
symmetryS S

Article

A Survey on Knowledge Graph Embeddings for Link Prediction

Meihong Wang , Linling Qiu and Xiaoli Wang *

����������
�������

Citation: Wang, M.; Qiu, L.; Wang, X.

A Survey on Knowledge Graph

Embeddings for Link Prediction.

Symmetry 2021, 13, 485. https://

doi.org/10.3390/sym13030485

Academic Editor: Theodore E. Simos

Received: 8 February 2021

Accepted: 5 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Informatics, Xiamen University, Xiamen 361000, China; wangmh@xmu.edu.cn (M.W.);
qiulinling@stu.xmu.edu.cn (L.Q.)
* Correspondence: xlwang@xmu.edu.cn

Abstract: Knowledge graphs (KGs) have been widely used in the field of artificial intelligence, such
as in information retrieval, natural language processing, recommendation systems, etc. However,
the open nature of KGs often implies that they are incomplete, having self-defects. This creates the
need to build a more complete knowledge graph for enhancing the practical utilization of KGs. Link
prediction is a fundamental task in knowledge graph completion that utilizes existing relations to
infer new relations so as to build a more complete knowledge graph. Numerous methods have been
proposed to perform the link-prediction task based on various representation techniques. Among
them, KG-embedding models have significantly advanced the state of the art in the past few years.
In this paper, we provide a comprehensive survey on KG-embedding models for link prediction
in knowledge graphs. We first provide a theoretical analysis and comparison of existing methods
proposed to date for generating KG embedding. Then, we investigate several representative models
that are classified into five categories. Finally, we conducted experiments on two benchmark datasets
to report comprehensive findings and provide some new insights into the strengths and weaknesses
of existing models.

Keywords: link prediction; knowledge graph embedding; knowledge graph completion; survey

1. Introduction

Knowledge graphs (KGs) have been widely used to store structured semantic infor-
mation for tasks of artificial intelligence. Technically speaking, a knowledge graph is based
on big data, which is one of the forms of big data applications. Many open KGs have
been constructed, e.g., Freebase [1], DBpedia [2] and YAGO [3]. They often contain a large
number of facts constructed using billions of entities and relations, which are represented
as nodes and the edges linking these nodes, respectively. Each fact is represented as a
triple (h, r, t), where h is a head entity, t is a tail entity and r is the relation between them.
KGs have been applied in many areas, such as question answering [4], recommendation
systems [5] and information retrieval [6]. However, KGs have self-defects; they are always
incomplete. First, existing KGs are often incomplete, as it is difficult to incorporate all the
concepts that humans have [6]. Second, real-world data are often dynamic and evolving,
which leads to difficulty in constructing correct and complete KGs [7]. Therefore, it is a
challenging task to automatically construct a more complete KG, which is often formu-
lated as the link-prediction problem [8]. The goal of link prediction is to predict missing
information (links or relations) between the entities in KGs. Figure 1 shows an illustrated
example of link prediction. The solid lines in the left figure are existing relations, and the
dotted lines are possible relations. The different colors in the right figure represent various
possible relations, which are calculated by the link-prediction task.

Symmetry 2021, 13, 485. https://doi.org/10.3390/sym13030485 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8639-7675
https://orcid.org/0000-0002-8677-9080
https://doi.org/10.3390/sym13030485
https://doi.org/10.3390/sym13030485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030485
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13030485?type=check_update&version=2

Symmetry 2021, 13, 485 2 of 29

Figure 1. An example of link prediction.

To solve the link-prediction problem, various techniques have been proposed, includ-
ing decomposition-based methods, path-based methods and embedding-based methods [9].
Decomposition-based models are based on potential semantic information, and their entity–
relation triples are encoded in tensors [10]. They may involve many parameters, and such
models may have low efficiency and poor scalability. Path-based models consider a path
from a to b via a sequence of edges; the earliest models include random walks and the
path-ranking algorithm (PRA) [11]. The larger the step size is, the larger the optimal
solution space, but the computational complexity is higher. To address the above issues,
embedding-based methods transform a KG into a low-dimensional vector space while pre-
serving its underlying semantics [12]. Among them, knowledge graph embedding (KGE)
models, which learn semantic representations of entities and relations, have significantly
advanced the state of the art in the past few years [13]. Therefore, this paper focuses on a
comprehensive survey of KGE models for link prediction.

KGE models embed entities and relations into a low-dimensional vector space while
preserving the structure of the KG and its underlying semantic information. These models
can be effectively applied to link prediction [14]. In this paper, we comprehensively survey
existing KGE models and categorize them into three groups: translational-distance-based
models, semantic-matching-based models and neural-network-based models. The first
group is also denoted as a group of additive models, such as TransE [13], TransH [15],
TransM [16] and TransR [17]. Inspired by word2vec [18], which allows word vectors to
capture the semantic information of words with translation invariance, TransE [13] regards
the relations in KGs as translation vectors. Given a triple (h, r, t), the relation r translates
the head entity h to the tail entity t. It defines a scoring function to measure the correctness
of the triple in the embedding space. However, these models are reported to have low
expressive power without capturing semantic information [19]. The second group of
multiplicative models includes DistMult [20] and Complex [21], which can outperform the
additive models by capturing more semantic information [19]. These models first embed
entities and relations into a unified continuous vector space and then define a scoring
function to measure its authenticity. However, these early models only consider each
individual fact, while their intrinsic associations are neglected, which is not sufficient for
capturing deeper semantics for better embedding. The third group are neural-network-
based models, such as ConvE [22], ConvKB [23], HypER [24], CompGCN [25], SACN [26]
and CNN-BiLSTM [27]. These models consider the type of entity or relation, temporal
information, path information and substructure information. The use of convolutional
neural networks or attention mechanisms also helps to generate better embeddings.

At present, there are many surveys of KGE models, such as [6,28–33]. They summa-
rized, analyzed and compared the relevant KGE models from different angles, such as the
models themselves, the training strategies, and the research directions. Rossi et al. [28]
classified models into three categories: tensor decomposition models, geometric models
and deep learning models. For these three categories, they selected typical models for
detailed description, experimental result analysis and comparison. However, there is no

Symmetry 2021, 13, 485 3 of 29

overall classification and summary of the KGE models proposed in recent years in this
paper, and the selected models are few, which cannot cover all types of KGE models. In par-
ticular, many KGE models fusing external information have been proposed in recent years,
in which this information is diversified. However, this model does not better classify and
summarize from the perspective of integrated information. In addition, the experiment of
this survey was not reproduced in a unified environment configuration but used different
coding frameworks, such as Python and C++. Dai et al. [19] described these models with
two categories: triplet fact-based representation learning models and description-based
representation learning models. Regarding additional information, they considered only
these two aspects and also did not provide an overall table. They also conducted experi-
ments on representative models and provided a detailed comparison, which is similar to
Rossi et al. [28]’s. Ji et al. [31] divided the research on KGs into four categories: knowl-
edge representation learning, knowledge acquisition, temporal KGs and knowledge-aware
applications. We synthesized the previous surveys’ ideas; we summarize these models
of KG embedding proposed over nearly three years into a classification table, which is
intuitive, and we analyze the correlations among these models from a more fine-grained
perspective, which involves our five main lines. In addition, our experiments on some
representative models were conducted in a unified environment, including the server type
and programming language (pytorch). Finally, we compare and analyze the results in
detail, including the performance and training time. In this survey paper, the focus is on
the analysis of different embedding approaches, and their advantages and drawbacks in
handling different challenges are highlighted. Moreover, a review of the applications of
representative KGE models is provided, with experiments conducted specifically on the
link-prediction task. The contributions of this paper are summarized as follows:

• This paper provides a theoretical analysis and comparison of existing KGE methods
for generating KG embeddings for link prediction in KGs.

• Several representative models in each category are also analyzed and compared along
five main lines.

• We conducted experiments on two benchmark datasets to report comprehensive
findings and provide new insights into the strengths and weaknesses of existing
models. We also provide new insights into existing techniques that are beneficial for
future research.

The main contents of the rest of the article are as follows: Section 2 introduces the
concept of the knowledge graph and knowledge graph embedding, as well as the definition
of the link-prediction task; Section 3 mainly presents the two types of categories of models
and a detailed introduction on representative models; Section 4 presents the experiment
and comparative analysis of representative models; Section 5 is the conclusion.

2. Preliminaries and Problem Definition
2.1. Preliminaries

In essence, knowledge graphs (KGs) are semantic networks that reveal the correlations
between entities, which have the abilities of analysis and reasoning like human beings.
A knowledge graph is similar to a knowledge base, describing information from different
perspectives. The knowledge graph tends to consider the graph structure, while the
knowledge base tends to be displayed in the textual form of reasoning and explanation [31].
Their differences and connections are shown in Figures 2 and 3. Previous literature has
proposed many definitions of KGs. In this paper, we cite a widely accepted definition
proposed in [31], shown as Definition 1. Following previous literature, we mathematically
define a KG as G = (υ, ε), where υ =

{
v1, v2, · · · , v|υ|

}
is a set of nodes (entities) and

ε ⊆ υ × υ is a set of edges (relations) [34]. An adjacency matrix A ∈ R|υ|×|υ| shows
where A[i][j] = 0 if

(
vi, vj

)
/∈ ε; otherwise, A[i][j] ∈ R+ represents the weight of the edge.

A degree matrix D ∈ R|υ|×|υ| is a diagonal matrix where D[i][i] = ∑
|υ|
j=1 A[i][j] represents

the degree of vi.

Symmetry 2021, 13, 485 4 of 29

A knowledge graph is composed of facts in the world, which exists in the form
of triples (h, r, t), with h, r and t representing the head entity, relation and tail entity,
respectively. The relations in the world are plural. For example, some relations are
symmetric (e.g., marriage) while others are antisymmetric (e.g., filiation); some relations
are the inverse of other relations (e.g., hypernym and hyponym); and some relations may
be composed by others (e.g., my mother’s husband is my father). It is critical to find ways to
model and infer these patterns, i.e., symmetry/antisymmetry, inversion and composition,
from observed facts in order to predict missing links [35].

Figure 2. Knowledge base.

Figure 3. Knowledge graph.

In order to improve knowledge graphs, we use knowledge graph embedding (KGE)
technology, which represents entities and relations as low-dimensional continuous vectors.
We cite the definition of a KGE proposed in [31] as shown in Definition 2.

Symmetry 2021, 13, 485 5 of 29

Definition 1 (Knowledge Graph (KG)). A knowledge graph is a multirelational graph composed
of entities and relations that are regarded as nodes and different types of edges, respectively.

Definition 2 (Knowledge Graph Embedding (KGE)). Knowledge graph embedding is a tech-
nology for mapping the content of entities and relations in a knowledge graph to continuous
low-dimensional vector space.

2.2. Link Prediction

Link prediction is one of the most common tasks for evaluating the performance of
KGE, which has no formal definition. It has two subtasks: entity prediction, also called
entity ranking, for predicting missing entities, i.e., predicting h given (?, r, t) or t given
(h, r, ?), and relation prediction for predicting missing relations, i.e., predicting r given
(h, ?, t), where “?” represents a missing entity or relation for a triple (h, r, t). For link-
prediction models, the goal is to predict the missing relations among entities using the
existing relations in a KG. It replaces the relation of each test triple with all the relations
in the KG to obtain the negative samples. It is also defined as an entity-sorting task.
Then, it determines whether the new triple, which is not observed in the KG, is valid
according to the scoring function. In KGE technology, the entities are generally regarded as
vectors, while the relations are regarded as operations in the vector space, which are used
to calculate the relationships between entities. First, the entities and relations are mapped
into a continuous low-dimensional vector space. Then, a scoring function is defined to
measure the reliability of the triples, and a higher score indicates that the triple is more
likely to be true. Finally, a loss function is defined to optimize the total reliability of all
the triples in the KG. For evaluation, it is a common practice to record the ranks of the
correct answers in such ordered lists to see whether the correct answers are ranked before
the incorrect ones. The commonly used evaluation metrics in the study are the mean rank
(the average of the predicted ranks), mean reciprocal rank (the average of the reciprocal
ranks), and Hits@n (the proportion of ranks larger than n).

2.3. Research Questions

As described above, there are many models for KGE, but there are still many challenges
in obtaining better entity and relation embeddings for link prediction. Some (but not all) of
the challenges found in the survey are as follows:

1. It is difficult to model the heterogeneity of graphs.
2. There are few studies on dynamic graphs, which are better able to reflect the real world.
3. How to incorporate prior knowledge to obtain deep semantics should be determined.
4. How to capture multi-hop neighbor information should be determined.
5. It has been argued that many models struggle to perform on hierarchical graphs such

as WN18RR [8].

This paper focuses on the classification and comparative analysis of various models,
aiming to determine the differences and breakthrough points of challenges to provide
better guidance for future research.

3. Embedding Models for Link Prediction

We first performed a comprehensive investigation on the KGE models proposed in re-
cent years. Then, we explored the three categories of KGE models for link prediction based
on the investigation, including translation-distance-based models, semantic-matching-
based models and neural-network-based models. These three categories reflect the main-
stream models of KGE development in three main stages. The detailed models proposed
in recent years and their categories are shown in Table 1. Then, we analyze how they work,
and the challenges and the differences between them. Finally, in order to better study
the correlations between various models (possibly cross-category models), we classify all
these models from a more fine-grained perspective, proposing five main lines. The five

Symmetry 2021, 13, 485 6 of 29

main lines can help readers to more intuitively understand the more in-depth correlations
between the models.

Table 1. Models and their categories.

Categories Subcategories Models

Based on translation distance TransE and its extensions

TransE [13], TransH [15], TransM [16], TransR [17], TransD [36],
TransA [37], TranSparse [38], ManifoldE [39], STransE [40],

TransX-FT [41], TransX-DT [42], TransHR [43], CirE [44],
GTrans [45], TransCore [46], TransF [47], TransGH [48], AEM [49],

EMT [50], TransX-SYM [51], TransMS [52], KGLG [53],
TransL [54].

Gaussian embedding KG2E [55], TransG [56].

Others
KGE Continual Learning [57], TorusE [58],

QuatE [59], RotatE [35],
HAKE [60], DeCom [61], MobiusE [62], QuaR [63].

Based on semantic
information No additional information

RESCAL [64], DistMult [20], Hole [65], ComplEx [21],
ANALOGY [66], ComplEx-N3 [67], TuckER [68], TriModel [69],

CrossE [70], HolEx [71], MEI [72].

