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Abstract: Tensor-based signal processing methods are usually employed when dealing with multidi-
mensional data and/or systems with a large parameter space. In this paper, we present a family of
tensor-based adaptive filtering algorithms, which are suitable for high-dimension system identifi-
cation problems. The basic idea is to exploit a decomposition-based approach, such that the global
impulse response of the system can be estimated using a combination of shorter adaptive filters.
The algorithms are mainly tailored for multiple-input/single-output system identification problems,
where the input data and the channels can be grouped in the form of rank-1 tensors. Nevertheless,
the approach could be further extended for single-input/single-output system identification scenar-
ios, where the impulse responses (of more general forms) can be modeled as higher-rank tensors.
As compared to the conventional adaptive filters, which involve a single (usually long) filter for the
estimation of the global impulse response, the tensor-based algorithms achieve faster convergence
rate and tracking, while also providing better accuracy of the solution. Simulation results support the
theoretical findings and indicate the advantages of the tensor-based algorithms over the conventional
ones, in terms of the main performance criteria.

Keywords: adaptive filters; least-mean-square (LMS) algorithm; recursive least-squares (RLS) algo-
rithm; system identification; tensor decomposition

1. Introduction

Nowadays, adaptive filtering algorithms represent powerful signal processing tools,
which are widely used in many important applications [1]. Due to their capabilities to
work in nonstationary environments and to process real-time data, these algorithms can
provide efficient solutions for system identification problems [2], interference cancellation
scenarios [3], and adaptive control processes [4].

In these frameworks, the least-mean-square (LMS) and the recursive least-squares
(RLS) are the most popular categories of adaptive filtering algorithms [5]. The main
advantage of the LMS-based algorithms consists of a lower computational complexity,
as compared to their counterparts from the RLS family. Nevertheless, the latter ones are
able to provide a faster convergence rate. On the other hand, the LMS algorithms are more
sensitive to the character of the input data, e.g., when dealing with nonstationary or highly
correlated inputs.

Currently, the interest for developing efficient algorithms for high-dimension system
identification problems is increasing, while the solutions are mainly related to a tensorial ap-
proach and multilinear forms [6–15]. The gain of such methods is usually twofold, in terms
of both performance and complexity. Linearly separable systems that are modeled based on
the decomposition of rank-1 tensors can be exploited in the context of different applications.
Among them, we can mention channel equalization [10,16], array beamforming [14,17],
nonlinear acoustic echo cancellation [18,19], and source separation [11,20].
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Basically, when dealing with a large parameter space, the system identification prob-
lem can be solved by using a decomposition into lower dimension structures, tensorized
together. This kind of decomposition into two such smaller structures (i.e., bilinear forms)
has been used before, and the initial system identification problem was addressed using dif-
ferent tools, such as an iterative version of the Wiener filter [21], adaptive algorithms [22,23],
and the Kalman filter [24]. Furthermore, the trilinear forms are related to the decomposition
of third-order tensors [8,15,25].

Recently, the iterative version of the Wiener filter was proposed for the identification
of multilinear forms [26], aiming to provide a generalization of the previously developed
solutions for bilinear/trilinear forms. In this way, the problem is addressed based on the
decomposition of higher-order tensors, thus providing a general framework for efficiently
solving high-dimension system identification problems. Nevertheless, the Wiener solution
inherits some limitations, e.g., estimation of the statistics, matrix inversion operation,
and stationarity assumption [5].

In this paper, we present a family of tensor-based adaptive filtering algorithms, which
are able to overcome the previously mentioned limitations of the multilinear iterative
Wiener filter. At this point, we are not centered on particular applications of these methods.
The main goal of the current work is to provide a unified theoretical framework for
developing such tensor-based algorithms that could be further developed in the context of
specific applications. Moreover, the approach could be exploited beyond the identification
of rank-1 tensors, aiming at efficient estimation methods for more general forms of long
length impulse responses. It should be noted that such realistic impulse responses cannot be
modeled as rank-1 tensors, but could own some specific characteristics that would facilitate
an efficient tensor-based decomposition approach. For example, the sparseness character
of the system could be considered, aiming to efficiently exploit the decomposition-based
approach in conjunction with low-rank approximation methods. Therefore, the tensor-
based algorithms presented in this paper could be further extended in this context.

The remainder of the paper is structured as follows. In Section 2, the system model is
presented and the decomposition-based approach is introduced. The proposed algorithms
are developed in Sections 3 and 4, covering both the LMS and RLS families. A brief
discussion concerning the identification of higher rank tensors is given in Section 5. Next,
Section 6 provides extensive simulation results in the context of system identification.
Finally, Section 7 outlines the conclusions and the main lines of our future works.

2. System Model

Let us consider a real-valued multiple-input/single-output (MISO) system, whose
output at discrete-time index n can be written as

y(n) =
L1

∑
l1=1

L2

∑
l2=1
· · ·

LN

∑
lN=1

xl1l2 ...lN (n)h1,l1 h2,l2 · · · hN,lN , (1)

with the N individual channels being characterized by the following vectors:

hi =
[
hi,1 hi,2 · · · hi,Li

]T , (2)

each one of length Li, i = 1, 2, . . . , N, where the superscript T is the transpose operator.
We can group the input signals from (1) into a tensor X (n) ∈ RL1×L2×···×LN , with the
elements (X )l1l2 ...lN

(n) = xl1l2 ...lN (n). Hence, the output equation becomes

y(n) = X (n)×1 hT
1 ×2 hT

2 ×3 · · · ×N hT
N , (3)

where ×i, i = 1, 2, . . . , N denotes the mode-i product [20]. In this way, y(n) can be
considered a multilinear form, because it represents a linear function of each of the vectors
hi, i = 1, 2, . . . , N, provided that the other N − 1 vectors are kept fixed. Thus, it may
be regarded as an extension of the bilinear form [21]. Next, we consider the tensor H ∈
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RL1×L2×···×LN , with the elements (H)l1,l2,...,lN
= h1,l1 h2,l2 · · · hN,lN . This tensor can also be

expressed as

H = h1 ◦ h2 ◦ · · · ◦ hN , (4)

where ◦ denotes the outer product. The outer product of two vectors is defined as h1 ◦ h2 =
h1hT

2 , with the elements (h1 ◦ h2)i,j = h1,ih2,j. The relation between the Kronecker product
of two vectors and the corresponding outer product is h2⊗h1 = vec(h1 ◦ h2). Furthermore,
we have

vec(H) = hN ⊗ hN−1 ⊗ · · · ⊗ h1, (5)

where ⊗ represents the Kronecker product, whereas vec(·) denotes the vectorization
operation, i.e.,

vec(H) =


vec(H::...:1)
vec(H::...:2)

...
vec
(
H::...:LN

)
, (6)

vec
(
H::...:li

)
=


vec(H::...:1,i)
vec(H::...:2,i)

...
vec
(

H::...:LN−1,i

)
, (7)

where H::...:li ∈ RL1×L2×···×LN−1 , i = 1, 2, . . . , N are the frontal slices of H. Consequently,
the output signal can be re-written as

y(n) = vecT(H)vec[X (n)], (8)

with

vec[X (n)] =


vec[X::...:1(n)]
vec[X::...:2(n)]

...
vec
[
X::...:LN (n)

]
 = x(n), (9)

where X::...:li (n) ∈ RL1×L2×···×LN−1 , i = 1, 2, . . . , N are the frontal slices of X (n) and x(n)
is the input vector of length L1L2 · · · LN . Let us denote the global impulse response as

g = vec(H) = hN ⊗ hN−1 ⊗ · · · ⊗ h1, (10)

of length L1L2 · · · LN . An important observation is that the decomposition in (10) does not
yield a unique set of estimates of the individual components. For example, let us consider
N real-valued constants ci, with i = 1, 2, . . . , N, such that ∏N

i=1 ci = 1. Therefore,

cNhN ⊗ cN−1hN−1 ⊗ · · · ⊗ c1h1 = hN ⊗ hN−1 ⊗ · · · ⊗ h1. (11)

However, as we can notice, no scaling ambiguity appears from the identification of
the global system g.

