# Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Model

## 3. The Effective Action and Langevin Equation

## 4. The Thermomagnetic Quark Propagator

## 5. The Scalar Density, Dissipation and Noise Kernels

## 6. Dissipation and Noise, Short-Time Dynamics

## 7. Conclusions and Perspectives

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

CTP | closed time path |

LHC | Large Hadron Collider |

LLL | lowest Landau level |

LSMq | linear sigma model with quarks |

QCD | quantum chromodynamics |

QGP | quark-gluon plasma |

TFD | thermofield dynamics |

2PI | two-particle irreducible |

## References

- D’Elia, M. Lattice QCD Simulations in External Background Fields. Lect. Notes Phys.
**2013**, 871, 181–208. [Google Scholar] [CrossRef] [Green Version] - Endrödi, G. QCD in magnetic fields: From Hofstadter’s butterfly to the phase diagram. PoS
**2014**, LATTICE2014, 018. [Google Scholar] [CrossRef] [Green Version] - Ding, H.T.; Li, S.T.; Shi, Q.; Tomiya, A.; Wang, X.D.; Zhang, Y. QCD phase structure in strong magnetic fields. In Proceedings of the Criticality in QCD and the Hadron Resonance Gas, Wroclaw, Poland, 29–31 July 2020. [Google Scholar]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.; Szabo, K. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature
**2006**, 443, 675–678. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wilczek, F. The Lightness of Being: Mass, Ether, and the Unification of Forces; Basic Books: New York, NY, USA, 2008. [Google Scholar]
- Roberts, C.D. Empirical Consequences of Emergent Mass. Symmetry
**2020**, 12, 1468. [Google Scholar] [CrossRef] - Vachaspati, T. Magnetic fields from cosmological phase transitions. Phys. Lett. B
**1991**, 265, 258–261. [Google Scholar] [CrossRef] - Grasso, D.; Rubinstein, H.R. Magnetic fields in the early universe. Phys. Rept.
**2001**, 348, 163–266. [Google Scholar] [CrossRef] [Green Version] - Kouveliotou, C.; Dieters, S.; Strohmayer, T.; van Paradijs, J.; Fishman, G.J.; Meegan, C.A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806-20. Nature
**1998**, 393, 235–237. [Google Scholar] [CrossRef] - Duncan, R.C.; Thompson, C. Formation of very strongly magnetized neutron stars-implications for gamma-ray bursts. Astrophys. J. Lett.
**1992**, 392, L9. [Google Scholar] [CrossRef] - Rafelski, J.; Muller, B. Magnetic Splitting of Quasimolecular Electronic States in Strong Fields. Phys. Rev. Lett.
**1976**, 36, 517. [Google Scholar] [CrossRef] - Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’. Nucl. Phys. A
**2008**, 803, 227–253. [Google Scholar] [CrossRef] [Green Version] - Skokov, V.; Illarionov, A.; Toneev, V. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A
**2009**, 24, 5925–5932. [Google Scholar] [CrossRef] [Green Version] - Jacak, B.V.; Muller, B. The exploration of hot nuclear matter. Science
**2012**, 337, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys.
**2017**, 89, 035001. [Google Scholar] [CrossRef] [Green Version] - Pasechnik, R.; Šumbera, M. Phenomenological Review on Quark–Gluon Plasma: Concepts vs. Observations. Universe
**2017**, 3, 7. [Google Scholar] [CrossRef] [Green Version] - Braun-Munzinger, P.; Koch, V.; Schäfer, T.; Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept.
**2016**, 621, 76–126. [Google Scholar] [CrossRef] [Green Version] - Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group; Perseus Books: Reading, MA, USA, 1992. [Google Scholar]
- Onuki, A. Phase Transition Dynamics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Rajagopal, K.; Wilczek, F. Emergence of coherent long wavelength oscillations after a quench: Application to QCD. Nucl. Phys. B