Fusing additional
information

Entity/relation types: TKRL [73], SSE [74], Att-Model+Types [75],
ETE [76], TransT [77], Bilinear+TR [78], TransET [79], KGE via
weighted score [80], RecKGC [81], RPE [82]. Relation paths:

PTransE [83], Att-Model+Types [75], TransP [84], PaSKoGE [85],
PTransD [86], DPTransE [87], abstract paths for KGC [88],

ELPKG [9], PTranSparse [89], CoKE [90], RPE [82],
RW-LMLM [91], KBAT [92], GAATs [93], path-based

reasoning [27]. Textual descriptions: DKRL [94], SSP [95],
KDCoE [96], CATT [97], textural association [98], open-world

extension for KGC [99], EDGE [100], TransW [101]. Logic rules:
KALE [102], lppTransX [103], BiTransX+ [104], ELPKG [9],

X-lc [105], RUGE [106], TARE [107], logic rule powered
KGE [108], SoLE [109], GPFL [110], CBR [111], probabilistic
case-based reasoning [112]. Entity attributes: KBLRN [113],
TransEA [114], LiteralE [115], MARINE [116], AKRL [117].

Temporal: Time-aware link prediction [118], co-evolution of
event and KGs [119], Know-Evolve [120], iTransA [121],
HyTE [122], ATiSE [123], QCHyTE [124], TDG2E [125],

T-GAP [126], TeMP [127].
Structure: GAKE [128], APP [129], ORC [130], KGC by

embedding correlations [131], TCE(2017) [132], TCE(2018) [133],
Graph2Seq [134], HRS [135], SA-KGE [136], TransS [137],

S2E [138], AKSE [139], AggrE [140]. Constraints:
ComplEx+NNE+AER [141], RPE [82], CoRelatE [142]. Negative
sampling: TransR-PNC [143], TSLRF [144], TransE-ANS [145].
Fake triples: KGE via fake triples [146], AWML [147]. Order:

RKGE [148], RW-LMLM [91]. Concepts: TransC [149], KEC [150],
TransFG [151]. Background: SimplE [152], SimplE+ [153].

Based on neural network No additional information

SME [154], NTN [155], MLP [156], NAM [157], R-GCNs [158],
DSKG [159], SENN [160], TBNN [105], NTransGH [161],
ConvE [22], ConvKB [23], ConnectER [162], FRS [163],

HypER [24], CompGCN [25], TransGate [106], R-MeN [164],
TransGCN [165], VR-GCN [166], InteractE [167], KBAT [92],
BDRAN [168], BDR+CA [169], wRAN [170], RA-GCN [171],

path-based reasoning [72], MultiView [172], KGEL [173],
GAEAT [174], GRL [175].

Symmetry 2021, 13, 485 7 of 29

Table 1. Cont.

Categories Subcategories Models

Fusing additional
information

ProjE [176], ProjFE [177], ProjR [178], SACN [26],
CNN-BiLSTM [27], ConMask [179], MIA Model [180],TKGE [181],

a semi-supervised model for KGE [182], GAN based on
Wasserstein [183], LAN [184], TransAt [185], KANE [186],

context-aware temporal KGE [187], CACL [188], DKGE [189],
G-DRNN [190], MTKGNN [191], LogicENN [192], TECRL [193],

PATHCON [194], HARP [195].

3.1. Translation-Distance-Based Models

These models are additive models, which usually use distance-based functions to
define the scoring function for link prediction. After the relation is translated, the distance
is used to measure the credibility between two entities. For this category, we divide these
models into three subcategories: TransE and its extensions, Gaussian embedding and others.
The models of TransE and its extensions are those that extend TransE [13]. TransE [13] is
one of the earliest models for link prediction, which uses the relation for translating the
head entity to a tail entity. There are many extensions of TransE. The models of Gaussian
embedding are those considering the uncertainties of entities and relations by using a
probability function. The models of others are those similar to TransE; they do not belong
to distance-based models in essence, but their idea is the same as that of TransE, such as
using rotations, Lie groups, quaternions and MobiusE rings for translation.

TransE [13] is a well-known, early and simple model that regards a relation as a
translation from a head entity to a tail entity. It uses a distance scoring function as follows:
f (h, t) = ‖h + r− t‖ 1

2
. TransE is the earliest translation-based embedding model, and it

has difficulty dealing with multirelational graphs; it is limited by its simple translation
operation as well as its lack of a discrimination policy for all kinds of relations. In recent
years, many variants of TransE have been proposed, such as TransH [15] and TransR
[17]. TransH introduces a hyperplane, and TransR uses a relation-specific space to handle
different relations, excavating more semantic information. The TransHR [43] model focuses
on the embedding of hyperrelational data. These models are similar in nature; the only
improvement is in translating the head entities to tail entities.

TransMS [52] regards the head entity, relation and tail entity as a subject, predicate
and object, respectively, as in a sentence. In this way, it considers the semantics between
the head entity and the relation as well as the semantics between the relation and the tail
entity, which is not done in previous models. It uses the nonlinear function p(e, r) (this is
the tanh function) instead of a linear function to translate the semantics, that is, to translate
both h and r to t, obtaining the final tail-entity embedding vector as t⊥ = P(p(h, r), t)
and obtaining the head-entity embedding vector from the converse semantic transfer
h⊥ = P(p(−t, r), h). In addition, it defines the bias vector α · g(h, t) to transmit the semantic
information of both h and t to r, where α is an added dimension for relations and g(h, t)
is a function concerning h and t, and then obtains the final relation embedding vector as
r⊥ = G(r, ∂ · g(h, t)). It chooses the tanh function as the nonlinear function p(e, r), so the
entity and relation embedding vectors are as Equations (1)–(3):

h⊥ = tanh(−t⊗ r)⊗ h = −tanh(t⊗ r)⊗ h (1)

t⊥ = tanh(h⊗ r)⊗ t (2)

r⊥ = r + ∂ · (h⊗ t) (3)

Finally, the score function is defined as in Equation (4):

‖− tanh(t⊗ r)⊗ h + r + ∂ · (h⊗ t)− tanh(h⊗ r)⊗ t‖2
2 (4)

Symmetry 2021, 13, 485 8 of 29

Gaussian embedding models consider the uncertainties of entities and relations and
model them as random variables. There are two models of this kind: KG2E [55] and
TransG [56]. KG2E regards entities and relations as random vectors drawn from mul-
tivariate Gaussian distributions and scores a triple using the distance between the two
random vectors. The TransG model also models entities with Gaussian distributions, using
a mixture of Gaussian distributions to obtain multiple semantics. Gaussian embedding
models take the uncertainties of the entities and relations into account, but this results
in a complex model. Other methods such as TorusE [58], QuatE [59], RotatE [35] and
MobiusE [62], using Lie groups, quaternions, rotations and MobiusE rings, are similar to
TransE [13]. They do not belong to distance-based models in essence, but their idea is the
same as that of TransE. Given a triple (h, r, t), they all map the head entity h to the tail
entity t through the relation r, but the specific mapping operations about r are different, so
this paper puts them in this category.

RotatE [35] can model and infer various relation patterns, including symmetry (anti-
symmetry), inversion and composition. Specifically, it defines each relation as a rotation
from the head entity to the tail entity in a complex vector space. It provides a novel
self-adversarial negative-sampling technique for efficiently and effectively training RotatE.
Inspired by Euler’s identity, RotatE maps the head and tail entities h and t to complex
embeddings such as h, t ∈ Ck; then, it defines a mapping function induced by each relation
r as an elementwise rotation from the head entity h to the tail entity t. For the triple (h, r, t),
RotatE yields t = h ◦ r, , where |ri| = 1 and ◦ is the Hadamard (or elementwise) product.
For each element in the embedding, we have ti = hiri. Here, this method constrains the
modulus of each element of r ∈ Ck, i.e., ri ∈ C, to be |ri| = 1. By doing so, ri takes
the form eiθr,i , which corresponds to a counterclockwise rotation by θr,i radians about the
origin of the complex plane and affects only the phases of the entity embeddings in the
complex vector space. This is the origin of the “rotation”. The distance function of RotatE
is dr(h, t) = ‖h ◦ r − t‖. By defining each relation as a rotation in the complex vector
space, RotatE can model and infer all three types of relation patterns introduced above. It
summarizes the pattern modeling and inference abilities of several models as shown in
Table 2.

Table 2. The pattern modeling and reasoning ability of several models.

Model Symmetry Antisymmetry Inversion Composition

SE # # # #
TransE # ! ! !
TransX ! ! # #

DistMult ! # # #
ComplEx ! ! ! #

RotatE ! ! ! !

HAKE [60] considers the semantic hierarchy of entities by using polar coordinates,
in which concentric circles can naturally reflect the hierarchy. Additionally, it considers
whether the entities are at the same level of the hierarchy, which consists of two parts,
the modulus and the phase, used to distinguish the two types of entities. The modulus
focuses on entities at different levels of the hierarchy; modulus information is used to
model the entities as follows: hm ◦ rm = tm, hm, tm ∈ Rk, rm ∈ Rk

+. Here, hm, rm, tm are the
head-/tail-entity embedding and the relation embedding, and ◦ is the Hadamard (or ele-
mentwise) product. The corresponding distance function is dr,m(hm, tm) = ‖hm ◦ rm − tm‖2.
The phase focuses on entities at the same level of the hierarchy; phase information is used
to distinguish the entities as follows:

(
hp + rp

)
mod 2π = tp, hp, rp, tp ∈ [0, 2π)k. Here,

hp, rp, tp are the head-/tail-entity embedding and the relation embedding. The correspond-
ing distance function is dr,p

(
hp, tp

)
=
∥∥sin

((
hp + rp − tp

)
/2
)∥∥

1. The above two parts
correspond to the radial and angular parts of polar coordinates, respectively. This method

Symmetry 2021, 13, 485 9 of 29

maps each entity e to
[
em; ep

]
, where em, ep are generated by the two parts and

(
[hm]i,

[
hp
]

i

)
is a 2D point in polar coordinates. The final score function is as in Equation (5):

fr(h, t) = dr(h, t) = −dr·m(h, t)− λdr,p(h, t)

= −‖hm ◦ rm − tm‖2 − λ
∥∥sin

((
hp + rp − tp

)
/2
)∥∥

h
(5)

All of these translation-based models use the margin-based pairwise ranking loss
function to measure the scores of triples (h, r, t) as the Ln distance between h + r and t.
Therefore, the differences among these models are in how they translate a head entity h to
a tail entity t by the relation r. Their loss function is as in Equation (6):

Λ = ∑
(h,r,t)∈D

∑
(h′ ,r′ ,t′)∈D′

[
ft(h, t) + γ− fr

(
h
′
, t
′)]

+
(6)

where [χ]+ denotes the positive value of χ, and γ > 0 is a margin hyperparameter.
Although the embedding operation of this type of model is relatively simple, the ex-
pressiveness is not sufficient due to the direct addition of h + r and the lack of different
semantic information.

3.2. Semantic Information-Based Models

Semantic information-based models usually use similarity-based functions to define
scoring functions for traditional semantic-matching models or introduce additional infor-
mation to mine more knowledge for recently proposed models. Thus, these models are
divided into two subcategories: models with additional information and models with-
out additional information. The latter traditional models match the latent semantics of
entities and relation embeddings to measure the plausibility of a triple. The traditional
semantic-based models focus only on the information of the triple itself and do not fuse
any additional information, as DistMult [20] and Complex [21] do. These models suffer
from higher computational complexity. The former recently proposed models fuse various
additional information to obtain better performance to mine deeper semantic information
at the bottoms of graphs. The additional information includes path information, order
information, concepts, entity attributes, entity types and so on.

TransW [101] uses word embeddings to compose knowledge graph embeddings and
learns a function mapping from the word embedding space to the knowledge embedding
space. Entities and relations are represented in the form of linear combinations of word
embeddings in this model, which can detect unknown facts, as Equations (7)–(9):

h =
n

∑
i=0

hi ⊗ whi + bh (7)

t =
m

∑
i=0

ti ⊗ wti + bt (8)

r =
p

∑
i=0

ri ⊗ wri + br (9)

where n, m, p are the numbers of words in entities h and t and relations r; hi, ri, ti are the
word embeddings for the i-th word in the corresponding h, r, t, respectively; whi, wri, wti
are the i-th connection vectors for h, r, t, respectively; ⊗ denotes the Hadamard product;
and bh, br, bt ∈ Rk are the bias parameters. The score function is as in Equation (10):∥∥(∑ hi ⊗ whi + bh

)
+ ∑ ri ⊗ wri −

(
∑ ti ⊗ wti + bt

)∥∥2
l1
2

(10)

The TransC [149] model combines structural information with entity concepts (refer-
ring to the categories of entities) to improve KGE models and introduces a novel type of

Symmetry 2021, 13, 485 10 of 29

semantic similarity to measure the distinctness of entity semantics by using the concept
information. The relations in this model consist of two concept sets: the head concept set
Chead

r and tail concept set Ctail
r . The semantic similarity of a relation and a head entity and

of the relation and a tail entity is used to measure the distinction of entity semantic with
concept information that is defined as in Equations (11) and (12), separately:

sim(rhead, h) =

∣∣∣Chead
r ∪ Ch

∣∣∣∣∣Chead
r
∣∣ (11)

sim(rtail , h) =

∣∣∣Ctail
r ∪ Ct

∣∣∣∣∣Ctail
r
∣∣ (12)

The semantic similarity of the head entity and tail entity is as in Equation (13):

sim(h, t) =
|Ch ∪ Ct|
|Ch|

(13)

TransC regards each entity concept as a concept vector and each entity as a set of
concept vectors, and the likelihood of a vector representation for the triple P(f act, h, r, t)
(it represents the possibility that triple (h, r, t) is a fact, which means that the triple (h,r,t)
satisfies the h + r ≈ t principle) is defined as in Equation (14):

P(f act, h, r, t) =
|Ch |

∑
i=1

|Ct |

∑
j=1

wh,iwt,j fr
(
hi, tj

)
(14)

where |Ch| , |Ct| are the number of concepts of the head entity h and tail entity t;{
wh,1, . . . , wh,|Ch |

}
,
{

wt,1, . . . , wt,|Ct |

}
are the distributions of random variables of h and t;

and fr
(
hi, tj

)
is the likelihood of the component with the i-th concept vector hi of the head

entity h and the j-th concept vector tj of the tail entity t. The score function is defined as
follows: fr

(
hi, tj

)
=
∥∥hi + r− tj

∥∥
l .