Next, using (8)–(10), y(n) can be expressed as

y(n) = gTx(n). (12)
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In this context, the goal is to identify the global impulse response g (or, equivalently,
the individual components hi, i = 1, 2, . . . , N), using the desired (or reference) signal:

d(n) = gTx(n) + w(n), (13)

where w(n) represents the measurement noise, that is not correlated with the input signals.
The desired signal’s variance is

σ2
d = gTE

[
x(n)xT(n)

]
g + σ2

w

= gTRg + σ2
w, (14)

where E[·] denotes mathematical expectation, R = E
[
x(n)xT(n)

]
, and σ2

w = E[w2(n)].
At this moment, we can introduce the error signal:

e(n) = d(n)− ĝTx(n), (15)

where ĝ is an estimate of the global impulse response. Using (15), the mean-squared error
(MSE) criterion can be defined as

J(ĝ) = E
[
e2(n)

]
= σ2

d − 2ĝTp + ĝTRĝ, (16)

where p = E[x(n)d(n)] is the cross-correlation vector between x(n) and d(n). Consequently,
the purpose is the minimization of J(ĝ), for which a very popular solution is provided by
the Wiener filter [5]:

ĝW = R−1p. (17)

In the context of multilinear forms, the iterative Wiener filter derived recently in [26]
uses the global impulse response decomposition. The optimization criterion is applied
using a block coordinate descent approach on the individual components [27]. As compared
to the conventional Wiener solution from (17), the proposed iterative Wiener filter for
multilinear forms yields a better performance, especially in the case when the estimation of
the statistics (i.e., R and p) is made using a small amount of data.

3. Tensor-Based LMS Algorithms

The matrix inversion and the statistics estimation needed when using the Wiener
solutions presented before could be unsuitable in real-world scenarios (e.g., when dealing
with nonstationary environments and/or requiring real-time processing). Consequently,
it may be more practical to use adaptive filters, and among them, the LMS algorithm is one
of the simplest and most practical solutions [7,28].

First, let us consider the estimated impulse responses of the channels, ĥi(n), with i =
1, 2, . . . , N. Therefore, we may define the corresponding a priori error signals:

eĥi
(n) = d(n)− ĥT

i (n− 1)xĥi
(n), (18)

with i = 1, 2, . . . , N, where

xĥi
(n) =

[
ĥN(n− 1)⊗ ĥN−1(n− 1)⊗ · · · ⊗ ĥi+1(n− 1)⊗ ILi

⊗ ĥi−1(n− 1)⊗ · · · ⊗ ĥ2(n− 1)⊗ ĥ1(n− 1)
]T

x(n), (19)
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with ILi , i = 1, 2, . . . , N being the identity matrices of sizes Li × Li. It is easy to check that
eĥ1

(n) = eĥ2
(n) = · · · = eĥN

(n). Consequently, the LMS updates of the individual filters
result in

ĥi(n) = ĥi(n− 1)− µi
2
×

∂e2
ĥi
(n)

∂ĥi(n− 1)

= ĥi(n− 1) + µixĥi
(n)eĥi

(n), (20)

where µi > 0, i = 1, 2, . . . , N are the step-size parameters. Relations (20) define the
tensor-based LMS (LMS-T) algorithm. The initialization of the algorithm could be

ĥ1(0) =
[

1
0L1−1

]
, (21)

ĥj(0) =
1
Lj

1Lj , j = 2, 3, . . . , N, (22)

where 0P and 1P are two vectors of length P, whose all elements are equal to zero and one,
respectively. We should also note that the classical “all-zeros” initialization used in most
of the conventional adaptive filtering algorithms cannot be used in this case, due to the
connection between the individual filters. In other words, using ĥi(0) = 0Li , i = 1, 2, . . . , N
would “freeze” the updates (20) of the LMS-T algorithm, due to (19).

Finally, the estimate of the global system is obtained as

ĝ(n) = ĥN(n)⊗ ĥN−1(n)⊗ · · · ⊗ ĥ1(n). (23)

The global impulse response may also be identified using the conventional LMS
algorithm [5]:

ĝ(n) = ĝ(n− 1) + µx(n)e(n), (24)

e(n) = d(n)− ĝ(n− 1)x(n), (25)

where µ is the global step-size parameter. According to (18), (19) and (23), it can be noticed
that e(n) = eĥi

(n), i = 1, 2, . . . , N. However, the update (24) involves an adaptive filter of

length L = ∏N
i=1 Li, while the LMS-T algorithm combines the solutions of N shorter filters

of lengths Li, with i = 1, 2, . . . , N. Since the global performance of any adaptive algorithm
is highly influenced by the length of the filter, the LMS-T algorithm should own improved
features as compared to the conventional LMS counterpart. Simulation results provided in
Section 6 support this aspect.

The convergence analysis of the LMS-T algorithm is not a straightforward task.
The main challenge is related to the connection between the individual filters. According
to (18)–(20), the coefficients of the i-th filter (i = 1, 2, . . . , N) at time index n depend on the
coefficients of the other N− 1 individual filters from the previous time index (n− 1). Based
on the analogy with bilinear forms [7,22], the stability of the LMS-T algorithm is guaran-
teed for 0 < µi < 2/ ∑N

i=1 xT
ĥi
(n)xĥi

(n), assuming that µ1 = µ2 = · · · = µN . This setup

is also used by the tensor LMS algorithm proposed by Rupp and Schwarz in [7]. On the
other hand, taking into account the well-known compromise between the convergence
rate and misadjustment, this condition could be too restrictive if targeting different adap-
tation modes (i.e., different step-sizes) for the individual filters. Consequently, a detailed
convergence analysis of the LMS-T algorithm is considered for future works.