**1993**, 404, 577–589. [Google Scholar] [CrossRef] [Green Version] - Bedaque, P.F.; Das, A.K. Out-of-equilibrium phase transitions and a toy model for disoriented chiral condensates. Mod. Phys. Lett. A
**1993**, 8, 3151–3164. [Google Scholar] [CrossRef] [Green Version] - Greiner, C.; Muller, B. Classical fields near thermal equilibrium. Phys. Rev. D
**1997**, 55, 1026–1046. [Google Scholar] [CrossRef] [Green Version] - Biro, T.S.; Greiner, C. Dissipation and fluctuation at the chiral phase transition. Phys. Rev. Lett.
**1997**, 79, 3138–3141. [Google Scholar] [CrossRef] [Green Version] - Rischke, D.H. Forming disoriented chiral condensates through fluctuations. Phys. Rev. C
**1998**, 58, 2331–2357. [Google Scholar] [CrossRef] [Green Version] - Xu, Z.; Greiner, C. Stochastic treatment of disoriented chiral condensates within a Langevin description. Phys. Rev. D
**2000**, 62, 036012. [Google Scholar] [CrossRef] [Green Version] - Fraga, E.S.; Krein, G. Can dissipation prevent explosive decomposition in high-energy heavy ion collisions? Phys. Lett. B
**2005**, 614, 181–186. [Google Scholar] [CrossRef] [Green Version] - Boyanovsky, D.; de Vega, H.J.; Schwarz, D.J. Phase transitions in the early and the present universe. Ann. Rev. Nucl. Part. Sci.
**2006**, 56, 441–500. [Google Scholar] [CrossRef] [Green Version] - Farias, R.; Cassol-Seewald, N.; Krein, G.; Ramos, R. Nonequilibrium dynamics of quantum fields. Nucl. Phys. A
**2007**, 782, 33–36. [Google Scholar] [CrossRef] [Green Version] - Nahrgang, M.; Leupold, S.; Herold, C.; Bleicher, M. Nonequilibrium chiral fluid dynamics including dissipation and noise. Phys. Rev. C
**2011**, 84, 024912. [Google Scholar] [CrossRef] [Green Version] - Nahrgang, M.; Leupold, S.; Bleicher, M. Equilibration and relaxation times at the chiral phase transition including reheating. Phys. Lett. B
**2012**, 711, 109–116. [Google Scholar] [CrossRef] [Green Version] - Nahrgang, M.; Herold, C.; Leupold, S.; Mishustin, I.; Bleicher, M. The impact of dissipation and noise on fluctuations in chiral fluid dynamics. J. Phys. G
**2013**, 40, 055108. [Google Scholar] [CrossRef] - Singh, A.; Puri, S.; Mishra, H. Domain growth in chiral phase transitions. Nucl. Phys. A
**2011**, 864, 176–202. [Google Scholar] [CrossRef] [Green Version] - Krein, G. Noise and ultraviolet divergences in the dynamics of the chiral condensate in QCD. J. Phys. Conf. Ser.
**2012**, 378, 012032. [Google Scholar] [CrossRef] [Green Version] - Cassol-Seewald, N.; Farias, R.S.; Krein, G.; Marques de Carvalho, R. Noise and ultraviolet divergences in simulations of Ginzburg-Landau-Langevin type of equations. Int. J. Mod. Phys. C
**2012**, 23, 1240016. [Google Scholar] [CrossRef] - Singh, A.; Puri, S.; Mishra, H. Domain growth in chiral phase transitions: Role of inertial dynamics. Nucl. Phys. A
**2013**, 908, 12–28. [Google Scholar] [CrossRef] [Green Version] - Herold, C.; Nahrgang, M.; Mishustin, I.; Bleicher, M. Chiral fluid dynamics with explicit propagation of the Polyakov loop. Phys. Rev. C
**2013**, 87, 014907. [Google Scholar] [CrossRef] - Singh, A.; Puri, S.; Mishra, H. Kinetics of phase transitions in quark matter. EPL
**2013**, 102, 52001. [Google Scholar] [CrossRef] [Green Version] - Bluhm, M.; Jiang, Y.; Nahrgang, M.; Pawlowski, J.; Rennecke, F.; Wink, N. Time-evolution of fluctuations as signal of the phase transition dynamics in a QCD-assisted transport approach. Nucl. Phys. A
**2019**, 982, 871–874. [Google Scholar] [CrossRef] - Wu, S.; Wu, Z.; Song, H. Universal scaling of the σ field and net-protons from Langevin dynamics of model A. Phys. Rev. C
**2019**, 99, 064902. [Google Scholar] [CrossRef] [Green Version] - Calzetta, E.A.; Hu, B.L.B. Nonequilibrium Quantum Field Theory, Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar] [CrossRef]
- Bellac, M.L. Thermal Field Theory, Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Levy, M. The axial vector current in beta decay. Nuovo Cim.