PTransE [83] is a translation-based model, and it introduces contextual information
by using multiple-step relation paths to extend TransE, which treats relation paths as
transformations of representation learning between entities. TransE regards a relation as
a translation vector of the head- and tail-entity vector. Its scoring function is defined as
E(h, r, t) = ‖h + r− t‖. PTransE integrates another score item into the triple’s score for the
multiple-step relation path, given as G(h, r, t) = E(h, r, t) + E(h, P, t). E(h, r, t) is defined as
in TransE, modeling the relations in the triple (h, r, t) between entities and relations directly;
E(h, P, t) models multiple-step relationships between the entities and relations of each
triple (h, r, t) in a multiple-step path, defined as E(h, P, t) = 1

Z ∑
p∈P(h,t)

R(p|h, t)E(h, p, t),

where ∑
p∈P(h,t)

R(p|h, t) is a normalized factor, for measuring the reliability of the relational

path, and PTransE proposes a path-constraint resource allocation (PCRA) algorithm for it.
E(h, p, t) is used as a scoring function to define the triple (h, r, t), differing from TransE in
leveraging a semantic combinatorial model recurrent neural network (RNN) to combine
the relational path p, defined as E(h, p, t) = ‖p− (t− h)‖ = ‖p− r‖ = E(p, r). Moreover,
PTransE considers the relation path in only one direction. To address this problem, bidirec-
tional relations including both the forward and the inverse direction are added to the KGs,

such as e1
BornInCity−−−−−−→

T
e2

CityO f Country−1

−−−−−−−−−−→
T

e3 (BornInCity and CityOfCountry both represent

relations, both constituting bidirectional relations. CityOfCountry is the inverse relation of
BornInCity. If A is the BornInCity of B, then B is the CityOfCountry of A.). To improve the
computational efficiency, the path length is limited to a maximum of three steps, and only
the relationship paths with reliability scores greater than 0.01 will be selected.

Symmetry 2021, 13, 485 11 of 29

Bilinear+TR [78] improves RESCAL [64] by introducing a regularization factor into
the loss function, which is used to take entity types into account. In RESCAL, entities are
expressed as vectors x ∈ Rd, and relations are expressed as matrices W ∈ Rd×d. Then,
the triple (h, r, t) is represented as a score given by sc(s, r, t) = xT

s Wrxt. This is similar to
tensor factorization; these vectors and matrices are learned by a loss function that compares
a correct triple with an incorrect triple. RESCAL uses a max-margin loss function as in
Equations (15) and (16):

J(Θ) =
N

∑
i=1

∑
t′∈N(t)

mm
(

σ(sci), σ
(

s′ci

))
(15)

mm
(

σ(sci), σ
(

s′ci

))
= max

[
0, 1− σ(sci) + σ

(
s′ci

)]
(16)

where there are N positive instances, and the positive and negative instances are scored as
sci = sc(si, ri, ti) and s′ci

= sc
(
si, ri, t′i

)
, respectively. Nt is the set of incorrect targets, and σ

is the sigmoid function. In bilinear+TR, let scat be the type of entity s and rcat be the relation
between s and scat. For a query q with head entity s and tail entity t, the regularizer is
defined as in Equation (17):

R(Θ, q) :=

∑
s′cat∈N(scat)
scat∈T(scat)

mm
(
σsc(s, rcat, scat), σsc

(
s, rcat, s′cat

))
+ ∑

t′cat∈N(tcat)
tcat∈T(tcat)

mm
(
σsc(t, rcat, tcat), σsc

(
t, rcat, t′cat

))
(17)

where T(scat) and T(tcat) are the sets of correct categories for head s and tail t, respectively.
mm is the maximum margin loss described above. Then, the complete objective function is
minimized as in Equation (18):

J(Θ) =
N

∑
i=1

∑
t′i∈T(qi)

mm
(
qi, ti, t′i

)
+ αR(Θ, qi) (18)

where the hyperparameter α, α ≥ 0, controls the impact of the regularizer terms and T(qi)
is the set of negative targets for query qi, where qi corresponds to query (si, ri, ?).

RW-LMLM is a novel approach for link prediction that consists of a random walk algo-
rithm for KGs (RW) and a language model-based link-prediction model (LMLM). The paths
output from RW are regarded as pseudosentences for LMLM training. RW can capture the
semantic and syntactic information in KGs by considering the entities, relations and order
information of the paths, in contrast to DeepWalk (which considers only the entities and re-
lations). Therefore, the entities in the paths are in head-to-tail form, and the relations are in

the middle, for example, e0
r0−→ e1

r1−→ · · ·
rl−1−→ el . LMLM uses a multilayer transformer de-

coder language model instead of word2vec models (continuous bag-of-words encoders or
skip-grams). The standard language model usually defines a probability distribution over
a sequence of tokens: P(w1, w2, . . . , wn) = ∏i P(wi | w1, . . . , wi−1). The goal of language
modeling is to maximize this probability. The conditional probabilities P(wi | w1, . . . , wi−1)
can be learned by neural networks. The objective of RW-LMLM is to maximize the follow-
ing probability as in Equation (19):

P(e1, e2, . . . , el) =
l

∏
i=1

P(ei | (e0, r0), . . . , (ei−1, ri−1)) (19)

Symmetry 2021, 13, 485 12 of 29

LiteralE [115] introduces the literature information, giving priority to numerical lit-
erature. A general model with additional information adds a text-dependent merging
term to the output of the scoring function to merge text indirectly. LiteralE directly in-
corporates literature information through a learnable parameterized function. There are
two forms of triples in LiteralE: relations between entities and relations of entities and
literals. This method obtains global information via the latent feature model, learning low-
dimensional, latent representations, that is, embeddings. To evaluate the results, the basic
dataset was extended here by adding literal information, and experiments were carried
out on the basic models DistMult, ComplEx and ConvE. Except for embedding entities for
transformation through a core function g : RH × RNd → RH , the scoring function is the
same as in the basic models; that is, it transforms the entities into elit

i = g(ei, li). The defini-
tion of function g is critical for LiteralE. In addition to having learnability and flexibility, it
should also be able to independently determine whether additional information is useful
so that a judgment of whether to merge or ignore it can be made. To define g, LiteralE
is inspired by the RNN gating strategy, and the gated recurrent unit (GRU) strategy is
used to transform entities to ensure that the output vector and entity embedding have the
same dimension. However, the model introduces a certain parameter overhead, which is
proportional to the number of relationships in the KG.

Since the traditional model was put forward, semantic-matching-based models have
been continuously mining deeper semantic information, including path information, entity
types, contextual information and so on, to obtain more accurate representations for KGE.

3.3. Neural Network-Based Models

Neural networks have been a promising solution in many fields and have the abilities
of self-study, associative storage and high-speed optimization. Traditional distance-based
and semantic-matching-based models cannot meet the requirements of KGE. Recently,
to obtain better and more effective entity and relation embeddings, a neural-network model
was also introduced into KGE to propagate neighborhood information. These models are
also divided into two subcategories: models with additional information and models
without additional information. The additional information also includes path information,
order information, concepts and so on.

ConvE [22] is the first model to use the convolutional neural network (CNN) frame-
work for KG completion. Compared with fully connected neural networks, CNNs capture
complex relationships with very few parameters by learning nonlinear features. ConvE
uses embedded 2D convolution to predict missing links in KGs, which is the simplest
multilayer convolutional network structure in these models for link prediction. Notably,
2D convolution outperforms 1D convolution in terms of extracting feature interactions
between two embeddings. ConvE obtains local relationships in different dimensions be-
tween entities through a convolution layer and a fully connected layer, which ignores
the global relationships between triple embeddings of the same dimension. ConvE first
reshapes the head-entity embedding and relation embedding, concatenating them into
an input matrix for the 2D convolution layer, which then returns a feature map tensor.
Then, the tensor is vectorized and projected into k-dimensional space through a linear
transformation parameterized by the matrix W and is finally matched with the tail-entity
embedding through an inner product. Its scoring function is as in Equation (20):

ψr(es, eo) = f (vec(f ([es; rr] ∗ w))W)eo (20)

where rr ∈ Rk is a relation parameter depending on r, and es and rr are the 2D reshapings
of the head-entity embedding and relation embedding, respectively. The most important
characteristic of ConvE is that the score it produces is defined by an embedded 2D convolu-
tion. Moreover, ConvE introduces a 1-N scoring program that takes a head-entity–relation
pair and matches all the tail entities simultaneously, which is different from other models
that use the 1-1 scoring program; thus, much evaluation time is saved.

Symmetry 2021, 13, 485 13 of 29

Removing the reshaping operation from ConvE, ConvKB [23] uses 1D convolu-
tion to maintain the translation characteristics of TransE, which is sufficient for captur-
ing the global relationships and transitional characteristics between entities. It repre-
sents the k-dimensional embedding of each triple (vh, vr, vt) as a three-column matrix
A = [vh, vr, vt] ∈ Rk×3 and then feeds it into the convolutional layer, where there are multi-
ple filters of the same 1×3 shape with the ability to extract the global relationships among
the same-dimensional entries of an embedding triple. These filters operate on each row
of the input matrix to obtain different feature maps: v = [v1, v2, . . . , vk] ∈ Rk, where
vi = g(ω · Ai,: + b), Ai,: ∈ R1×3 is the i-th row of A; ω ∈ R1×3 is the filter used to examine
the global relationships between the same-dimensional entries of embedding triples and
to retrieve the transitional characteristics in transition-based models; b ∈ R represents the
bias; and g is the activation function. Then, these feature maps are concatenated into a
triple feature vector and calculated with a weight vector w via the dot product to obtain
the score of the triple, which is used to determine the validation of the triple. Its scoring
function is as in Equation (21):

f (h, r, t) = concat(g([vh, vr, vt] ∗Ω)) ·w (21)

where Ω is a set of filters, Ω and w are shared parameters, ∗ is the convolution operator,
and concat is the concatenation operator.

HypER [24] introduces hypernetworks based on ConvE to generate convolutional
filter weights for each relation. The hypernetworks can be used to achieve weight sharing
across layers and dynamically synthesize weights given inputs. The differences between
HypER and ConvE are as follows: (1) ConvE uses 2D filters to construct convolution
operators for the entity and relation embeddings after reshaping and concatenating, while
HypER uses 1D relation-specific filters to handle entity embeddings, which simplifies the
interaction between entities and relational embeddings. (2) The interaction between entities
and relations in ConvE is affected by how they are reshaped and concatenated before being
fed into the convolutional layers, while HypER uses a convolution operator for head-entity
embeddings with a set of relation-specific filters Fr, which is created by hypernetwork H
from the relation embeddings. The hypernetwork is a fully connected layer. (3) The feature
maps obtained from ConvE and HypER by the convolution operator are all projected into
a k-dimensional space and vectorized; however, the difference is that ConvE uses a linear
transformation parameterized by w, while HypER uses a weight matrix W to which the
ReLU activation function is applied. (4) Finally, both methods calculate the tail-entity
embeddings via the inner product to obtain a scoring vector for matching. The scoring
function is as in Equation (22):

φr(e1, e2) = f (vec(e1 ∗ Fr)W)e2 =

f
(

vec
(

e1 ∗ vec−1(wr H)
)

W
)

e2 (22)

where the vec operator transforms the matrix to a vector, the vec−1 operator reshapes a
vector to a matrix, and the nonlinearity f is chosen to be a rectified linear unit (ReLU).

In summary, the vector embedding of each relation is projected through a fully con-
nected layer in HypER, the result of which is reshaped, and then, a set of convolutional
filter weight vector relations is provided for each layer. HypER implements nonlinear
(quadratic) combinations of entity and relation embeddings rather than the linear combi-
nations (weighted sums) in ConvE, which gives HypER the advantages of a much richer
expressive capacity and fewer parameters. HypER can also be regarded as a factoriza-
tion model.

Previous models introduced contextual information directly through one-way paths
or text information, which ignores the important effects of various connection patterns
between entities and unnecessary paths or unimportant words; this weakens the embed-
ding of entities, resulting in the insufficient capture of the relationships between triples.

Symmetry 2021, 13, 485 14 of 29

R-GCN [158] utilizes a relational graph convolutional network (GCN) to model highly
multiple-relational data explicitly, restoring the information of the 1-hot neighborhood
facts around the entity. For link-prediction tasks, a relational graph convolutional net-
work (R-GCN) can be regarded as an autoencoder consisting of an encoder and a decoder.
The encoder generates a latent feature representation of the entity, while the decoder scores
the triple according to the representation generated by the encoder. In the encoder, there is
an R-GCN using the idea of a graph convolutional network, which can fully encode the
structural information of the entities by considering all types of relations among the entity
connections, including the in and out relations. The forward update of the entity is as in
Equation (23):

h(l+1)
i = σ

∑
r∈R

∑
j∈Nr

i

1
ci,r

W(l)
r h(l)j +W(l)

0 h(l)i

 (23)

where Nr
i is the set of neighbors of node i under relation r ∈ R and ci,r is a problem-specific

normalization constant that can be learned or set to a number in advance (such as ci,r =∣∣Nr
i

∣∣). In an R-GCN, a base decomposition and block diagonal decomposition are proposed
to solve the problem of the height parameters. In the decoder, the DistMult factorization
model is selected as the scoring function, and each relationship is associated with a diagonal
matrix. Then, the scoring function of the triples is as follows: f (s, r, o) = eT

s Rreo.
ProjE [176] complements the missing information in a KG by learning the joint em-

bedding of the entities and edges and making modifications to the loss function, thus
improving the KGE model through trivial changes to the network architecture and elimi-
nating complex feature engineering. By means of a learned combinatorial operator, the em-
bedding vectors of head entities and relations are combined into a target vector, which
also distributes the projection of the candidate entities to obtain the order list, and the
top-ranking candidates are the correct entities. Compared with TransE, ProjE saves many
transformation matrix calculations because of the combination operations, which are de-
fined as e⊕ r = Dee + Drr + bc, where De, Dr are diagonal matrices that serve as the global
entity and relationship weights, respectively, and bc ∈ Rk is the combination bias. Then,
the embedding projection function is defined as h(e, r) = g

(
Wc f (e⊕ r) + bp

)
, where f

and g are activation functions, Wc ∈ Rs×k is the candidate-entity matrix (s is the number
of candidate entities), bp is the projection bias, and h(e, r) represents the ranking score
vector, whose elements measure the similarity between the candidate entity in Wc and the
combined input embedding e⊕ r. TransE defines the combination operation as addition
and the similarity operation as distance. Similarly, ProjE defines the combination operation
as a global linear layer and the similarity operation as a dot product. Moreover, it uses a
collective ranking loss for the list of candidate entities (or relations) with two proposed
methods: ProjE-pointwise and ProjE-listwise. The former uses sigmoid and tanh as the
activation functions for g and f , respectively. Therefore, the ranking score is defined as
h(e, r)i = sigmoid

(
Wc

[i,:] tanh(e⊕ r) + bp

)
, where Wc

[i,:] represents the ith candidate in the
candidate-entity matrix. The latter uses softmax and tanh as the activation functions,
and its ranking score is defined as in Equation (24):

h(e, r)i =
exp

(
Wc

[i,:] tanh(e⊕ r) + bp

)
∑j exp

(
Wc

[i,:] tanh(e⊕ r) + bp

) (24)

ProjE improves the loss function to Equation (25):

Γ = − ∑
i∈{i|yi=1 }

log(h(e, r)i)−∑
m

Ej∼Py log
(

1− h(e, r)j

)
(25)

Symmetry 2021, 13, 485 15 of 29

where e and r are the input embedding vectors, y ∈ Rs is a binary label vector such that
yi = 1 means that candidate i is a positive label, and m is the number of negative samples
drawn from a negative candidate distribution Ej∼Py .