Nevertheless, the selection of the step-sizes represents an important challenge when
setting the parameters of the LMS-T algorithm. It can be noticed that, in (20), the step-size
parameters are constant. A good compromise between convergence speed and misadjust-
ment needs to be considered when choosing their values. Nevertheless, in nonstationary
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environments, it could be more useful to choose variable step-size (i.e., time-dependent)
parameters. Consequently, the updates for the LMS algorithm should be reformulated as

ĥi(n) = ĥi(n− 1) + µi(n)xĥi
(n)eĥi

(n), (26)

with i = 1, 2, . . . , N. Next, we define the a posteriori error signals:

εĥi
(n) = d(n)− ĥT

i (n)xĥi
(n), (27)

with i = 1, 2, . . . , N. By replacing (20) in (27), then forcing the a posteriori error signals to
zero, we obtain

eĥi
(n)
[
1− µi(n)xT

ĥi
(n)xĥi

(n)
]
= 0, (28)

for i = 1, 2, . . . , N. By assuming that eĥi
(n) 6= 0, i = 1, 2, . . . , N, the expressions of the

time-dependent step-sizes result as

µi(n) =
1

xT
ĥi
(n)xĥi

(n)
. (29)

We also need to introduce some regularization constants δi > 0, i = 1, 2, . . . , N in
the denominators of the above expressions [29], in order to achieve a robust adaptation.
Moreover, in order to obtain a good compromise between convergence rate and steady-state
misadjustment, the normalized step-size parameters 0 < αi ≤ 1, i = 1, 2, . . . , N are used.
Hence, the update equations of the tensor-based normalized LMS (NLMS-T) algorithm are
obtained as

ĥi(n) = ĥi(n− 1) +
αixĥi

(n)eĥi
(n)

δi + xT
ĥi
(n)xĥi

(n)
, (30)

with i = 1, 2, . . . , N, while the global impulse response results similar to (23). Similarly,
the individual impulse responses may be initialized using (21)–(22). The NLMS-T algorithm
is summarized in Algorithm 1.

Algorithm 1: NLMS-T algorithm.
Initialization:
Set ĥi(0), i = 1, 2, . . . , N, based on (21)–(22)
Set 0 < αi ≤ 1, δi > 0, i = 1, 2, . . . , N
For n = 1,2,. . . , number of iterations:
Compute xĥi

(n), i = 1, 2, . . . , N, based on (19)

eĥi
(n) = d(n)− ĥT

i (n− 1)xĥi
(n), for any i = 1, 2, . . . , N

ĥi(n) = ĥi(n− 1) +
αixĥi

(n)eĥi
(n)

δi+xT
ĥi
(n)xĥi

(n)
, i = 1, 2, . . . , N

ĝ(n) = ĥN(n)⊗ ĥN−1(n)⊗ · · · ⊗ ĥ1(n)

Another way to identify the global impulse response is to use the conventional nor-
malized LMS (NLMS) algorithm [5], defined by

ĝ(n) = ĝ(n− 1) +
αx(n)e(n)

δ + xT(n)x(n)
, (31)

where 0 < α ≤ 1 denotes the normalized step-size parameter, δ > 0 is the regularization
constant, and e(n) was defined in (25). Nevertheless, similar to the previous discussion
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related to the LMS-T and LMS algorithms, the NLMS-T uses N adaptive filters of lengths
Li, i = 1, 2, . . . , N, while the length of the conventional NLMS filter is L = ∏N

i=1 Li.

4. Tensor-Based RLS Algorithm

The main advantage of the RLS-based algorithms consists of a faster convergence rate,
as compared to the LMS family. This gain is more apparent for correlated input signals.
On the other hand, the price to pay is a higher computational complexity. In this context,
the tensor-based algorithms could be more advantageous. In the following, we exploit this
approach in the case of the RLS algorithm.

Let us consider the context of (13) and (15), where we apply the least-squares error
criterion [5]. As a result, the conventional RLS algorithm can be derived following the
minimization of the cost function:

J[ĝ(n)] =
n

∑
k=1

λn−k
[
d(k)− ĝT(n)x(k)

]2
, (32)

where 0 < λ ≤ 1 is the forgetting factor of the algorithm. Equivalently, using (19),
the cost function (32) can be reformulated in N alternative ways, following the optimization
procedure of the individual impulse responses, i.e.,

JĥN ,ĥN−1,...,ĥi+1,ĥi−1,...,ĥ2,ĥ1

[
ĥi(n)

]
=

n

∑
k=1

λn−k
i

[
d(k)− ĥT

i (n)xĥi
(k)
]2

, (33)

with i = 1, 2, . . . , N, where the λi’s are the individual forgetting factors. These cost functions
are further processed following a multilinear optimization strategy [27]. In other words,
we consider that N − 1 components are fixed, while the optimization procedure is related
to the remaining one. Therefore, following the minimization of (33) with respect to ĥi(n),
for i = 1, 2, . . . , N, we obtain a set of normal equations:

Ri(n)ĥi(n) = pi(n), (34)

where

Ri(n) =
n

∑
k=1

λn−k
i xĥi

(k)xT
ĥi
(k)

= λiRi(n− 1) + xĥi
(n)xT

ĥi
(n), (35)

pi(n) =
n

∑
k=1

λn−k
i xĥi

(k)d(k)

= λipi(n− 1) + xĥi
(n)d(n), (36)

with i = 1, 2, . . . , N. Solving (34), we obtain N update relations related to the individual
filters, which result in

ĥi(n) = ĥi(n− 1) + R−1
i (n)xĥi

(n)eĥi
(n)

= ĥi(n− 1) + ki(n)eĥi
(n), (37)

for i = 1, 2, . . . , N, where ki(n) = R−1
i (n)xĥi

(n) are the Kalman gain vectors. Furthermore,
we can use (18) to compute the error signal.

An important issue is related to the inverse of the matrices Ri(n), i = 1, 2, . . . , N. This
can be efficiently addressed based on the matrix inversion lemma, which is also known
as the Woodbury matrix identity [5]. This states that having the matrices A, B, C, D,
and E (with consistent sizes), such that A = B + CDE, the inverse of this matrix results
in A−1 = B−1 − B−1C

(
D−1 + EBC−1)−1EB−1. Consequently, in (35), we can associate
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A = Ri(n), B = λiRi(n − 1), C = xĥi
(n), D = 1, and E = xT

ĥi
(n), thus resulting the

following updates:

R−1
i (n) =

1
λi

[
ILi − ki(n)xT

ĥi
(n)
]
R−1

i (n− 1), (38)

with i = 1, 2, . . . , N. The stability of such an update is guaranteed if the matrix Ri(n− 1)
is nonsingular and 0 < λi ≤ 1, i = 1, 2, . . . , N. Consequently, the initialization should be
R−1

i (0) = ξ−1
i ILi , i = 1, 2, . . . , N, where ξi is a positive constant.

Furthermore, the evaluation of the Kalman gain vectors results in

ki(n) =
R−1

i (n− 1)xĥi
(n)

λi + xT
ĥi
(n)R−1

i (n− 1)xĥi
(n)

, (39)

for i = 1, 2, . . . , N. For initialization, we can follow the same rule from (21)–(22), while the
global impulse response is obtained using (23). The resulting tensor-based RLS (RLS-T)
algorithm is provided in Algorithm 2.

