explainability.
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