ProjR [178] takes into account the diversity of structures and represents entities in
terms of their different relational contexts and different entity locations; it combines TransR
and ProjE to obtain these two representations by defining a unique combination operator
for each relation. It can model N-1, N-N, 1-N-1 and one-relation circle structures with
the advantage of a combination operator design. Before the similarity operator, TransR
projects the representation of the head and tail entities into the relation-specific space
through a relational projection matrix. ProjE projects the candidate-entity vectors into
the representation space of the input entity relation pairs. Similarly, ProjR defines the
scoring function in two parts: a combination operator and a similarity operator. To obtain
representations of entities in different relational contexts, a combination operation Cr(h)
is applied to each relation r: Cr(h) = chr = tanh(De

rh + Dr
rr + bc), where De

r ∈ Rd×d is a
diagonal matrix defined for the linear transformation of the head entity under relation r,
Dr

r ∈ Rd×d is a diagonal matrix defined for the linear transformation of relation r, bc ∈ Rd

is a global bias vector, and tanh(z) = ez−e−z

ez+e−z is a nonlinear activation function in which
the output is restricted to (−1,1).To obtain the representations of entities at different entity
locations, the tail-entity vector t ∈ Rd, rather than projection, is used directly for the
similarity operation as S(h, r, t) = σ(t · chr), where σ(z) = 1

1+e−z is used to restrict the final
output to (0,1) as the confidence score.

On the basis of ProjE, ProjFE [177] improves the combination operator by adding
the fuzzy-membership degree, which is used to measure the degree of confidence that
an entity belongs to a certain concept, to improve the performance of the model with
different degrees of positive and negative samples. Because a large number of translation-
matrix calculations are omitted, the model has a very small number of parameters. Unlike
previous models, ProjFE uses binary vectors to represent fuzzy embeddings for projection
work. ProjFE has the same combination operations as ProjE, except that it adds the
fuzzy-membership degree µe, µr for fuzzy entities and relationships, where the fuzzy-
membership degree is defined as µ = e−

(x−a
σ

)2, x ∈ (0, ∞), a = (a1, a2, ..., an), ai ∈ [0.5, 1].

The combination operator is defined as e⊕ r = µeDee + µrDrr + bc =
(

e−
(xe−a

σ

)2
)

Dee +(
e−

(xr−a
σ

)2
)

Drr + bc. The scoring function of ProjFE is defined as in Equation (26):

S(e)i = s(µcDcr(e⊕ r) + bs) =

sigmoid

((
e−

(
xc − a

σ

)2
)

Wc
[i,:] Re LU(e⊕ r) + bs

)
(26)

where Dc is a candidate-entity matrix, µc is the candidate fuzzy degree, bs is the calculated
bias, and Wc

[i,:] is the matrix of the ith candidate entity.
Kipf et al. proposed a simple but effective hierarchical-propagation rule running di-

rectly on a graph with a neural-network model, a GCN. This is the idea of a local first-order
approximation derived from spectral convolution that motivates the convolution structure.
It can be scaled linearly on the edge of the graph to learn hidden layer representations for
encoding the local graphical structures and features of nodes. Its hierarchical-propagation

rules are as follows: H(l+1) = σ

(
D−

1
2 AD−

1
2 H(l)W(l)

)
, where A = A+ IN is the adjacency

matrix of a graph with self-connections, IN is the identity matrix, and Dii = ∑j Aij and
W(l) is a layer-specific trainable weight matrix. The GCN is a spectral method, and the
convolution theorem on the graph is used to define the graph convolution in the spectral
domain. Many spatial methods have been proposed, and their main idea is to define node
similarity by an aggregation function in the node domain.

Weighted GCN, known as SACN [26], is an end-to-end structure-aware convolutional
network that takes into account node connectivity, node attributes and relation types

Symmetry 2021, 13, 485 16 of 29

simultaneously. The model also defines an encoder and decoder. In the encoder part,
by introducing weights for different types of relations, SACN improves the GCN model to
obtain a weighted graph convolutional network (WGCN). It makes different trade-offs for
different types of relations when aggregating, so the multirelational graph can be regarded
as multiple single-relational graphs, where each subgraph contains a specific type of
relation. The decoder, called Conv-TransE, removes the reshaping operation from the input
entity and relation embeddings and lets the convolutional filters operate directly on input
entities and relations in the same dimension. Thus, the translation properties of TransE
remain, while the same prediction performance as ConvE is maintained. Furthermore,
SACN treats entity attributes as another type of node, called attribute nodes, which have
similar representations and operations as nodes. Its propagation process is defined for
node vi as in Equation (27):

hl+1
i = σ

(
∑

j∈Ni

αl
th

l
jW

l+hl
iW

l

)
(27)

CompGCN [25] is a novel GCN that uses composition operators from KGE methods
by jointly embedding both entities and relations in a relational graph. For a given entity,
it considers the outgoing edges of the original, inverse and self relations simultaneously
via the φ composition operator, defined as eo = φ(es, er), where the φ operator is restricted
to nonparameterized operations. The updating process in CompGCN is as follows: hv =

f

(
∑

(u,r)∈N(v)
Wλ(r)φ(eu, er)

)
, where eu and er are the initial features for entity u and relation

r, N(v) is the set of immediate neighbors of v for the outgoing edges, and wλ(r) ∈ Rd1×d2

is a relation-type specific parameter for the original wO, inverse wI , and self wS relations,
separately. Simultaneously, the relation embedding is transformed to hr = wrelzr, where
wrel ∈ Rd1×d2 is a transformation matrix that projects relations to the same space as entities;

zr is defined as a set of learnable basis vectors as zr =
B
∑

b=1
αbrvb, where αbr ∈ R is the

relation- and basis-specific learnable scale weight. In this paper, the φ operator is calculated
as follows, inspired by TransE, DistMult and HolE, to obtain the score:

Subtraction: φ(es, er) = es − er.
Multiplication: φ(es, er) = es ∗ er.
Circular correlation: φ(es, er) = es · er.
CompGCN is a general GCN-based model that addresses the shortcomings of over-

parameterization by sharing a relation embedding calculated using basis decomposition
across layers.

3.4. Connections between Typical Models

The category above is macrolevel, and there may be progressive correlations between
these models of different categories. Based on the coarse-grained categories above, we
made a more fine-grained category describing some representative models along five main
lines. In this way, we can understand the relationships between these models in depth.
These models include the representative models of the previous categories, including
CNN-based models, GCN-based models, TransE extensions and so on, some of which also
contain additional information.

In the first line, the introduced models are based on a CNN, as shown in Figure 4.

Hyper network
LiteralsGlobalityLocality

Main line 1:
CNN ConvE ConvKB LiteralE HypER

Figure 4. Main line 1: based on a CNN.

Symmetry 2021, 13, 485 17 of 29

In the second line, the introduced models contain contextual information, as shown in
Figure 5. The detailed descriptions are as follows:

1-hot
neighborhood Multi-hop

neighborhood
Entity descriptionsRelation

paths

Main line 2: Context
information PTransE DKRL RGCN CACL

Figure 5. Main line 2: contextual information.

In the third line, the introduced models all concern tensor or matrix production,
as shown in Figure 6. The detailed descriptions are as follows:

Fuzzy membership
degrees

ProjE+TransRCombination
operator

Main line 3: Tensor/
matrix production ProjE ProjR ProjFE

Figure 6. Main line 3: tensor or matrix production.

In the fourth line, the introduced models are all based on a GCN, as shown in Figure 7.
The detailed descriptions are as follows:

Composition operator

Translation assumption
Rotation assumption

Structure-aware
Node attributes

Multi-relational typeSingle relation
Connectivity

Main line 4:
GCN GCN

RGCN
(Relational_GCN)

SACN
(Weighted_GCN) TransGCN CompGCN

Figure 7. Main line 4: based on a GCN.

In the fifth line, the introduced models are all extensions of TransE, as shown in
Figure 8. The detailed descriptions are as follows:

Concepts
information Generalized

hyperplanes
World
embedding

Multidirectional
semantics

Translation

Main line 5:
Extension of TransE TransE TransMS TransW TransC TransGH

Figure 8. Main line 5: extensions of TransE.

4. Experiments
4.1. Experimental Settings

We conducted all the experiments targeting the link-prediction task in a unified
environment with a T640 Dell server, the Ubuntu 16.04 system, and an NVIDIA-SMI
418.67 GPU. The implementation of these model architectures was based on the PyTorch
framework. We also used the code provided in the original paper with the same settings to
obtain the best results.

Symmetry 2021, 13, 485 18 of 29

4.2. Dataset

We selected two datasets for our experiments, FB15k and FB15-237, which are the
standard datasets commonly used in this field. FB15k is a subset of Freebase, a large-scale
knowledge graph containing general knowledge facts. FB15k-237 is a subset of FB15k,
where inverse relations are deleted. Therefore, these datasets could be used to evaluate
the performance of the model more comprehensively. The details of these two datasets are
shown in Table 3.

Table 3. Statistics of the experimental datasets.

Dataset Entity Relation Triple Train Valid Test

FB15k 14,951 1345 592,213 483,142 50,000 59,071
FB15k-237 14,541 237 310,116 272,115 17,535 20,466

4.3. The Implemented Models

Based on the previous categories of the existing models and the analysis of the five
main lines, we selected several representative models for conducting the experiments,
including CNN-based, GCN-based, semantic-matching and TransE extensions, some of
which also fuse some important additional information. Therefore, these selected models
are representative for gaining deep insight into the existing models, and they are conven-
tional, recently proposed or highly cited. The implemented models are described below.

SACN [26] exploits a graph convolutional neural network and integrates relation
type information as well as node attribute information, which is not limited to the tra-
ditional method of embedding based only on triple information. HypER [24] improves
the ConvE model by providing a simple calculation method for sparsity and leveraging
a parameter binding mechanism, which uses a hypernetwork to perform weight sharing.
Bilinear+TR [78] introduces a type regularizer into the loss function, which fully consid-
ers the type information of entities. RW-LMLM [91] considers paths with three aspects
of information: entities, relations and order information. It draws on the random walk
algorithm and semantic-based models. LiteralE [115] introduces textual information as
the attribute information of entities. SimplE [152] encodes background knowledge into
an embedding by parameter sharing. It embeds relations and their inverse relations sepa-
rately. HAKE [60] refers to the idea of polar coordinates, and it considers the hierarchical
information of semantics. RotatE [35] replaces the traditional translation operation with a
rotation operation, which can be used to distinguish various relations, such as symmetry,
antisymmetry and composition. ConvE [22] is the first model to utilize the CNN frame-
work for KG completion. It uses embedded 2D convolution to predict missing links in
KGs. DistMult [20] and ComplEx [21] are traditional semantic-matching models based on
tensor decomposition. ComplEx models asymmetric relations. The information on these
models is summarized in Table 4.

4.4. Performance Analysis

As shown in Table 5, RotatE [35] and HypER [24] outperform the other models, which
indicates that the rotation operation used in translational-distance models and the hypernet-
work used in CNN-based models play important roles in improving performance. RotatE
uses the complex space and mines different types of relations (symmetry/antisymmetry,
inversion and composition); thus, different aspects of semantic information are modeled
well by this integration strategy. HypER and ConvE [22] are based on a CNN; the former
improves the latter by a hypernetwork, which can be used to perform weight sharing
across layers and dynamically synthesize weights given inputs. RW-LMLM [91] takes into
account both the order information and random walk algorithm, and it has the capability
of dealing with underlying semantic information. SACN [26] also performs well among
these models; it uses the relation types and entity attributes in the GCN model structure.
On the whole, the top-performing models are all based on neural networks (GCNs or

Symmetry 2021, 13, 485 19 of 29

CNNs), from which we can conclude that the advanced neural-network structure, with its
ability to generate rich and expressive feature embeddings, is helpful in the KGE task.
The performance of conventional models such as translation models (TransE) and semantic
models (DistMult and ComplEx) is not good. SimplEx [152] has low performance for
FB15k-237 and high performance for FB15k because FB15k contains inverse relations and
SimplEx can model the inverse relations appropriately. For HAKE [60], we believe that
the polar coordinates may have great benefits because of their particular structure, which
enables them to mine considerable hidden semantic structure information. In terms of
Bilinear+TR [78] and LiteralE [115], we can see that adding the entity type, text and other
information helps to improve performance.

Table 4. Implemented models.