Algorithm 2: RLS-T algorithm.
Initialization:
Set ĥi(0), i = 1, 2, . . . , N, based on (21)–(22)
R−1

i (0) = ξ−1
i ILi , ξi > 0, i = 1, 2, . . . , N

λi = 1− 1
KLi

, K ≥ 1, i = 1, 2, . . . , N
For n = 1, 2,. . . , number of iterations:
Compute xĥi

(n), i = 1, 2, . . . , N, based on (19)

eĥi
(n) = d(n)− ĥT

i (n− 1)xĥi
(n), for any i = 1, 2, . . . , N

ki(n) =
R−1

i (n−1)xĥi
(n)

λi+xT
ĥi
(n)R−1

i (n−1)xĥi
(n)

, i = 1, 2, . . . , N

ĥi(n) = ĥi(n− 1) + ki(n)eĥi
(n), i = 1, 2, . . . , N

R−1
i (n) = 1

λi

[
ILi − ki(n)xT

ĥi
(n)
]
R−1

i (n− 1), i = 1, 2, . . . , N

ĝ(n) = ĥN(n)⊗ ĥN−1(n)⊗ · · · ⊗ ĥ1(n)

The convergence of the RLS-T algorithm can be assessed in terms of its conversion
factors [5], based on the evaluation of the a posteriori errors. Using the update (37) in (27)
and taking (15) into account, we obtain

εĥi
(n) =

[
1− kT

i (t)xĥi
(n)
]
eĥi

(n)

= γi(n)eĥi
(n), (40)

where γi(n) = 1−kT
i (t)xĥi

(n), i = 1, 2, . . . , N are the conversion factors. Next, replacing (39)
into the expressions of the corresponding conversion factors, we obtain

γi(n) =
1

1 + λ−1
i xT

ĥi
(n)R−1

i (n− 1)xĥi
(n)

, (41)

for i = 1, 2, . . . , N. Since R−1
i (n− 1) is a positive-definite matrix, we have xT

ĥi
(n)R−1

i (n−
1)xĥi

(n) ≥ 0. Consequently, 0 < γi(n) ≤ 1, so that |εĥi
(n)| ≤ |eĥi

(n)|, for any i =

1, 2, . . . , N. Therefore, the RLS-T algorithm is convergent.
Using the conventional RLS algorithm [5] for the estimation of the global impulse

response could be prohibitive for large values of L, since the computational complexity
order would be O(L2). On the other hand, the computational complexity of the RLS-T
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algorithm is proportional to ∑N
i=1O(L2

i ), which could be much more advantageous when
Li � L. In addition, since the RLS-T operates with shorter filters, improved performance is
expected, as compared to the conventional RLS algorithm. This is also supported by the
simulation results provided in Section 6.

5. Beyond the Identification of Rank-1 Tensors

The tensor-based algorithms developed in Sections 3 and 4 are designed based the
model presented in Section 2, so that they are suitable for the identification of rank-1
tensors. The optimization approach can be formulated in terms of the minimization of the
system misalignment, which can be defined as

M(H) =
‖H− ĥ1(n) ◦ ĥ2(n) ◦ · · · ◦ ĥN(n)‖F

‖H‖F
, (42)

where ‖ · ‖F denotes the Frobenius norm and H is defined in (4). Alternatively, (42) can
also be expressed as

M(g) =
‖g− ĥN(n)⊗ · · · ⊗ ĥ2(n)⊗ ĥ1(n)‖2

‖g‖2
, (43)

where ‖·‖2 is the `2 norm and g is given in (10).
As we can notice in (4), H is a rank-1 tensor [20], so that its individual components

hi, i = 1, 2, . . . , N form the global impulse response g from (10), which represents a
perfectly separable system. This repetitive (but not periodic) structure can result if a
certain impulse response is followed by its reflections, e.g., as in wireless transmissions [7].
In addition, an external noise could also corrupt such impulse responses. However, even
in this case, the tensor-based adaptive algorithms can efficiently model the separable part
of the system, as will be shown in the last set of experiments reported in Section 6.

Nevertheless, the next goal is to extend the ideas behind the tensor-based algorithms
for the identification of more general forms of impulse responses. This problem can be
formulated in terms of identifying a higher rank tensor. It is known that the rank (R) of a
tensor HR is defined as the minimum number of rank-1 tensors that generate HR as their
sum, i.e.,

HR =
R

∑
r=1

h1,r ◦ h2,r ◦ · · · ◦ hN,r, (44)

which represents the canonical polyadic decomposition (CPD) of the tensor [20]. Conse-
quently, the optimization problem can be reformulated in terms of minimizing

M(HR) =
‖HR −∑R

r=1 ĥ1,r(n) ◦ ĥ2,r(n) ◦ · · · ◦ ĥN,r(n)‖F

‖HR‖F
(45)

or, alternatively,

M(h) =
‖h−∑R

r=1 ĥN,r(n)⊗ · · · ⊗ ĥ2,r(n)⊗ ĥ1,r(n)‖2

‖h‖2
, (46)

where ĥi,r(n) represents the estimate of hi,r, i = 1, 2, . . . , N and h = vec(HR) = ∑R
r=1 hN,r⊗

· · · ⊗ h2,r ⊗ h1,r.
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Furthermore, in many real-world applications, we could exploit low-rank approxima-
tion methods in conjunction with tensor-based decompositions. In other words, we can
use the approximation:

h ≈
P

∑
r=1

hN,r ⊗ · · · ⊗ h2,r ⊗ h1,r, (47)

with P < R, so that an estimate of the impulse response can be obtained as

ĥ(n) =
P

∑
r=1

ĥN,r(n)⊗ · · · ⊗ ĥ2,r(n)⊗ ĥ1,r(n). (48)

In our recent works [30,31], we approached these ideas in the two-dimensional case
(i.e., N = 2), by exploiting the singular value decomposition (SVD) of the system matrix
(i.e., a second-order tensor). The framework was the echo cancellation problem, where the
low-rank approximation fits very well, since the system matrix is never really full rank
(due to the reflections and sparseness in the system).

For example, let us consider a single-input/single-output (SISO) system identification
problem, where the reference signal is obtained as

d(n) = hTx(n) + w(n), (49)

where h (of length L) is the unknown impulse response, x(n) contains the most recent L
time samples of the zero-mean input signal, and w(n) is the additive noise (similar to (13)).
In addition, we consider that L = L1L2, with L1 ≥ L2, so that the impulse response can be
decomposed as

h =
[

sT
1 sT

2 · · · sT
L2

]T
, (50)

where sl , l = 1, 2, . . . , L2 are L2 impulse responses, each of them having the length L1.
Furthermore, the impulse response could be reshaped in a matrix form (of size L1× L2), i.e.,

H =
[

s1 s2 · · · sL2

]
. (51)

As outlined before, if the rank of this matrix is rank(H) = P < L2, the impulse
response h can be decomposed as

h =
P

∑
p=1

h2,p ⊗ h1,p, (52)

where h1,p and h2,p (with p = 1, 2, . . . , P) are impulse responses of lengths L1 and L2, re-
spectively.