**1960**, 16, 705. [Google Scholar] [CrossRef] - Fraga, E.S.; Mizher, A.J. Chiral transition in a strong magnetic background. Phys. Rev. D
**2008**, 78, 025016. [Google Scholar] [CrossRef] [Green Version] - Ayala, A.; Bashir, A.; Raya, A.; Sanchez, A. Chiral phase transition in relativistic heavy-ion collisions with weak magnetic fields: Ring diagrams in the linear sigma model. Phys. Rev. D
**2009**, 80, 036005. [Google Scholar] [CrossRef] [Green Version] - Frasca, M.; Ruggieri, M. Magnetic Susceptibility of the Quark Condensate and Polarization from Chiral Models. Phys. Rev. D
**2011**, 83, 094024. [Google Scholar] [CrossRef] [Green Version] - Andersen, J.O.; Khan, R. Chiral transition in a magnetic field and at finite baryon density. Phys. Rev. D
**2012**, 85, 065026. [Google Scholar] [CrossRef] [Green Version] - Andersen, J.O.; Tranberg, A. The Chiral transition in a magnetic background: Finite density effects and the functional renormalization group. JHEP
**2012**, 08, 002. [Google Scholar] [CrossRef] [Green Version] - Ruggieri, M.; Tachibana, M.; Greco, V. Renormalized vs Nonrenormalized Chiral Transition in a Magnetic Background. JHEP
**2013**, 07, 165. [Google Scholar] [CrossRef] [Green Version] - Fraga, E.S.; Mintz, B.W.; Schaffner-Bielich, J. A search for inverse magnetic catalysis in thermal quark-meson models. Phys. Lett. B
**2014**, 731, 154–158. [Google Scholar] [CrossRef] [Green Version] - Kamikado, K.; Kanazawa, T. Chiral dynamics in a magnetic field from the functional renormalization group. JHEP
**2014**, 03, 009. [Google Scholar] [CrossRef] [Green Version] - Ruggieri, M.; Oliva, L.; Castorina, P.; Gatto, R.; Greco, V. Critical Endpoint and Inverse Magnetic Catalysis for Finite Temperature and Density Quark Matter in a Magnetic Background. Phys. Lett. B
**2014**, 734, 255–260. [Google Scholar] [CrossRef] - Ayala, A.; Hernández, L.A.; Mizher, A.J.; Rojas, J.C.; Villavicencio, C. Chiral transition with magnetic fields. Phys. Rev. D
**2014**, 89, 116017. [Google Scholar] [CrossRef] [Green Version] - Ayala, A.; Loewe, M.; Zamora, R. Inverse magnetic catalysis in the linear sigma model with quarks. Phys. Rev. D
**2015**, 91, 016002. [Google Scholar] [CrossRef] [Green Version] - Andersen, J.O.; Naylor, W.R.; Tranberg, A. Inverse magnetic catalysis and regularization in the quark-meson model. JHEP
**2015**, 2, 042. [Google Scholar] [CrossRef] [Green Version] - Ayala, A.; Dominguez, C.A.; Hernandez, L.A.; Loewe, M.; Zamora, R. Magnetized effective QCD phase diagram. Phys. Rev. D
**2015**, 92, 096011. [Google Scholar] [CrossRef] [Green Version] - Gatto, R.; Ruggieri, M. Quark Matter in a Strong Magnetic Background. Lect. Notes Phys.
**2013**, 871, 87–119. [Google Scholar] [CrossRef] [Green Version] - Ayala, A.; Loewe, M.; Villavicencio, C.; Zamora, R. On the magnetic catalysis and inverse catalysis of phase transitions in the linear sigma model. Nucl. Part. Phys. Proc.
**2015**, 258–259, 209–212. [Google Scholar] [CrossRef] [Green Version] - Miransky, V.A.; Shovkovy, I.A. Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals. Phys. Rept.