Categories Model Embedding Space Additional Information Scoring Function

Based on RotatE Complex None −‖h ◦ r− t‖
translation space

distance HAKE Vector None ‖hm ◦ rm − tm‖2 +
λ
∥∥sin

((
hp + rp − tp

)
/2
)∥∥

1
space

Based on RW-LMLM Matrix Order so f t max
(
hi

nWhWT
E
)

semantic space information
information SimplE Vector Background 1

2

(〈
hei , vr , tej

〉
+
〈

hej , vr−1 , tei

〉)
space knowledge

LiteralE Vector Literal fX
(

g(ei , li), g
(
ej, lj

)
, rk
)

space information
Bilinear+TR Tensor Entity xT

S Wrxt
space types

ComplEx Complex None Re(〈h, r, t〉)
space

DistMult Vector None (〈h, r, t〉)
space

Based on SACN Vector Relation f (vec(M(es, er))W)eo
neural space types

network ConvE Vector None f (vec(f ([es; rr] ∗ w))W)eo
space

HypER Vector None f
(
vec
(
e1 ∗ vec−1(wr H)

)
W
)
e2

space

As for LiteralE [115], it does not obtain only good results. For FB15k, only ComplEx
obtains good results upon adding literal information, while for FB15-237, only DistMult
improves slightly after adding literal information. For ConvE, a neural-network model,
adding literal data does not achieve better results but worse results. LiteralE combines
literal vectors (only numerical information is involved in this model) and an entity em-
bedding as the input for training. DistMult uses a simple bilinear formula and matrix
multiplication to learn embeddings. Its scoring function can only capture pairwise interac-
tions of the same dimension between entities. Therefore, this simple embedding can only
deal with symmetric relations. We suspect that this is the reason that literal information
does not work. However, for FB15k-237, the result of DistMult is slightly improved due
to the deletion of the inverse relationship. Because ComplEx introduces a complex vector
space and can deal with asymmetric relations, it has a good response to literal information
for FB15k but not FB15k-237. For ConvE, we believe that the neural-network model is
able to aggregate the domain information well, so it is not sensitive to the addition of
literal vectors. It performs even worse, which we guess is because of the large number of
parameters from LiteralE and itself. In addition, we added textual information on the basis
of numerics for LiteralE (LiteralE+text+DistMult), and the experimental results show that
the performance was similarly worse. We speculate that simply adding textual information
to the entity embedding of the input for training does not play a very important role. We
should continuously aggregate effective domain information in the process of training and
try to reduce the number of parameters. Moreover, the text information should not be only

Symmetry 2021, 13, 485 20 of 29

numerical information but should also include the entity type, entity attribute, path and
other additional information.

Compared with traditional models, the latest models have their own advantages.
Generally, they have achieved better results, benefiting from their own unique model
structures and sampling technologies or adding important additional information. It is
safe to conclude that the models using additional information and taking advantage of
neural networks have better performance.

Table 5. Results for FB15k-237 (left) and FB15k (right).

Model
FB15k-237 FB15k

Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

RotatE 0.2471 0.3802 0.5370 0.3432 0.7387 0.8240 0.8797 0.7905
HAKE 0.2561 0.3871 0.5488 0.3523 0.5745 0.7614 0.8482 0.6809

Bilinear+ 0.1288 0.1524 0.1912 0.1503 0.1522 0.1584 0.1695 0.1604
TR-TransE
Bilinear+ 0.2370 0.3549 0.4855 0.3246 0.4119 0.5683 0.6586 0.5064

TR-bilinear
DistMult 0.2129 0.3215 0.4635 0.2953 0.3055 0.4230 0.5149 0.3785
ComplEx 0.2014 0.3165 0.4526 0.2851 0.4407 0.5366 0.6168 0.5028
LiteralE+ 0.2192 ↓ 0.3285 ↓ 0.4651 ↓ 0.3013 ↓ 0.2730 ↓ 0.3537 ↓ 0.4431 ↓ 0.3323 ↓

text+DistMult
LiteralE+ 0.2209 0.3279 0.4628 0.3022 0.2917 ↓ 0.3820 ↓ 0.4758 ↓ 0.3555 ↓
DistMult
LiteralE+ 0.1936 ↓ 0.3029 ↓ 0.4397 ↓ 0.2753 ↓ 0.5138 0.6102 0.6963 0.5777
ComplEx
LiteralE+ 0.2092 ↓ 0.3277 ↓ 0.4675 ↓ 0.2963 ↓ 0.6055 ↓ 0.7014 ↓ 0.7768 ↓ 0.6667 ↓

ConvE
SimplE 0.0895 0.1701 0.3170 0.1623 0.6593 0.7758 0.8434 0.7283

RW-LMLM 0.2249 0.3396 0.4859 0.3109 0.6767 0.7947 0.8648 0.7466
ConvE 0.2212 0.3371 0.4787 0.3070 0.6250 0.7254 0.7956 0.6874
SACN 0.2522 0.3699 0.5154 0.3400 - - - -
HypER 0.2482 0.3629 0.5080 0.3335 0.7005 0.8167 0.8799 0.7668

4.5. Training Time Analysis

Different model architectures critically affect the computational workload. Concerning
the training time consumption, we analyzed these models in detail. The results obtained are
consistent with the previous model description. See Table 6. Generally, the time efficiencies
of the models based on neural networks are relatively low due to the introduction of
more parameters.

1. For CNN-based models, the initial model ConvE, which introduces numerous pa-
rameters because it uses an embedded 2D convolution, is very time-consuming for
training. Similarly, for LiteralE, the introduction of additional information and its
complex model structure lead to some additional parameter overhead. While HypER
utilizes a 1D relation-specific filter and a nonlinear (quadratic) combination of entity
and relation embeddings via hypernetworks to perform weight sharing, it has many
fewer parameters than ConvE, so it saves much training time.

2. Semantic matching models such as DistMult and ComplEx all suffer from longer
training times.

3. Translational distance models such as HAKE and RotatE all have shorter training
times because the translational-distance model has a relatively simple model structure
and scoring function without too many parameters.

Symmetry 2021, 13, 485 21 of 29

4. The bilinear+TR model has the shortest training time, with a type regularizer incor-
porated into the loss function, which fully considers the type information of entities.
The times of the linear models are short, but their performance is not good.

5. LiteralE introduces some overhead in terms of the number of parameters compared
to the base method, leading to a long training time. This is due to the choice of the
core function g, which takes an entity’s embedding and a literal vector as inputs and
maps them to a vector of the same dimension as the entity embedding. Thus, it can
make much effort in this step to choose a better function.

Table 6. Training time used for FB15k.

Categories Models Training Time

Based on HAKE 4.8908 h
translation distance RotatE 6.9708 h

Based on Bilinear+TR_bilinear 1.8083 h
semantic Bilinear+TR_transE 1.8935 h

information SimplE 4.4111 h
LiteralE-ComplEx 11.1810 h

DistMult 31.5515 h
RW-LMLM 33.6141 h
ComplEx 38.1560 h

LiteralE-DistMult 42.3798 h
LiteralE-text-DistMult 44.9654 h

Based on HypER 8.9695 h
neural ConvE 50.8799 h

network LiteralE-ConvE 60.1813 h

4.6. Suggestions for Improvement

Based on the previous model descriptions and experimental results, we can conclude
that for factorization-based models, the sparsity and parameters are the key factors to be
considered. It is revealed that reducing the computational complexity brought about by
sparsity and conducting parameter sharing will greatly improve the overall performance.
For translational-distance models, translating the head entity to the tail entity is critical
for obtaining a concise and efficient scoring function. Additional efforts in the embedding
space will also make a difference. Furthermore, it is nontrivial to exploit deeper semantic
information and a better model structure to help improve the performance of models by
using a neural network and adding additional information.

5. Conclusions

Knowledge graph embedding (KGE), as the technology of embedding entities and
relations into a low-dimensional continuous vector space, has made remarkable progress
in offering precise, effective and structural representation of information in many fields.
This paper reviewed the main technologies of KGE, categorized the existing models into
two types based on whether or not they use additional information besides facts, and then
overviewed the advantages and disadvantages of representative models in each category.
We focused on the task of link prediction and carried out experiments on several typical
models in a unified environment. Through the analysis of the experimental results, we
found that different model architectures enjoyed unique advantages in different facets.
According to our research on KGE models and the analysis and comparison of the ex-
perimental results, we can roughly summarize two points about how to improve the
performance of KGE models, as follows:

• Neural network models with excellent structure and a small number of parameters
have good performance. Especially, the graph convolution neural network has a strong
ability to mine the underlying semantics of knowledge graphs. In addition, if the node
information of a multi-hop domain can be aggregated, the accuracy of the model in
specific tasks can be greatly improved.

Symmetry 2021, 13, 485 22 of 29

• Models with additional information, such as node attributes, node types, relationship
types, prior knowledge and so on, have better performance.

We hope that this survey can provide researchers with new insights and a stepping
stone to help them conduct research better. Of course, there are some limitations in our
survey. Due to space constraints, we will conduct in-depth research into the following
aspects in future research:

1. This survey only focused on the link prediction of KGE; we will research more tasks
of knowledge graph completion in the future, such as entity prediction, entity classifi-
cation and triple classification.

2. This survey only used two datasets (FB15k and FB15k-237) for the experiments; we
will use more knowledge graph datasets, such as WN18, WN18RR and FB13.

3. This survey only focused on static graphs; we will explore new model architectures,
such as dynamic graphs and heterogeneous graphs.

4. The categories we proposed for KGE models may not be the perfect ones; we will
attempt to mine new category strategies for KGE models.

Author Contributions: Conceptualization, M.W., L.Q. and X.W.; methodology, M.W. and X.W.;
software, L.Q.; validation, M.W., L.Q. and X.W.; formal analysis, M.W., L.Q. and X.W.; investigation,
M.W. and L.Q.; resources, M.W. and X.W.; data curation, L.Q.; writing—original draft preparation,
L.Q.; writing—review and editing, M.W. and X.W.; visualization, L.Q.; supervision, M.W. and X.W.;
project administration, M.W.; funding acquisition, M.W. and X.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Fujian Provincial Department of Science and Technology
under Grant No. 2019H0001, the National Natural Science Foundation of China under Grant No.
61702432, the Fundamental Research Funds for Central Universities of China under Grant No.
20720180070, and the International Cooperation Projects of Fujian Province in China under Grant
No. 2018I0016.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bollacker, K.D.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A Collaboratively Created Graph Database for Structuring Human

Knowledge; SIGMOD: Vancouver, BC, Canada, 2008; pp. 1247–1250.
2. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D. Mendes, P. N.; Hellmann, S.; Morsey, M.; Kleef, P. V.; Auer, S.;

et al. DBpedia—A Large-Scale, Multilingual Knowledge base Extracted from Wikipedia; Springer: Berlin/Heidelberg, Germany, 2015;
Volume 6, pp. 167–195.

3. Mahdisoltani, F.; Biega, J.A.; Suchanek, F.M. YAGO3: A Knowledge Base from Multilingual Wikipedias. In Proceedings of the
CIDR, Asilomar, CA, USA, 4–7 January 2015.

4. Wang, R.; Wang, M.; Liu, J.; Chen, W.; Cochez, M.; Decker, S. Leveraging Knowledge Graph Embeddings for Natural Language
Question Answering. In Proceedings of the DASFAA 2019, Chiang Mai, Thailand, 22–25 April 2019; pp. 659–675.

5. Musto, C.; Basile, P.; Semeraro, G. Embedding Knowledge Graphs for Semantics-aware Recommendations based on DBpedia.
In Proceedings of the UMAP 2019, Larnaca, Cyprus, 9–12 June 2019; pp. 27–31.

6. Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2724–2743. [CrossRef]

7. Cai, H.; Zheng, V.W.; Chang, K.C. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications.
IEEE Trans. Knowl. Data Eng. 2017, 30, 1616–1637. [CrossRef]

8. Siddhant, A. A Survey on Graph Neural Networks for Knowledge Graph Completion. arXiv 2020, arXiv:2007.12374.
9. Ma, J.; Qiao, Y.; Hu, G.; Wang, Y.; Zhang, C.; Huang, Y.; Sangaiah, A.K.; Wu, H.; Zhang, H.; Ren, K. ELPKG: A High-Accuracy

Link Prediction Approach for Knowledge Graph Completion. Symmetry 2019, 11, 1096. [CrossRef]
10. Chang, K.; Yih,W.; Yang, B.; Meek, C. Typed Tensor Decomposition of Knowledge Bases for Relation Extraction. In Proceedings of

the EMNLP, Doha, Qatar, 25–29 October 2014; pp. 1568–1579.

http://doi.org/10.1109/TKDE.2017.2754499
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.3390/sym11091096

Symmetry 2021, 13, 485 23 of 29

11. Lao, N.; Mitchell, T.; Cohen, W.W. Random Walk Inference and Learning in A Large Scale Knowledge Base. In Proceedings of the
EMNLP, Edinburgh, UK, 27–31 July 2011; pp. 529–539.

12. Lu, F.; Cong, P.; Huang, X. Utilizing Textual Information in Knowledge Graph Embedding: A Survey of Methods and Applications.
IEEE Access 2020, 8, 92072–92088. [CrossRef]

13. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-Relational Data.
In Proceedings of the NIPS, Lake Tahoe, NV, USA, 5–8 December 2013.

14. Minervini, P.; d’ Amato, C.; Fanizzi, N.; Esposito, F. Efficient Learning of Entity and Predicate Embeddings for Link Prediction in
Knowledge Graphs. In Proceedings of the URSW@ISWC, Bethlehem, PA, USA, 11–15 October 2015; pp. 26–37.

15. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge Graph Embedding by Translating on Hyperplanes; AAAI Press: Palo Alto, CA, USA,
2014; pp. 1112–1119.

16. Fan, M.; Zhou, Q.;Chang, E.; Zheng, T.F. Transition-based Knowledge Graph Embedding with Relational Mapping Properties.
In Proceedings of the PACLIC, Phuket, Thailand, 12–14 December 2014; pp. 328–337.

17. Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; Zhu, X. Learning Entity and Relation Embeddings for Knowledge Graph Completion; AAAI Press: Palo
Alto, CA, USA, 2015; pp. 2181–2187.

18. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the NIPS, Lake Tahoe, NV, USA, 5–8 December 2013; pp. 3111–3119.