Consequently, the impulse response of the adaptive filter could also be decomposed as

ĥ(n) =
P

∑
p=1

ĥ2,p(n)⊗ ĥ1,p(n), (53)

where ĥ1,p(n) and ĥ2,p(n) have the lengths L1 and L2, respectively, while the error signal
is evaluated as

e(n) = d(n)− ĥ
T
(n− 1)x(n). (54)
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Following the least-squares error criterion [5] and taking (53) and (54) into account,
the cost functions can be defined as

Jĥ2

[
ĥ1(n)

]
=

n

∑
k=1

λn−k
1

[
d(k)− ĥ

T
1 (n)x2(k)

]2
, (55)

Jĥ1

[
ĥ2(n)

]
=

n

∑
k=1

λn−k
2

[
d(k)− ĥ

T
2 (n)x1(k)

]2
, (56)

where λ1 and λ2 represent the forgetting factors, and

ĥ1(n) =
[

ĥT
1,1(n) ĥT

1,2(n) · · · ĥT
1,P(n)

]T
,

x2(n) =
[

xT
2,1(n) xT

2,2(n) · · · xT
2,P(n)

]T
,

x2,p(n) =
[
ĥ2,p(n− 1)⊗ IL1

]T
x(n), p = 1, 2, . . . , P,

ĥ2(n) =
[

ĥT
2,1(n) ĥT

2,2(n) · · · ĥT
2,P(n)

]T
,

x1(n) =
[

xT
1,1(n) xT

1,2(n) · · · xT
1,P(n)

]T
,

x1,p(n) =
[
IL2 ⊗ ĥ1,p(n− 1)

]T
x(n), p = 1, 2, . . . , P.

Based on the minimization of (55) and (56) with respect to ĥ1(n) and ĥ2(n), respec-
tively, we obtain the RLS algorithm based on the nearest Kronecker product decomposition,
namely, RLS-NKP [31]. This algorithm represents an extension of the RLS algorithm for
bilinear forms (RLS-BF) developed in [23], while the RLS-BF is a particular case of the
RLS-T algorithm for N = 2.

Nevertheless, for a higher-order tensor (N ≥ 3), the problem becomes more compli-
cated. In this context, the higher-order SVD (HOSVD) of the tensor can be exploited [32,33].
However, handling the rank of a higher-order tensor is a more challenging issue. For ex-
ample, the rank of a matrix can never be larger than the minimum of its dimensions,
while the rank of the tensor HR ∈ RL1×L2×···×LN can be greater than min{L1, L2, . . . , LN}.
The development of the tensor-based adaptive algorithms presented in this paper could be
a preliminary step toward the generalization of the approach beyond the identification of
rank-1 tensors.

6. Simulation Results

Simulations are performed in the context of the MISO system identification problem
described in Section 2 and the SISO scenario presented in Section 5. In the first case (MISO
scenario), the input signals are either white Gaussian noises or highly-correlated AR(1)
processes. The latter ones are obtained by passing white Gaussian noises through a first-
order system having the transfer function 1/

(
1− 0.99z−1). The input signals form the

tensor X (n). The additive noise w(n) is white and Gaussian, with the variance equal
to σ2

w = 0.01. In the second case (SISO scenario in the framework of echo cancellation),
the input signal is either a highly-correlated AR(1) process or a speech sequence, while the
measurement noise is generated such that the echo-to-noise ratio (ENR) is 20 dB.

In different real-world applications, we could also encounter data (i.e., input signals
and/or external noises) with heavy-tail distributions [34–36]. In order to cope with such
challenging scenarios, the adaptive algorithms should be further equipped with additional
control and robustness mechanisms. For example, the sign-based algorithms [37–39]
proved to be efficient under impulsive interferences. However, in this paper, we do not
investigate tensor-based versions of these algorithms, but only focus on the basic adaptive
filtering algorithms of the LMS and RLS families.
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Most of our experiments are performed in the context of the MISO system identi-
fication problem (Section 2), using two different orders of the system, i.e., N = 4 and
N = 5, while the individual impulse responses hi, i = 1, 2, . . . , N are generated as follows.
The first impulse response (h1) contains the first 16 coefficients of the first network echo
path specified in the ITU-T G168 Recommendation [40], so that its length is L1 = 16.
The second impulse response (h2) is randomly generated using a Gaussian distribution
and its length is set to L2 = 8. The other impulse responses follow an exponential decay

based on the rule hj,lj
= a

lj−1
j , with j = 3, 4, 5 and aj taking the values 0.9, 0.5, and 0.1,

respectively. Their lengths are set to L3 = L4 = 4 and L5 = 2. Consequently, the global
impulse responses g that result based on (10) have the lengths 2048 and 4096, for N = 4
and N = 5, respectively. Furthermore, the corresponding tensor H is given by (4). For ex-
ample, when N = 4, the individual impulse responses h1, h2, h3, and h4, together with
the resulting global impulse response g = h4 ⊗ h3 ⊗ h2 ⊗ h1, are depicted in Figure 1.
Another set of experiments is dedicated to a more general case, in which the impulse
response of the system is obtained as h = g + f, where f is randomly generated using a
Gaussian distribution. In this scenario, the tensor-based adaptive filters are able to model
only the decomposable part of the system (i.e., the impulse response g), while f acts like an
additional noise.

In the last set of experiments, two echo paths are considered in the context of an SISO
system identification problem (i.e., echo cancellation scenario), following the discussion
from Section 5. The length of both impulse responses is L = 1000. The first echo path
(shown in Figure 2a) is a network impulse response from the ITU-T G168 Recommenda-
tion [40], i.e., the first cluster padded with zeros up to the length L. The second echo path
(depicted in Figure 2b) is a measured acoustic impulse response, which is available on-line
at www.comm.pub.ro/plant (accessed on 5 March 2021).

In most of the experimental scenarios (i.e., MISO system identification), the proposed
tensor-based algorithms, namely, LMS-T, NLMS-T, and RLS-T, are mainly compared to their
conventional counterparts, i.e., LMS, NLMS, and RLS, respectively. In addition, in some
of the experiments, the tensor LMS algorithm [7] is included in comparisons. In the last
set of experiments (i.e., SISO system identification), the RLS-NKP [31] is compared to the
conventional RLS algorithm.

In most of the experiments (i.e., MISO scenario), the performance measure is the
normalized misalignment (in dB) for the identification of the global impulse response,
which is evaluated as 20log10[‖g− ĝ(n)‖2/‖g‖2]. In the second to last sets of experiments,
this performance measure is evaluated as 20log10[‖h− ĝ(n)‖2/‖h‖2]. In order to test the
tracking capabilities of the algorithms, we also introduce an abrupt change of the system
(in the middle of each simulation), by changing the sign of the coefficients of h1. Finally,
in the last set of experiments (i.e., SISO scenario), the normalized misalignment is evaluated
as 20log10

[∥∥∥h− ĥ(n)
∥∥∥

2
/‖h‖2

]
, according to the notation from Section 5. Here, we also

introduce an abrupt change of the impulse response in the middle of each simulation,
by changing the sign of the coefficients of h.

www.comm.pub.ro/plant
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Figure 1. Impulse responses used in simulations of the multiple-input/single-output (MISO) system
identification scenario (for N = 4): (a) h1 (of length L1 = 16) contains the first 16 coefficients of the
first impulse response from G168 Recommendation [40], (b) h2 (of length L2 = 8) is a randomly
generated impulse response, (c) h3 (of length L3 = 4) has the coefficients computed as h3,l3 = 0.9l3−1,
with l3 = 1, 2, . . . , L3, (d) h4 (of length L4 = 4) has the coefficients computed as h4,l4 = 0.5l4−1,
with l4 = 1, 2, . . . , L4, and (e) g (of length L = L1L2L3L4 = 2048) is the global impulse response,
which results based on (10).
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Figure 2. Impulse responses used in simulations of the single-input/single-output (SISO) system
identification scenario, with L = 1000: (a) network echo path from G168 Recommendation [40]
and (b) measured acoustic echo path available on-line at www.comm.pub.ro/plant (accessed on
5 March 2021).