**2015**, 576, 1–209. [Google Scholar] [CrossRef] [Green Version] - Andersen, J.O.; Naylor, W.R.; Tranberg, A. Phase diagram of QCD in a magnetic field: A review. Rev. Mod. Phys.
**2016**, 88, 025001. [Google Scholar] [CrossRef] - Bjorken, J.D.; Drell, S.D. Relativistic Quantum Fields; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Koch, V. Aspects of chiral symmetry. Int. J. Mod. Phys. E
**1997**, 6, 203–250. [Google Scholar] [CrossRef] [Green Version] - Kamenev, A. Field Theory of Non-Equilibrium Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Martin, P.; Siggia, E.; Rose, H. Statistical Dynamics of Classical Systems. Phys. Rev. A
**1973**, 8, 423–437. [Google Scholar] [CrossRef] - Feynman, R.; Vernon, F.L.J. The Theory of a general quantum system interacting with a linear dissipative system. Ann. Phys.
**1963**, 24, 118–173. [Google Scholar] [CrossRef] [Green Version] - Loewe, M.; Rojas, J. Thermal effects and the effective action of quantum electrodynamics. Phys. Rev. D
**1992**, 46, 2689–2694. [Google Scholar] [CrossRef] [PubMed] - Elmfors, P.; Persson, D.; Skagerstam, B.S. QED effective action at finite temperature and density. Phys. Rev. Lett.
**1993**, 71, 480–483. [Google Scholar] [CrossRef] [Green Version] - Hasan, M.; Chatterjee, B.; Patra, B.K. Heavy Quark Potential in a static and strong homogeneous magnetic field. Eur. Phys. J. C
**2017**, 77, 767. [Google Scholar] [CrossRef] - Rath, S.; Patra, B.K. One-loop QCD thermodynamics in a strong homogeneous and static magnetic field. JHEP
**2017**, 12, 098. [Google Scholar] [CrossRef] [Green Version] - Schwinger, J.S. On gauge invariance and vacuum polarization. Phys. Rev.
**1951**, 82, 664–679. [Google Scholar] [CrossRef] - Das, A.; Deshamukhya, A.; Kalauni, P.; Panda, S. Bogoliubov transformation and the thermal operator representation in the real time formalism. Phys. Rev. D
**2018**, 97, 045015. [Google Scholar] [CrossRef] [Green Version] - Menezes, D.P.; Benghi Pinto, M.; Avancini, S.S.; Perez Martinez, A.; Providencia, C. Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio Model. Phys. Rev. C
**2009**, 79, 035807. [Google Scholar] [CrossRef] [Green Version] - Farias, R.L.S.; Gomes, K.P.; Krein, G.I.; Pinto, M.B. Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter. Phys. Rev. C
**2014**, 90, 025203. [Google Scholar] [CrossRef] [Green Version] - Cassol-Seewald, N.; Copetti, M.; Krein, G. Numerical approximation of the Ginzburg–Landau equation with memory effects in the dynamics of phase transitions. Comput. Phys. Commun.
**2008**, 179, 297–309. [Google Scholar] [CrossRef] - Ebert, D.; Klimenko, K.G.; Vdovichenko, M.A.; Vshivtsev, A.S. Magnetic oscillations in dense cold quark matter with four fermion interactions. Phys. Rev. D
**2000**, 61, 025005. [Google Scholar] [CrossRef] [Green Version] - Bali, G.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.; Krieg, S.; Schafer, A.; Szabo, K. The QCD phase diagram for external magnetic fields. JHEP
**2012**, 02, 044. [Google Scholar] [CrossRef] [Green Version] - Bali, G.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.; Schafer, A. QCD quark condensate in external magnetic fields. Phys. Rev. D
**2012**, 86, 071502. [Google Scholar] [CrossRef] [Green Version] - Tuchin, K. Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions. Phys. Rev. C
**2013**, 88, 024911. [Google Scholar] [CrossRef] [Green Version] - Gursoy, U.; Kharzeev, D.; Rajagopal, K. Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions. Phys. Rev. C
**2014**, 89, 054905. [Google Scholar] [CrossRef] [Green Version] - Tuchin, K. Initial value problem for magnetic fields in heavy ion collisions. Phys. Rev. C
**2016**, 93, 014905. [Google Scholar] [CrossRef] - Busza, W.; Rajagopal, K.; van der Schee, W. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci.
**2018**, 68, 339–376. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, S.; Das, S.; Kumar, L.; Mishra, D.; Mohanty, B.; Sahoo, R.; Sharma, N. Freeze-Out Parameters in Heavy-Ion Collisions at AGS, SPS, RHIC, and LHC Energies. Adv. High Energy Phys.
**2015**, 2015, 349013. [Google Scholar] [CrossRef] - Weissenborn-Bresch, S.A. On the Impact of Pion Fluctuations on the Dynamics of the Order Parameter at the Chiral Phase Transition; Ruperto-Carola-University of Heidelberg: Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Bali, G.S.; Brandt, B.B.; Endrődi, G.; Gläßle, B. Meson masses in electromagnetic fields with Wilson fermions. Phys. Rev. D
**2018**, 97, 034505. [Google Scholar] [CrossRef] [Green Version] - Andersen, J.O. Chiral perturbation theory in a magnetic background-finite-temperature effects. JHEP
**2012**, 10, 005. [Google Scholar] [CrossRef] [Green Version] - Dumm, D.G.; Carlomagno, J.P.; Scoccola, N.N. Strong-interaction matter under extreme conditions from chiral quark models with nonlocal separable interactions. Symmetry
**2021**, 13, 121. [Google Scholar] [CrossRef] - Birse, M.C. Soliton models for nuclear physics. Prog. Part. Nucl. Phys.
**1990**, 25, 1–80. [Google Scholar] [CrossRef] - Krein, G.; Tang, P.; Wilets, L.; Williams, A.G. Confinement, Chiral Symmetry Breaking and the Pion in a Chromodielectric Model of Quantum Chromodynamics. Phys. Lett. B
**1988**, 212, 362–368. [Google Scholar] [CrossRef] - Krein, G.; Tang, P.; Wilets, L.; Williams, A.G. The Chromodielectric model: Confinement, chiral symmetry breaking, and the pion. Nucl. Phys. A
**1991**, 523, 548–562. [Google Scholar] [CrossRef] - Atreya, A.; Sanyal, S. Generation of magnetic fields near QCD Transition by collapsing Z(3) domains. Eur. Phys. J. C
**2018**, 78, 1027. [Google Scholar] [CrossRef] - Gavin, S.; Muller, B. Larger domains of disoriented chiral condensate through annealing. Phys. Lett. B
**1994**, 329, 486–492. [Google Scholar] [CrossRef] [Green Version] - Ferrer, E.J.; Hackebill, A. Equation of State of a Magnetized Dense Neutron System. Universe
**2019**, 5, 104. [Google Scholar] [CrossRef] [Green Version] - Kroff, D.; Fraga, E.S. Nucleating quark droplets in the core of magnetars. Phys. Rev. D
**2015**, 91, 025017. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Temperature and magnetic field dependence of the zero mode damping coefficient. Temperature range chosen to include the $B=0$ pseudocritical temperature, ${T}_{\mathrm{pc}}=150$ MeV.

**Figure 4.**Square root of the equal-time correlation function, normalized to ${\sigma}_{s}$—see text for definitions. Notice the different vertical axes ranges in two panels. There is no dashed-red curve for ${\mathit{p}}_{\perp}=0$ in the left panel because $\eta $ is zero for $eB/{m}_{\pi}^{2}=15$ and $T=150$ MeV (see Figure 2).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Krein, G.; Miller, C.
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field. *Symmetry* **2021**, *13*, 551.
https://doi.org/10.3390/sym13040551

**AMA Style**

Krein G, Miller C.
Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field. *Symmetry*. 2021; 13(4):551.
https://doi.org/10.3390/sym13040551

**Chicago/Turabian Style**

Krein, Gastão, and Carlisson Miller.
2021. "Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field" *Symmetry* 13, no. 4: 551.
https://doi.org/10.3390/sym13040551