19. Liu, Z.; Sun, M.; Lin, Y.; Xie, R. Knowledge Representation Learning: A Review. J. Comp. Res. Develop. 2016, 247–261.
20. Yang, B.; Yih, W.; He, X.; Gao, J.; Deng, L. Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In Proceedings of the ICLR (Poster), San Diego, CA, USA, 7–9 May 2015.
21. Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex Embeddings for Simple Link Prediction; ICML: New York City,

NY, USA, 2016; pp. 2071–2080.
22. Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2D Knowledge Graph Embeddings; AAAI Press: Palo Alto, CA,

USA, 2017; pp. 1811–1818.
23. Nguyen, D.Q.; Nguyen, T.D.; Nguyen, D.Q.; Phung, D.Q. A Novel Embedding Model for Knowledge Base Completion Based on

Convolutional Neural Network. In Proceedings of the NAACL-HLT, New Orleans, LA, USA, 1–6 June 2018; pp. 327–333.
24. Balazevic, I.; Allen, C.; Hospedales, T.M. Hypernetwork Knowledge Graph Embeddings. In Proceedings of the ICANN

(Workshop), Munich, Germany, 17–19 September 2019; pp. 553–565.
25. Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P.P. Composition-based Multi-Relational Graph Convolutional Networks. In

Proceedings of the ICLR, Addis Ababa, Ethiopia, 26–30 April 2020.
26. Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-End Structure-Aware Convolutional Networks for Knowledge Base

Completion; AAAI Press: Palo Alto, CA, USA, 2019; pp. 3060–3067.
27. Jagvaral, B.; Lee, W.; Roh, J.S.; Kim, M.S.; Park, Y.T. Path-based reasoning approach for knowledge graph completion using

CNN-BiLSTM with attention mechanism. Expert Syst. Appl. 2020, 142, 112960. [CrossRef]
28. Rossi, A.; Barbosa, D.; Firmani, D.; Matinata, A.; Merialdo, P. Knowledge graph embedding for link prediction: A comparative

analysis. ACM Trans. Knowl. Discov. Data TKDD 2021, 15, 1–49.
29. Dai, Y.; Wang, S.; Xiong, N. N.; Guo, W. A survey on knowledge graph embedding: Approaches, applications and benchmarks.

Electronics 2020, 9, 750. [CrossRef]
30. Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948.1–112948.21.

[CrossRef]
31. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A Survey on Knowledge Graphs: Representation, Acquisition and Applications.

arXiv 2020, arXiv:2002.00388.
32. Lin, Y.; Han, X.; Xie, R.; Liu, Z.; Sun, M. Knowledge Representation Learning: A Quantitative Review. arXiv 2018, arXiv:1812.10901.
33. Nguyen, D.Q. An overview of embedding models of entities and relationships for knowledge base completion. arXiv 2017,

arXiv:1703.08098.
34. Kazemi, S.M.; Goel, R.; Jain, K.;Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P. Representation Learning for Dynamic Graphs:

A Survey. J. Mach. Learn. Res. 2020, 21, 1–73.
35. Sun, Z.; Deng, Z.H.; Nie, J.Y. Tang, J. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. In

Proceedings of the ICLR(Poster), New Orleans, LA, USA, 6–9 May 2019.
36. Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge Graph Embedding via Dynamic Mapping Matrix; ACL: Beijing, China, 2015;

pp. 687–696.
37. Jia, Y.; Wang, Y.; Lin, H.; Jin, X.; Cheng, X. Locally Adaptive Translation for Knowledge Graph Embedding; AAAI: Phoenix, AZ, USA,

2016; pp. 992–998.
38. Ji, G.; Liu, K.; He, S.; Zhao, J. Knowledge Graph Completion with Adaptive Sparse Transfer Matrix; AAAI Press: Palo Alto, CA, USA,

2016; pp. 985–991.
39. Xiao, H.; Huang, M.; Zhu, X. From One Point to a Manifold: Knowledge Graph Embedding for Precise Link Prediction. In

Proceedings of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 1315–1321.
40. Nguyen, D.Q.; Sirts, K.; Qu, L.; Johnson, M. STransE: A novel embedding model of entities and relationships in knowledge bases.

In Proceedings of the HLT-NAACL, San Diego, CA, USA, 21 May 2016; pp. 460–466.

http://dx.doi.org/10.1109/ACCESS.2020.2995074
http://dx.doi.org/10.1016/j.eswa.2019.112960
http://dx.doi.org/10.3390/electronics9050750
http://dx.doi.org/10.1016/j.eswa.2019.112948

Symmetry 2021, 13, 485 24 of 29

41. Feng, J.; Huang, M.; Wang, M.; Zhou, M.; Hao, Y.; Zhu, X. Knowledge Graph Embedding by Flexible Translation. In Proceedings
of the KR, Cape Town, South Africa, 25–29 April 2016; pp. 557–560.

42. Chang, L.; Zhu, M.; Gu, T.; Bin, C.; Qian, J.; Zhang, J. Knowledge graph embedding by dynamic translation. IEEE Access 2017, 5,
20898–20907. [CrossRef]

43. Zhang, C.; Zhou, M.; Han, X.; Hu, Z.; Ji, Y. Knowledge Graph Embedding for Hyper-Relational Data. J. Tsinghua Univ. Nat. Sci.
Ed. 2017, 22, 185–197. [CrossRef]

44. Du, Z.; Hao, Z.; Meng, X.; Wang, Q. CirE: Circular Embeddings of Knowledge Graphs. In Proceedings of the DASFAA, Suzhou,
China, 27–30 May 2017; pp. 148–162.

45. Tan, Z.; Zhao, X.; Fang, Y.; Xiao, W. GTrans: Generic knowledge graph embedding via multi-state entities and dynamic relation
spaces. IEEE Access 2018, 6, 8232-8244. [CrossRef]

46. Zhu, J.; Jia, Y.; Xu, J.; Qiao, J.; Cheng, X. Modeling the Correlations of Relations for Knowledge Graph Embedding. Comput. Sci.
Technol. 2018, 33, 323–334. . [CrossRef]

47. Do, K.; Tran, T.; Venkatesh, S. Knowledge Graph Embedding with Multiple Relation Projections. In Proceedings of the ICPR,
Beijing, China, 20–24 August 2018; pp. 332–337.

48. Zhu, Q.; Zhou, X.; Tan, J.; Liu, P.; Guo, L. Learning Knowledge Graph Embeddings via Generalized Hyperplanes. In Proceedings
of the ICCS, Wuxi, China, 11–13 June 2018; pp. 624–638.

49. Geng, Z.; Li, Z.; Han, Y. A Novel Asymmetric Embedding Model for Knowledge Graph Completion. In Proceedings of the ICPR,
Beijing, China, 20–24 August 2018; pp. 290–295.

50. Zhang, Y.; Du, Z.; Meng, X. EMT: A Tail-Oriented Method for Specific Domain Knowledge Graph Completion. In Proceedings of
the PAKDD, Macau, China, 14–17 April 2019; pp. 514–527.

51. Yao, J.; Zhao, Y. Knowledge Graph Embedding Bi-vector Models for Symmetric Relation. In Chinese Intelligent Systems Conference;
Springer: Singapore, 2019.

52. Yang, S.; Tian, J.; Zhang, H.; Yan, J.; He, H.; Jin, Y. TransMS: Knowledge Graph Embedding for Complex Relations by Multidirec-
tional Semantics. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 1935–1942.

53. Ebisu, T.; Ichise, R. Generalized Translation-Based Embedding of Knowledge Graph. IEEE Trans. Knowl. Data Eng. 2020, 32,
941–951. [CrossRef]

54. Cui, Z.; Liu, S.; Pan, L.; He, Q. Translating Embedding with Local Connection for Knowledge Graph Completion. In Proceedings
of the AAMAS, Auckland, New Zealand, 9–13 May 2020; pp. 1825–1827.

55. He, S.; Liu, K.; Ji, G.; Zhao, J. Learning to Represent Knowledge Graphs with Gaussian Embedding. In Proceedings of the CIKM,
Melbourne, VIC, Australia, 19–23 October 2015; pp. 623–632.

56. Xiao, H.; Huang, M.; Hao, Y.; Zhu, X. TransG: A Generative Mixture Model for Knowledge Graph Embedding. ACL 2015, 1,
2316–2325.

57. Song, H. J.; Park, S. B. Enriching translation-based knowledge graph embeddings through continual learning. IEEE Access 2018, 6,
60489–60497. [CrossRef]

58. Ebisu, T.; Ichise, R. TorusE: Knowledge Graph Embedding on a Lie Group; AAAI Press: Palo Alto, CA, USA, 2018; pp. 1819–1826.
59. Zhang, S.; Tay, Y.; Yao, L.; Liu, Q. Quaternion Knowledge Graph Embeddings. arXiv 2019, arXiv:1904.10281.
60. Zhang, Z.; Cai, J.; Zhang, Y.; Wang, J. Learning Hierarchy-Aware Knowledge Graph Embeddings for Link Prediction. In

Proceedings of the AAAI 2020, New York, NY, USA, 7–12 February 2020; pp. 3065–3072.
61. Kong, X.; Chen, X.; Hovy, E.H. Decompressing Knowledge Graph Representations for Link Prediction. arXiv 2019, arXiv:1911.04053.
62. Chen, Y.; Liu, J.; Zhang, Z.; Wen, S.; Xiong, W. MobiusE: Knowledge Graph Embedding on Mobius Ring. arXiv 2021, arXiv-2101.
63. Chen, H.; Wang, W.; Li, G.; Shi, Y. A quaternion-embedded capsule network model for knowledge graph completion. IEEE Access

2020, 8, 100890–100904. [CrossRef]
64. Nickel, M.; Tresp, V.; Kriegel, H.P. A Three-Way Model for Collective Learning on Multi-Relational Data. ICML, Washington,

D.C., USA, 28 June–2 July 2011; pp. 809–816.
65. Nickel, M.; Rosasco, L.; Poggio, T.A. Holographic Embeddings of Knowledge Graphs; AAAI: Phoenix, AZ, USA, 2016; pp. 1955–1961.
66. Liu, H.; Wu, Y.; Yang, Y. Analogical Inference for Multi-Relational Embeddings; ICML: Sydney, NSW, Australia, 2017; pp. 2168–2178.
67. Lacroix, T.; Usunier, N.; Obozinski, G. Canonical Tensor Decomposition for Knowledge Base Completion. In Proceedings of the

ICML, Vienna, Austria, 23–31 July 2018; pp. 2869–2878.
68. Balazevic, I.; Allen, C.; Hospedales, M,T. TuckER: Tensor Factorization for Knowledge Graph Completion; EMNLP/IJCNLP: Hong

Kong, China, 2019; pp. 5184–5193.
69. Mohamed, S.K.; Novácek, V. Link Prediction Using Multi Part Embeddings. In Proceedings of the ESWC, Portoroz, Slovenia, 2–6

June 2019; pp. 240–254.
70. Zhang, W.; Paudel, B.; Zhang, W.; Bernstein, A.; Chen, H. Interaction Embeddings for Prediction and Explanation in Knowledge Graphs;

WSDM: Melbourne, VIC, Australia, 2019; pp. 96–104.
71. Xue, Y.; Yuan, Y.; Xu, Z.; Sabharwal, A. Expanding Holographic Embeddings for Knowledge Completion. In Proceedings of the

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018.
72. Tran, H.N.; Takasu, A. Multi-Partition Embedding Interaction with Block Term Format for Knowledge Graph Completion.

In Proceedings of the ECAI, Copenhagen, Denmark, 19–24 July 2020; pp. 833–840.

http://dx.doi.org/10.1109/ACCESS.2017.2759139
http://dx.doi.org/10.23919/TST.2017.7889640
http://dx.doi.org/10.1109/ACCESS.2018.2797876
http://dx.doi.org/10.1007/s11390-018-1821-8
http://dx.doi.org/10.1109/TKDE.2019.2893920
http://dx.doi.org/10.1109/ACCESS.2018.2874656
http://dx.doi.org/10.1109/ACCESS.2020.2997177

Symmetry 2021, 13, 485 25 of 29

73. Xie, R.; Liu, Z.; Sun, M.g. Representation Learning of Knowledge Graphs with Hierarchical Types. In Proceedings of the IJCAI,
New York, NY, USA, 9–15 July 2016; pp. 2965–2971.

74. Guo, S.; Wang, Q.; Wang, B.; Wang, L.; Guo, L. SSE: Semantically Smooth Embedding for Knowledge Graphs. IEEE Trans. Knowl.
Data Eng. 2017, 29, 884–897. [CrossRef]

75. Jiang, X.; Wang, Q.; Qi, B.; Qiu, Y.; Li, P.; Wang, B. Attentive Path Combination for Knowledge Graph Completion. In Proceedings
of the ACML, Seoul, Korea, 15–17 November 2017; pp. 590–605.

76. Moon, C.; Jones, P.; Samatova, N.F. Learning Entity Type Embedding for Knowledge Graph Completion. In Proceedings of the
CIKM, Singapore, 6–10 November 2017; pp. 2215–2218.

77. Ma, S.; Ding, J.; Jia, W.; Wang, K.; Guo, M. TransT: Type-Based Multiple Embedding Representations for Knowledge Graph
Completion. In Proceedings of the ECML/PKDD, Skopje, Macedonia, 18–22 September 2017; pp. 717–733.

78. Kotnis, B.; Nastase, V. Learning Knowledge Graph Embeddings with Type Regularizer; K-CAP: Austin, TX, USA, 2017; pp. 1–4.
79. Rahman, M.M.; Takasu, A. Knowledge Graph Embedding via Entities’ Type Mapping Matrix. In Proceedings of the ICONIP,

Siem Reap, Cambodia, 13–16 December 2018.
80. Zhou, B.; Chen, Y.; Liu, K.; Zhao, J. Relation and Fact Type Supervised Knowledge Graph Embedding via Weighted Scores.

In Proceedings of the CCL, Kunming, Chinapp, 18–20 October 2019; pp. 258–267.
81. Ma, J.; Zhong, M.; Wen, J.; Chen, W.; Zhou, X.; Li, X. RecKGC: Integrating Recommendation with Knowledge Graph Completion.