In the first set of experiments, we evaluate the performance of the LMS-T and LMS
algorithms. The main challenge related to these algorithms is the selection of their step-size
parameters. For example, in the case of the conventional LMS algorithm, the theoretical
upper bound for its step-size is given by 2/(Lσ2

x), where σ2
x is the variance of the input

signal [5]. However, for stability reasons, this value should be lower in practice. In our

www.comm.pub.ro/plant
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experiments, we set the step-sizes of the LMS-T and LMS algorithms in order to reach
similar misalignment levels, so that we can fairly compare their performance in terms of
the convergence rate and tracking. Furthermore, the largest step-size of the conventional
LMS algorithm is set close to its stability limit, in order to provide the fastest convergence
mode of the algorithm. Clearly, since the LMS-T algorithm combines the solutions of much
shorter filters (of lengths Li, i = 1, 2, . . . , N), the corresponding values of its step-sizes are
larger as compared to the step-size of the conventional LMS counterpart (with the length
L = ∏N

i=1 Li).
In Figure 3, we consider N = 4 and we use white Gaussian noises as input signals.

In this case, the length of the global impulse response is L = 2048. As expected, a lower
value of the step-size improves the misalignment but pays with a slower convergence rate
and tracking. This is valid for both LMS-T and LMS algorithms. However, the LMS-T
algorithm converges and tracks significantly faster than its conventional counterpart.
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Figure 3. Performance of the LMS-T and LMS algorithms (using different step-size parameters),
for the identification of the global impulse response g. The input signals are white Gaussian noises,
N = 4, and L = 2048.

The gain is much more apparent in case of highly-correlated inputs. Such a scenario is
considered in Figure 4, where N = 4 and the input signals are AR(1) processes. As we can
notice, the proposed LMS-T outperforms the conventional LMS algorithm in terms of both
convergence rate/tracking and misalignment.

The performance gain of the LMS-T algorithm increases for higher orders, in compari-
son with the conventional LMS algorithm. This is supported in Figure 5, where the input
signals are AR(1) processes and N = 5, so that the length of the global impulse response
is L = 4096. The identification of such a long impulse response (especially using corre-
lated inputs) is challenging for any conventional adaptive algorithm, highly influencing
the convergence rate, tracking, and accuracy of the solution. It can be noticed that the
LMS-T algorithm outperforms by far its conventional counterpart, in terms of all these
performance criteria.

The second set of experiments is dedicated to the normalized versions, i.e., the NLMS-
T and NLMS algorithms. The main advantage of these algorithms is related to the selection
of the normalized step-sizes and, consequently, to their ability to operate in nonstationary
conditions (related to the input and/or the environment). For example, the fastest con-
vergence mode of the conventional NLMS algorithm is obtained when the normalized
step-size is set to 1 [5]. Based on the theoretical findings related to the bilinear algo-
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rithms [22], setting the normalized step-sizes of the NLMS-T algorithm such that their sum
is equal to 1 could lead to the same value of the misalignment as the conventional NLMS
algorithm with the fastest convergence mode.
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Figure 4. Performance of the LMS-T and LMS algorithms (using different step-size parameters),
for the identification of the global impulse response g. The input signals are AR(1) processes, N = 4,
and L = 2048.
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Figure 5. Performance of the LMS-T and LMS algorithms (using different step-size parameters),
for the identification of the global impulse response g. The input signals are AR(1) processes, N = 5,
and L = 4096.

In Figure 6, the input signals are white Gaussian noises and N = 4. Hence, the impulse
responses are those indicated in Figure 1, with the global impulse response of length
L = 2048. The conclusions of this experiment are similar to those obtained in the case
of the LMS algorithms (related to Figure 3). Most important, the NLMS-T algorithm
significantly outperforms the conventional NLMS algorithm is terms of the convergence
rate and tracking, especially for lower values of the normalized step-sizes.
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Figure 6. Performance of the NLMS-T and NLMS algorithms (using different normalized step-size
parameters), for the identification of the global impulse response g. The input signals are white
Gaussian noises, N = 4, and L = 2048.

In addition, when the input signals are correlated, the gain of the proposed NLMS-T
algorithm is even more apparent. This can be noticed in Figure 7, where the input signals
are AR(1) processes. As we can see from this figure, the fastest convergence mode of the
conventional NLMS algorithm is outperformed by far even by the NLMS-T algorithm
using the lower normalized step-sizes.
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Figure 7. Performance of the NLMS-T and NLMS algorithms (using different normalized step-size
parameters), for the identification of the global impulse response g. The input signals are AR(1)
processes, N = 4, and L = 2048.

Increasing the system order also outlines the performance gain of the NLMS-T al-
gorithm. This aspect is supported in Figure 8, where N = 5 and the global impulse
response has the length L = 4096. As we can notice, the fastest convergence mode of the
conventional NLMS algorithm does not reach the steady-state before the system changes,
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while the NLMS-T algorithm converges (and tracks) much faster, despite the values of its
normalized step-sizes.
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Figure 8. Performance of the NLMS-T and NLMS algorithms (using different normalized step-size
parameters), for the identification of the global impulse response g. The input signals are AR(1)
processes, N = 5, and L = 4096.

The influence of the normalized step-sizes on the performance of the NLMS-T algo-
rithm is analyzed in Figure 9, where the input signals are AR(1) processes and N = 4.
As expected, higher values of the normalized step-sizes improve the convergence rate and
tracking but increase the misalignment.
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Figure 9. Performance of the NLMS-T algorithm using different normalized step-size parameters
(with equal values of αi, i = 1, 2, . . . , N), for the identification of the global impulse response g.
The input signals are AR(1) processes, N = 4, and L = 2048.

In the previous experiment, we used equal values of αi (i = 1, 2, . . . , N) for the
individual filters. However, since these filters have different lengths, an alternative strategy
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would be to set different values of the normalized step-sizes for each individual filter. Such
a scenario is considered in Figure 10, where we set α1 = 0.25 for the first filter (of length L1),
while varying the other normalized step-sizes αj, j = 2, 3, 4. The other conditions are the
same as in the previous experiment, i.e., N = 4 and AR(1) inputs. We can notice the same
compromise in terms of the main performance criteria (convergence rate/tracking versus
misalignment). Consequently, several strategies to set these parameters can be adopted in
different contexts, taking into account that the convergence features are mainly influenced
by the longest individual filter [22].
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Figure 10. Performance of the NLMS-T algorithm using different normalized step-size parameters
(with different values of αi, i = 1, 2, . . . , N), for the identification of the global impulse response g.
The input signals are AR(1) processes, N = 4, and L = 2048.