In Proceedings of the ADMA, Dalian, China, 21–23 November 2019; pp. 250–265.
82. Lin, X.; Liang, Y.; Giunchiglia, F.; Feng, X.; Guan, R. Relation path embedding in knowledge graphs. Neur. Comput. Appl. 2019, 31,

5629–5639. [CrossRef]
83. Lin, Y.; Liu, Z.; Luan, H.B.; Sun, M.; Rao, S.; Liu, S. Modeling Relation Paths for Representation Learning of Knowledge Bases.

arXiv 2015, arXiv:1506.00379.
84. Zeng, P.; Tan, Q.; Meng, X.; Zhang, H.; Xu, J. Modeling Complex Relationship Paths for Knowledge Graph Completion. IEICE

Transact. 2018, 101, 1393–1400. [CrossRef]
85. Jia, Y.; Wang, Y.; Jin, X.; Cheng, X. Path-specific knowledge graph embedding. Knowl. Based Syst. 2018, 151, 37–44. [CrossRef]
86. Xiong, S.; Huang, W.; Duan, P. Knowledge Graph Embedding via Relation Paths and Dynamic Mapping Matrix. In Proceedings

of the ER Workshops, Xi’an, China, 22–25 October 2028; pp. 106–118.
87. Zhang, M.; Wang, Q.; Xu, W.; Li, W.; Sun, S. Discriminative Path-Based Knowledge Graph Embedding for Precise Link Prediction.

In Proceedings of the ECIR, Grenoble, France, 26–29 March 2018.
88. Nastase, V.; Kotnis, B. Abstract Graphs and Abstract Paths for Knowledge Graph Completion. In Proceedings of the

*SEM@NAACL-HLT 2019, Minneapolis, MN, USA, 6–7 June 2019.
89. Sun, J.; Xu, G.; Cheng, Y.; Zhuang, T. Knowledge Map Completion Method Based on Metric Space and Relational Path.

In Proceedings of the 2019 14th International Conference on Computer Science & Education (ICCSE), Toronto, ON, Canada, 19–21
August 2019; pp. 108–113.

90. Wang, Q.; Huang, P.; Wang, H.; Dai, S.; Jiang, W.; Liu, J.; Lyu, Y.; Zhu, Y.; Wu, H. CoKE: Contextualized Knowledge Graph
Embedding. arXiv 2019, arXiv:1911.02168.

91. Wang, C.; Yan, M.; Yi, C.; Sha, Y. Capturing Semantic and Syntactic Information for Link Prediction in Knowledge Graphs.
In Proceedings of the ISWC, Auckland, New Zealand, 26–30 October 2019; pp. 664–679.

92. Nathani, D.; Chauhan, J.; Sharma, C.; Kaul, M. Learning Attention-based Embeddings for Relation Prediction in Knowledge
Graphs. In Proceedings of the ACL 2019, Florence, Italy, 28 July–2 August 2019.

93. Wang, R.; Li, B.; Hu, S.; Du, W.; Zhang, M. Knowledge Graph Embedding via Graph Attenuated Attention Networks. IEEE Access
2020, 8, 5212–5224. [CrossRef]

94. Xie, R.; Liu, Z.; Jia, J.; Luan, H.; Sun, M. Representation Learning of Knowledge Graphs with Entity Descriptions; AAAI Press: Palo
Alto, CA, USA, 2016; pp. 2659–2665.

95. Xiao, H.; Huang, M.; Meng, L.; Zhu, X. SSP: Semantic Space Projection for Knowledge Graph Embedding with Text Descriptions; AAAI
Press: Palo Alto, CA, USA, 2017; pp. 3104–3110.

96. Chen, M.; Tian, Y.; Chang, K.-W.; Skiena, S.; Zaniolo, C. Co-training Embeddings of Knowledge Graphs and Entity Descriptions
for Cross-Lingual Entity Alignment. In Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 3998–4004.

97. Zhao, M.; Zhao, Y.; Xu, B. Knowledge Graph Completion via Complete Attention between Knowledge Graph and Entity
Descriptions. In Proceedings of the CSAE, Sanya, China, 22–24 October 2019.

98. Veira, N.; Keng, B.; Padmanabhan, K.; Veneris, A.G. Unsupervised Embedding Enhancements of Knowledge Graphs using
Textual Associations. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 5218–5225.

99. Shah, H.; Villmow, J.; Ulges, A.; Schwanecke, U.; Shafait, F. An Open-World Extension to Knowledge Graph Completion Models; AAAI
Press: Palo Alto, CA, USA, 2019; pp. 3044–3051.

100. Wang, S.; Jiang, C. Knowledge graph embedding with interactive guidance from entity descriptions. IEEE Access 2019, 7,
156686–156693.

101. Ma, L.; Sun, P.; Lin, Z.; Wang, H. Composing Knowledge Graph Embeddings via Word Embeddings. arXiv 2019, arXiv:1909.03794.
102. Guo, S.; Wang, Q.; Wang, L.; Wang, B.; Guo, L. Jointly embedding knowledge graphs and logical rules. In Proceedings of the

EMNLP, Austin, TX, USA, 1–4 November 2016; pp. 192–202.

http://dx.doi.org/10.1109/TKDE.2016.2638425
http://dx.doi.org/10.1007/s00521-018-3384-6
http://dx.doi.org/10.1587/transinf.2017EDP7398
http://dx.doi.org/10.1016/j.knosys.2018.03.020
http://dx.doi.org/10.1109/ACCESS.2019.2963367

Symmetry 2021, 13, 485 26 of 29

103. Yoon, H.-G.; Song, H.-J.; Park, S.-B.; Park, S.-Y. A Translation-Based Knowledge Graph Embedding Preserving Logical Property
of Relations. In Proceedings of the HLT-NAACL, San Diego, CA, USA, 21 May 2016; pp. 907–916.

104. Du, J.; Qi, K.; Wan, H.; Peng, B.; Lu, S.; Shen, Y. Enhancing Knowledge Graph Embedding from a Logical Perspective. In Proceed-
ings of the JIST, Gold Coast, Australia, 10–12 November 2017; pp. 232–247.

105. Han, X.; Zhang, C.; Sun, T.; Ji, Y.; Hu, Z. A triple-branch neural network for knowledge graph embedding. IEEE Access 2018, 6,
76606–76615. [CrossRef]

106. Yuan, J.; Gao, N.; Xiang, J. TransGate: Knowledge Graph Embedding with Shared Gate Structure; AAAI Press: Palo Alto, CA, USA,
2019; pp. 3100–3107.

107. Wang, M.; Rong, E.; Zhuo, H.; Zhu, H. Embedding Knowledge Graphs Based on Transitivity and Asymmetry of Rules.
In Proceedings of the PAKDD, Melbourne, VIC, Australia, 3–6 June 2018; pp. 141–153.

108. Wang, P.; Dou, D.; Wu, F.; Silva, N.; Jin, L. Logic Rules Powered Knowledge Graph Embedding. arXiv 2019, arXiv:1903.03772.
109. Zhang, J.; Li, J. Enhanced Knowledge Graph Embedding by Jointly Learning Soft Rules and Facts. Algorithms 2019, 12, 12.

[CrossRef]
110. Gu, Y.; Guan, Y.; Missier, P. Towards Learning Instantiated Logical Rules from Knowledge Graphs. arXiv 2020, arXiv-2003.
111. Das, R.; Godbole, A.; Dhuliawala, S.; Zaheer, M.; McCallum, A. A Simple Approach to Case-Based Reasoning in Knowledge Bases;

AKBC: San Francisco, CA, USA, 2020.
112. Das, R.; Godbole, A.; Monath, N.; Zaheer, M.; McCallum, A. Probabilistic Case-based Reasoning for Open-World Knowledge

Graph Completion. arXiv 2020, arXiv:2010.03548.
113. García-Durán, A.; Niepert, M. KBLRN: End-to-End Learning of Knowledge Base Representations with Latent, Relational, and

Numerical Features. In Proceedings of the UAI, Monterey, CA, USA, 6–10 August 2018; pp. 372–381.
114. Wu, Y.; Wang, Z. Knowledge Graph Embedding with Numeric Attributes of Entities. In Proceedings of the Third Workshop on

Representation Learning for NLP, Melbourne, Australia, 20 July 2018; pp. 132–136.
115. Kristiadi, A.; Khan, M.A.; Lukovnikov, D.; Lehmann, J.; Fischer, A. Incorporating Literals into Knowledge Graph Embeddings.

In Proceedings of the ISWC, Auckland, New Zealand, 26–30 October 2019; pp. 347–363.
116. Feng, M.-H.; Hsu, C.-C.; Li, C.-T.; Yeh, M.-Y.; Lin, S.-D. MARINE: Multi-relational Network Embeddings with Relational Proximity

and Node Attributes. In The World Wide Web Conference; ACM: New York, NY, USA, 2019; pp. 470–479.
117. Zhang, Z.; Cao, L.; Chen, X.; Tang, W.; Xu, Z.; Meng, Y. Repressentation Learning of Knowledge Graphs With Entity Attributes.

IEEE Access 2020, 7435–7441. [CrossRef]
118. Jiang, T.; Liu, T.; Ge, T.; Sha, L.; Li, S.; Chang, B.; Sui, Z. Encoding Temporal Information for Time-Aware Link Prediction.

In Proceedings of the EMNLP, Austin, TX, USA, 1–4 November 2016.
119. Esteban, C.; Tresp, V.; Yang, Y.; Baier, S.; Krompass, D. Predicting the co-evolution of event and Knowledge Graphs. In Proceedings

of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016.
120. Trivedi, R.; Dai, H.; Wang, Y.; Song, L. Know-evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs. In Proceedings

of the ICML, Sydney, NSW, Australia, 6–11 August 2017; Volume 70, pp. 3462–3471.
121. Jia, Y.; Wang, Y.; Jin, X.; Lin, H.; Cheng, X. Knowledge Graph Embedding: A Locally and Temporally Adaptive Translation-Based

Approach. ACM Trans. Web 2018, 12, 8:1–8:33 [CrossRef]
122. Dasgupta, S.S.; Ray, S.N.; Talukdar, P.P. HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding. In Proceed-

ings of the EMNLP, Jeju, Korea, 31 October–4 November 2018; pp. 2001–2011.
123. Xu, C.; Nayyeri, M.; Alkhoury, F.; Lehmann, J.; Yazdi, H.S. Temporal Knowledge Graph Completion Based on Time Series

Gaussian Embedding. In Proceedings of the ISWC, Athens, Greece, 2–6 November, 2020; pp. 654–671.
124. Chen, S.; Qiao, L.; Liu, B.; Bo, J.; Cui, Y.; Li, J. Knowledge Graph Embedding Based on Hyperplane and Quantitative Credibility.

In Proceedings of the MLICOM, Nanjing, China, 24–25 August 2019; pp. 583–594.
125. Tang, X.; Yuan, R.; Li, Q.; Wang, T.; Yang, H.; Cai, Y.; Song, H. Timespan-Aware Dynamic Knowledge Graph Embedding by

Incorporating Temporal Evolution. IEEE Access 2020, 8, 6849–6860. [CrossRef]
126. Jung, J.; Jung, J.; Kang, U. T-GAP: Learning to Walk across Time for Temporal Knowledge Graph Completion. arXiv 2020,

arXiv:2012.10595.
127. Wu, J.; Cao, M.; Cheung, J.K.; Hamilton, W.L. TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion.

arXiv 2020, arXiv:2010.03526.
128. Feng, J.; Huang, M.; Yang, Y.; Zhu, X. GAKE: Graph Aware Knowledge Embedding. In Proceedings of the COLING, Osaka,

Japan, 11–16 December 2016.
129. Zhou, C.; Liu, Y.; Liu, X.; Liu, Z.; Gao, J. Scalable Graph Embedding for Asymmetric Proximity; AAAI Press: Palo Alto, CA, USA, 2017;

pp. 2942–2948.
130. Zhang, W. Knowledge Graph Embedding with Diversity of Structures. In Proceedings of the WWW (Companion Volume), Perth,

Australia, 3–7 April 2017.
131. Pal, S.; Urbani, J. Enhancing Knowledge Graph Completion By Embedding Correlation. In Proceedings of the CIKM, Singapore,

6–10 November 2017; pp. 2247–2250.
132. Shi, J.; Gao, H.; Qi, G.; Zhou, Z. Knowledge Graph Embedding with Triple Context. In Proceedings of the CIKM, Singapore, 6–10

November 2017; pp. 2299–2302.
133. Gao, H.; Shi, J.; Qi, G.; Wang, M. Triple context-based knowledge graph embedding. IEEE Access 2018, 6, 58978-58989. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2884012
http://dx.doi.org/10.3390/a12120265
http://dx.doi.org/10.1109/ACCESS.2020.2963990
http://dx.doi.org/10.1145/3132733
http://dx.doi.org/10.1109/ACCESS.2020.2964028
http://dx.doi.org/10.1109/ACCESS.2018.2875066

Symmetry 2021, 13, 485 27 of 29

134. Li, W.; Zhang, X.; Wang, Y.; Yan, Z.; Peng, R. Graph2Seq: Fusion Embedding Learning for Knowledge Graph Completion. IEEE
Access 2019, 7, 157960–157971. [CrossRef]

135. Zhang, Z.; Zhuang, F.; Qu, M.; Lin, F.; He, Q. Knowledge Graph Embedding with Hierarchical Relation Structure. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018;
pp. 3198–3207.

136. Han, X.; Zhang, C.; Guo, C.; Sun, T.; Ji, Y. Knowledge Graph Embedding Based on Subgraph-Aware Proximity; AAAI Press: Palo Alto,
CA, USA, 2018; pp. 306–318.

137. Tan, Y.; Li, R.; Zhou, J.; Zhu, S. Knowledge Graph Embedding by Translation Model on Subgraph. In Proceedings of the HCC,
Mérida, Mexico, 5–7 December 2018; pp. 269–280.

138. Zhang, Y.; Yao, Q.; Chen, L. Neural Recurrent Structure Search for Knowledge Graph Embedding. arXiv 2019, arXiv: 1911.07132
139. Wan, G.; Du, B.; Pan, S.; Wu, J. Adaptive knowledge subgraph ensemble for robust and trustworthy knowledge graph completion.

World Wide Web 2020, 23, 471–490. [CrossRef]
140. Qiao, Z.; Ning, Z.; Du, Y.; Zhou, Y. Context-Enhanced Entity and Relation Embedding for Knowledge Graph Completion. arXiv

2020, arXiv:2012.07011.
141. Ding, B.; Wang, Q.; Wang, B.; Guo, L. Improving Knowledge Graph Embedding Using Simple Constraints. In Proceedings of the

ACL, Trujillo, Perupp, 13–16 November 2019; pp. 110–121.
142. Huang, Y.; Xu, K.; Wang, X.; Sun, H.; Lu, S.; Wang, T.; Zhang, X. CoRelatE: Modeling the Correlation in Multi-fold Relations for

Knowledge Graph Embedding. In Proceedings of the ICLR, New Orleans, LO, USA, 6–9 May 2019.
143. Kanojia, V.; Maeda, H.; Togashi, R.; Fujita, S. Enhancing Knowledge Graph Embedding with Probabilistic Negative Sampling.