The third set of experiments is dedicated to the RLS-based algorithms. The per-
formance of these algorithms is mainly influenced by the forgetting factors [41]. In the
case of the conventional RLS algorithm [5], the value of this parameter is usually set as
λ = 1− 1/(KL), where K ≥ 1. A higher value of the forgetting factor (i.e., closer to 1)
improves the misalignment, but significantly slows down the tracking reaction. A natu-
ral choice is to set the forgetting factors of the RLS-T algorithm using a similar strategy,
such that λi = 1− 1/(KLi), i = 1, 2, . . . , N. Nevertheless, depending on the character
and requirements of a particular application, different other strategies can be considered.
For example, one can set all the forgetting factors equal to that associated to the longest fil-
ter. However, analyzing the impact of different strategies for the selection of the forgetting
factors is beyond the scope of this paper.

The influence of the forgetting factors on the performance of the proposed RLS-T
algorithm is investigated in Figure 11. In this simulation, the input signals are white
Gaussian noises and the system order is N = 4 (i.e., the impulse responses from Figure 1).
The forgetting factors are set based on the previous rule, i.e., λi = 1 − 1/(KLi), i =
1, 2, . . . , N, using different values of K. As expected, increasing the values of the forgetting
factors reduces the tracking capability of the algorithm but improves its accuracy by
achieving a lower steady-state misalignment. Clearly, the lowest misalignment is obtained
for λi = 1, i = 1, 2, . . . , N (i.e., K → ∞), while this produces the slowest tracking reaction.
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Figure 11. Performance of the RLS-T algorithm (using different forgetting factors), for the iden-
tification of the global impulse response g. The input signals are white Gaussian noises, N = 4,
and L = 2048.

The computational complexity of the conventional RLS algorithm (which is propor-
tional to L2) makes it prohibitive for the identification of long length impulse responses,
especially in real-time applications and taking into account the implementation costs.
On the other hand, due to the decomposition feature and the operation with shorter im-
pulse responses, the proposed RLS-T algorithm could be more suitable in such scenarios.
In addition, due to the fact that the filter’s length has an influence on the main performance
criteria (e.g., convergence rate/tracking and accuracy), the RLS-T algorithm outperforms
its conventional counterpart. This is supported in Figure 12, where the conventional RLS
algorithm is used as benchmark. Furthermore, the NLMS-T algorithm is introduced in
comparisons. In this simulation, the input signals are AR(1) processes and N = 4, while
the length of the global impulse response is L = 2048. As we can notice, the initial con-
vergence rate of the conventional RLS algorithm using a lower value of the forgetting
factor (λ = 1− 1/L) is similar to that obtained by the NLMS-T algorithm. On the other
hand, the tracking reaction of the RLS algorithm is slower as compared to the NLMS-T
algorithm, while its steady-state misalignment is higher. A lower misalignment level
could be achieved by the RLS algorithm with the maximum forgetting factor (i.e., λ = 1),
but paying with the slowest tracking capability. It can be noticed that the proposed RLS-T
algorithm clearly outperforms all the other algorithms involved in comparisons.

Next, the previous algorithms are compared in a more challenging scenario, using
N = 5 and L = 4096, while the input signals are AR(1) processes. Such a filter length is
excessively high for the conventional RLS algorithm. The results provided in Figure 13
show that the NLMS-T algorithm outperforms the conventional RLS algorithm in this
scenario. As expected, the RLS-T algorithm achieves a faster convergence rate and tracking
reaction as compared to the NLMS-T algorithm.

We should also outline that in the last two simulations (Figures 12 and 13), the main
parameters of the RLS-T and NLMS-T algorithms (i.e., λi and αi, respectively) are set
to achieve the same steady-state misalignment level. However, as previously shown in
Figure 11, using higher values for the forgetting factors of the RLS-T algorithm would
further improve the misalignment level, paying with a slightly reduced convergence rate
and tracking.
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Figure 12. Performance of the RLS-T, NLMS-T, and RLS algorithms, for the identification of the
global impulse response g. The input signals are AR(1) processes, N = 4, and L = 2048.

Iterations ×104

0 0.5 1 1.5 2 2.5 3 3.5 4

N
o

rm
a

liz
e

d
 m

is
a

lig
n

m
e

n
t 

(d
B

)

-50

-40

-30

-20

-10

0

10

RLS-T, λ
i
 = 1 - 1/(50L

i
)

NLMS-T, α
i
 = 0.2

RLS, λ = 1 - 1/L

RLS, λ = 1

Figure 13. Performance of the RLS-T, NLMS-T, and RLS algorithms, for the identification of the
global impulse response g. The input signals are AR(1) processes, N = 5, and L = 4096.

In the next set of experiments, we consider a more general scenario where the impulse
response of the system is not perfectly separable. Hence, it is generated as h = g + f, where
g is obtained as described in the beginning of this section (e.g., see Figure 1), while f is
randomly generated (with Gaussian distribution) and its variance is set to ζ‖g‖2/L, where
ζ > 0. Clearly, a higher value of ζ makes the separation more challenging. In this set of
experiments, we consider AR(1) processes as inputs. In addition, we include in comparisons
a counterpart of the NLMS-T algorithm, i.e., the tensor LMS developed in [7]. The step-
sizes of this algorithm are evaluated as µi(n) = αi/

[
δi + ∑N

i=1 xT
ĥi
(n)xĥi

(n)
]
, i = 1, 2, . . . , N,

while the NLMS-T algorithm is updated based on (30). In the following experiments, we
used the same values of αi and δi for both algorithms. As a benchmark, we also evaluate
the performance of the conventional RLS algorithm using λ = 1− 1/L.



Symmetry 2021, 13, 481 21 of 27

First, in Figure 14, we consider N = 4 and ζ = 0.001. As we can notice, the mis-
alignment of the tensor-based algorithms increases in this case (e.g., as compared to the
results reported in Figure 12), since the nonseparable part of the system cannot be modeled.
However, the RLS-T algorithm still achieves a faster convergence rate as compared to
the conventional RLS algorithm. The convergence rate of the tensor LMS algorithm [7]
is slightly slower as compared to the NLMS-T algorithm, while reaching a similar mis-
alignment level. We can also notice that both algorithms outperform the conventional RLS
algorithm in terms of tracking.
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Figure 14. Performance of the RLS-T, NLMS-T, tensor LMS [7], and RLS algorithms, for the identifica-
tion of the impulse response h = g + f. The vector f is randomly generated (Gaussian distribution),
with the variance ζ‖g‖2/L, where ζ = 0.001. The input signals are AR(1) processes, N = 4,
and L = 2048.