In Proceedings of the 26th International Conference on World Wide Web Companion; ACM: New York, NY, USA, 2017; pp. 801–802.
144. Niu, J.; Sun, Z.; Zhang, W. Enhancing Knowledge Graph Completion with Positive Unlabeled Learning. In Proceedings of the

IICPR, Beijing, China, 20–24 August 2018; pp. 296–301.
145. Qin, S.; Rao, G.; Bin, C.; Chang, L.; Gu, T.; Xuan, W. Knowledge Graph Embedding Based on Adaptive Negative Sampling. In

Proceedings of the ICPCSEE, Guilin, China, 20–23 September 2019; pp. 551–563.
146. Yan, Z.; Peng, R.; Wang, Y.; Li, W. Enhance knowledge graph embedding via fake triples. In Proceedings of the IJCNN, Budapest,

Hungary, 14–19 July 2019; pp. 1–7.
147. Guo, C.; Zhang, C.; Han, X.; Ji, Y. AWML: Adaptive weighted margin learning for knowledge graph embedding. J. Intell. Inf. Syst.

2019, 53, 167–197. [CrossRef]
148. Yuan, J.; Gao, N.; Xiang, J.; Tu, C.; Ge, J. Knowledge Graph Embedding with Order Information of Triplets. In Proceedings of the

PAKDD, Macau, China, 14–17 April 2019; pp. 476–488.
149. Wang, Y.; Liu, Y.; Zhang, H.; Xie, H. Leveraging Lexical Semantic Information for Learning Concept-Based Multiple Embedding

Representations for Knowledge Graph Completion. In Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM)
Joint International Conference on Web and Big Data; Springer: Berlin/Heidelberg, Germany, 2019; pp. 382–397.

150. Guan, N.; Song, D.; Liao, L. Knowledge graph embedding with concepts. Knowl. Based Syst. 2019, 164, 38–44. [CrossRef]
151. Yu, Y.; Xu, Z.; Lv, Y.; Li, J. TransFG: A Fine-Grained Model for Knowledge Graph Embedding. In Proceedings of the WISA,

Qingdao, China, 20–22 September 2019.
152. Kazemi, S.M.; Poole, D. SimplE Embedding for Link Prediction in Knowledge Graphs. NeurIPS 2018.
153. Fatemi, B.; Ravanbakhsh, S.; Poole, D. Improved Knowledge Graph Embedding Using Background Taxonomic Information; AAAI Press:

Palo Alto, CA, USA, 2019; pp. 3526–3533.
154. Bordes, A.; Glorot, X.; Weston, J.; Bengio, Y. A semantic matching energy function for learning with multi-relational data. Mach.

Learn. 2014, 94, 233–259. [CrossRef]
155. Socher, R.; Chen, D.; Manning, C.D.; Ng, A.Y. Reasoning With Neural Tensor Networks for Knowledge Base Completion.

In Proceedings of the NIPS, Lake Tahoe, NV, USA, 5–8 December 2013; pp. 926–934.
156. Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.; Murphy, K.; Strohmann, T.; Sun, S.; Zhang, W. Knowledge vault:

A web-scale approach to probabilistic knowledge fusion. In Proceedings of the KDD, New York, NY, USA, 24–27 August 2014;
pp. 601–610.

157. Liu, Q.; Jiang, H.; Ling, Z.H.; Wei, S.; Hu, Y. Probabilistic Reasoning via Deep Learning: Neural Association Models. arXiv 2016,
arXiv:1603.07704.

158. Schlichtkrull, M.S.; Kipf, T.N.; Bloem, P.; Berg, R.v.d.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional
Networks. In Proceedings of the ESWC, Crete, Greece, 3–7 June 2018; pp. 593–607.

159. Guo, L.; Zhang, Q.; Ge, W.; Hu, W.; Qu, Y. DSKG: A Deep Sequential Model for Knowledge Graph Completion. In Proceedings of
the CCKS, Tianjin, China, 14–17 August 2018; pp. 65–77.

160. Guan, S.; Jin, X.; Wang, Y.; Cheng, X. Shared Embedding Based Neural Networks for Knowledge Graph Completion. In Proceed-
ings of the CIKM, Turin, Italy, 22–26 October, 2018; pp. 247–256.

161. Zhu, Q.; Zhou, X.; Zhang, P.; Shi, Y. A neural translating general hyperplane for knowledge graph embedding. J. Comput. Sci.
2019, 30, 108–117. [CrossRef]

162. Huang, Z.; Li, B.; Yin, J. Knowledge Graph Embedding by Learning to Connect Entity with Relation. In Asia-Pacific Web (APWeb)
and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 400–414.

http://dx.doi.org/10.1109/ACCESS.2019.2950230
http://dx.doi.org/10.1007/s11280-019-00711-y
http://dx.doi.org/10.1007/s10844-018-0535-2
http://dx.doi.org/10.1016/j.knosys.2018.10.008
http://dx.doi.org/10.1007/s10994-013-5363-6
http://dx.doi.org/10.1016/j.jocs.2018.11.004

Symmetry 2021, 13, 485 28 of 29

163. Wang, L.; Lu, X.; Jiang, Z.; Zhang, Z.; Li, R.; Zhao, M.; Chen, D. FRS: A simple knowledge graph embedding model for entity
prediction. Math. Biosci. Eng. 2019, 16, 7789–7807. [CrossRef]

164. Nguyen, D.Q.; Nguyen, T.D.; Phung, D.Q. A Relational Memory-based Embedding Model for Triple Classification and Search
Personalization. arXiv 2019, arXiv:1907.06080.

165. Cai, L.; Yan, B.; Mai, G.; Janowicz, K.; Zhu, R. TransGCN: Coupling Transformation Assumptions with Graph Convolutional
Networks for Link Prediction. In Proceedings of the K-CAP, Marina Del Rey, CA, USA, 2019; pp. 131–138.

166. Ye, R.; Li, X.; Fang, Y.; Zang, H.; Wang, M. A Vectorized Relational Graph Convolutional Network for Multi-Relational Network
Alignment. In Proceedings of the IJCAI, Macao, China, 10–16 August 2019; pp. 4135–4141.

167. Vashishth, S.; Sanyal, S.; Nitin, V.; Agrawal, N.; Talukdar, P.P. InteractE: Improving Convolution-Based Knowledge Graph Embeddings
by Increasing Feature Interactions; AAAI Press: Palo Alto, CA, USA, 2020; pp. 3009–3016.

168. Hu, K.; Liu, H.; Zhan, C.; Tang, Y.; Hao, T. A Bi-Directional Relation Aware Network for Link Prediction in Knowledge Graph.
In Proceedings of the International Conference on Neural Computing for Advanced Applications, Shenzhen, China, 3–5 July
2020; pp. 259–271.

169. Hu, K.; Liu, H.; Zhan, C.; Tang, Y.; Hao, T. Learning Knowledge Graph Embedding with a Bi-Directional Relation Encoding Network and
a Convolutional Autoencoder Decoding Network; Neural Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 1–17.

170. Zhang, N.; Deng, S.; Sun, Z.; Chen, J.; Zhang, W.; Chen, H. Relation Adversarial Network for Low Resource Knowledge Graph
Completion. In Proceedings of the WWW, Taipei, Taiwan, 20–24 April 2020.

171. Tian, A.; Zhang, C.; Rang, M.; Yang, X.; Zhan, Z. RA-GCN: Relational Aggregation Graph Convolutional Network for Knowledge
Graph Completion. In Proceedings of the ICMLC, Shenzhen China, 15–17 February 2020; pp. 580–586.

172. Jiang, W.; Guo, M.; Chen, Y.; Li, Y.; Xu, J.; Lyu, Y.; Zhu, Y. Multi-view Classification Model for Knowledge Graph Completion. In
Proceedings of the AACL/IJCNLP, Suzhou, China, 4–7 December 2020.

173. Zeb, A.; Haq, A. U.; Zhang, D.; Chen, J.; Gong, Z. KGEL: A novel end-to-end embedding learning framework for knowledge
graph completion. Expert Syst. Appl. 2021, 167, 114164. [CrossRef]

174. Han, Y.; Fang, Q.; Hu, J.; Qian, S.; Xu, C. GAEAT: Graph Auto-Encoder Attention Networks for Knowledge Graph Completion.
In Proceedings of the CIKM, New York, NY, USA, 2020; pp. 2053–2056.

175. Wang, Q.; Ji, Y.; Hao, Y.; Cao, J. GRL: Knowledge graph completion with GAN-based reinforcement learning. Knowl. Based Syst.
2020, 209, 106421. [CrossRef]

176. Shi, B.; Weningr, T. ProjE: Embedding Projection for Knowledge Graph Completion; AAAI Press: Palo Alto, CA, USA, 2017; pp. 1236–1242.
177. Liu, H.; Bai, L.; Ma, X.; Yu, W.; Xu, C. ProjFE: Prediction of fuzzy entity and relation for knowledge graph completion. Appl. Soft

Comput. 2019, 81, 105525. [CrossRef]
178. Zhang, W.; Li, J.; Chen, H. ProjR: Embedding Structure Diversity for Knowledge Graph Completion. In Proceedings of the

NLPCC, Hohhot, China, 26–30 August 2018; pp. 145–157.
179. Shi, B.; Weninger, T. Open-World Knowledge Graph Completion; AAAI Press: Palo Alto, CA, USA, 2018; pp. 1957–1964.
180. Fu, C.; Li, Z.; Yang, Q.; Chen, Z.; Fang, J.; Zhao, P.; Xu, J. Multiple Interaction Attention Model for Open-World Knowledge Graph

Completion. WISE 2019, 630–644.
181. Nie, B.; Sun, S. Knowledge graph embedding via reasoning over entities, relations, and text. Future Gener. Computer Syst. 2019, 91,

426–433. [CrossRef]
182. Zhu, J.; Zheng, Z.; Yang, M.; Fung, G.P.C.; Tang, Y. A semi-supervised model for knowledge graph embedding. Data Min. Knowl.

Discov. 2020, 34, 1–20. [CrossRef]
183. Dai, Y.; Wang, S.; Chen, X.; Xu, C.; Guo, W. Generative adversarial networks based on Wasserstein distance for knowledge graph

embeddings. Knowl. Based Syst. 2020, 190, 105165. [CrossRef]
184. Wang, P.; Han, J.; Li, C.; Pan, R. Logic Attention Based Neighborhood Aggregation for Inductive Knowledge Graph Embedding; AAAI

Press: Palo Alto, CA, USA, 2019; pp. 7152–7159.
185. Qian, W.; Fu, C.; Zhu, Y.; Cai, D.; He, X. Translation Embeddings for Knowledge Graph Completion with Relation Attention

Mechanism. In Proceedings of the IJCAI, Stockholm, Sweden, 13–19 July 2018; pp. 4286–4292.
186. Liu, W.; Cai, H.; Cheng, X.; Xie, S.; Yu, Y.; Zhang, H. Learning High-order Structural and Attribute information by Knowledge

Graph Attention Networks for Enhancing Knowledge Graph Embedding. arXiv 2019, arXiv:1910.03891.
187. Liu, Y.; Hua, W.; Xin, K.; Zhou, X. Context-Aware Temporal Knowledge Graph Embedding. In Proceedings of the WISE, Hong

Kong, China, 26–30 November 2019.
188. Oh, B.; Seo, S.; Lee, K.-H. Knowledge Graph Completion by Context-Aware Convolutional Learning with Multi-Hope Neighbor-

hoods. In Proceedings of the CIKM, Turin, Italy, 22–26 October 2018; pp. 257–266.
189. Wu, T.; Khan, A.; Gao, H.; Li, C. Efficiently Embedding Dynamic Knowledge Graphs. arXiv 2019, arXiv:1910.06708.
190. Han, X.; Zhang, C.; Ji, Y.; Hu, Z. A Dilated Recurrent Neural Network-Based Model for Graph Embedding. IEEE Access 2019, 7,

32085–32092. [CrossRef]
191. Tay, Y.; Luu, A.T.; Phan, M.C.; Hui, S.C. Multi-task Neural Network for Non-discrete Attribute Prediction in Knowledge Graphs.

In Proceedings of the CIKM 2017, Singapore, 6–10 November 2017.
192. Nayyeri, M.; Xu, C.; Lehmann, J.; Yazdi, H.S. LogicENN: A Neural Based Knowledge Graphs Embedding Model with Logical

Rules. arXiv 2019, arXiv:1908.07141.

http://dx.doi.org/10.3934/mbe.2019391
http://dx.doi.org/10.1016/j.eswa.2020.114164
http://dx.doi.org/10.1016/j.knosys.2020.106421
http://dx.doi.org/10.1016/j.asoc.2019.105525
http://dx.doi.org/10.1016/j.future.2018.09.040
http://dx.doi.org/10.1007/s10618-019-00653-z
http://dx.doi.org/10.1016/j.knosys.2019.105165
http://dx.doi.org/10.1109/ACCESS.2019.2901804

Symmetry 2021, 13, 485 29 of 29

193. Zhao, F.; Xu, T.; Jin, L.; Jin, H. Convolutional Network Embedding of Text-enhanced Representation for Knowledge Graph
Completion. IEEE Int. Things J. 2020. [CrossRef]

194. Wang, H.; Ren, H.; Leskovec, J. Entity Context and Relational Paths for Knowledge Graph Completion. arXiv 2020, arXiv:2002.06757.
195. Wang, Y.; Zhang, H. HARP: A Novel Hierarchical Attention Model for Relation Prediction. ACM Trans. Knowl. Discov. Data

TKDD 2021, 15, 1–22. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2020.3039750
http://dx.doi.org/10.1145/3424673

	Introduction
	Preliminaries and Problem Definition
	Preliminaries
	Link Prediction
	Research Questions

	Embedding Models for Link Prediction
	Translation-Distance-Based Models
	Semantic Information-Based Models
	Neural Network-Based Models
	Connections between Typical Models

	Experiments
	Experimental Settings
	Dataset
	The Implemented Models
	Performance Analysis
	Training Time Analysis
	Suggestions for Improvement

	Conclusions
	References