The gain is even more apparent for a higher order of the system, as supported in
Figure 15, where N = 5 and ζ = 0.001. Here, we can also notice that the performance of
the NLMS-T algorithm is improved as compared to the tensor LMS algorithm [7], in terms
of both convergence rate and tracking. As expected, the RLS-T algorithm outperforms by
far all the other algorithms.

Further, in Figures 16 and 17, the previous experiment is repeated, but using ζ = 0.005
and ζ = 0.01, respectively. Since the influence of the nonseparable part of the system
is higher in these cases, the tensor-based algorithms reach a higher misalignment level.
On the other hand, they still outperform the conventional RLS algorithm, especially in
terms of the tracking capability.

The nonseparable part of the system acts like an additional noise (which cannot be
modeled based on the rank-1 decomposition), thus influencing the accuracy of the solution
provided by the tensor-based algorithms. In this case, the theoretical error (in terms
of the normalized misalignment) results in 20log10[‖f‖2/‖h‖2]. In order to outline this
behavior, we evaluate the performance of the RLS-T algorithm using λi = 1, i = 1, 2, . . . , N,
for different values of ζ. It is known that the RLS-based algorithms using the maximum
value of the forgetting factor reach the lowest misalignment level, i.e., the highest accuracy
of the solution [5,41]. In Figure 18, the input signals are AR(1) processes, N = 5, and
L = 4096, while the theoretical errors are marked with dashed lines and appropriate colors.
As expected, the error increases with the value of ζ, while the misalignment of the RLS-T
algorithm matches very well the theoretical threshold in each case. The overall behavior
is similar to the under-modeling scenario [42], where the length of the adaptive filter is
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shorter as compared to the length of the unknown impulse response. Therefore, the “tail” of
the impulse response that cannot be modeled acts like an additional noise, also increasing
the misalignment level.
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Figure 15. Performance of the RLS-T, NLMS-T, tensor LMS [7], and RLS algorithms, for the identifica-
tion of the impulse response h = g + f. The vector f is randomly generated (Gaussian distribution),
with the variance ζ‖g‖2/L, where ζ = 0.001. The input signals are AR(1) processes, N = 5,
and L = 4096.
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Figure 16. Performance of the RLS-T, NLMS-T, tensor LMS [7], and RLS algorithms, for the identifica-
tion of the impulse response h = g + f. The vector f is randomly generated (Gaussian distribution),
with the variance ζ‖g‖2/L, where ζ = 0.005. The input signals are AR(1) processes, N = 5,
and L = 4096.

The last set of experiments is dedicated to the SISO system identification problem
described in Section 5, which aims to go beyond the rank-1 decomposition approach. This
represents the main motivation for future developments of the tensor-based adaptive
filtering algorithms. In this framework, the RLS-NKP [31] is basically an extension of the
RLS-T algorithm for N = 2, which is suitable for the identification of more general forms
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of impulse responses. In these experiments, we consider an echo cancellation scenario,
using the echo paths from Figure 2 (of length L = L1L2 = 1000). The RLS-NKP algorithm
uses L1 = 40 and L2 = 25, while its forgetting factors are set to λ1 = 1− 1/(10PL1) and
λ2 = 1− 1/(10PL2), with P < L2. Similarly, for a fair comparison, the forgetting factor of
the conventional RLS algorithm is set to λ = 1− 1/(10L). Nevertheless, the computational
complexity of the conventional benchmark is proportional to O(L2) = O(L2

1L2
2), while

the RLS-NKP algorithm requires a computational amount of O[(PL1)
2 + (PL2)

2], which is
much more advantageous for P� L2.
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Figure 17. Performance of the RLS-T, NLMS-T, tensor LMS [7], and RLS algorithms, for the iden-
tification of the impulse response h = g + f. The vector f is randomly generated (Gaussian distri-
bution), with the variance ζ‖g‖2/L, where ζ = 0.01. The input signals are AR(1) processes, N = 5,
and L = 4096.
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Figure 18. Performance of the RLS-T algorithm for the identification of the impulse response
h = g + f. The vector f is randomly generated (Gaussian distribution), with the variance ζ‖g‖2/L,
using different values of ζ. The theoretical error (misalignment) is marked with a dashed line.
The input signals are AR(1) processes, N = 5, and L = 4096.
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In Figure 19, the identification of the network impulse response from Figure 2a is
evaluated. The input signal is a highly correlated AR(1) process and ENR = 20 dB. The RLS-
NKP algorithm uses different values of P � L2. As shown in Section 5, this algorithm
combines the estimates of two shorter filters of length PL1 and PL2, while the conventional
RLS algorithm involves a single (long) adaptive filter of length L = L1L2. Consequently,
the tracking reaction of the RLS algorithm is much slower as compared to the RLS-NKP,
as we can notice in Figure 19. Furthermore, it should be noticed that a very small value
of P (e.g., P = 2) leads to an accuracy of the solution (i.e., misalignment level) similar to
the conventional RLS algorithm. On the other hand, the computational complexity of the
RLS-NKP algorithm is much lower in this case.
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Figure 19. Performance of the RLS-NKP and RLS algorithms for the identification of the network
impulse response h from Figure 2a, with the length L = 1000. The RLS-NKP algorithm uses L1 = 40,
L2 = 25, λ1 = 1− 1/(10PL1), and λ2 = 1− 1/(10PL2). The forgetting factor of the RLS algorithm is
λ = 1− 1/(10L). The input signal is an AR(1) process and ENR = 20 dB.

The previous experiment is repeated in Figure 20 but uses the acoustic impulse
response from Figure 2b. As expected, the low-rank approximation is more challenging
in this case, since the matrix H is closer to full-rank. Consequently, the value of P should
be increased. However, a moderate value of P (as compared to L2) is sufficient for the
RLS-NKP algorithm, in order to reach a misalignment level close to the conventional RLS
algorithm, while outperforming its counterpart in terms of the tracking capabilities.

Finally, in Figure 21, the identification of the acoustic impulse response from Figure 2b
is evaluated when using a speech signal as input. The nonstationary character of the
speech signal represents a challenge for any adaptive algorithm. Nevertheless, the tracking
capability of the RLS-NKP is still better as compared to the conventional RLS algorithm.

As explained in Section 5, the RLS-NKP exploits a low-rank approximation approach
and represents an extension of the RLS-T algorithm for N = 2. Thus, it is efficient for the
identification of more general forms of impulse responses, in the context of SISO scenarios.
On the other hand, the RLS-T algorithm is developed based on the decomposition of
rank-1 tensors, in the framework of a MISO system identification problem. Therefore, it is
suitable when dealing with linearly separable systems, e.g., [8,10,14], even affected by a
nonseparable part. Concluding, an extension of the RLS-T algorithm for higher-rank (R ≥ 3)
and higher-order tensors (N ≥ 3) could inherit the advantages of the decomposition-based
approach and the applicability features of the low-rank approximation method.
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Figure 20. Performance of the RLS-NKP and RLS algorithms for the identification of the acoustic
impulse response h from Figure 2b, with the length L = 1000. The RLS-NKP algorithm uses L1 = 40,
L2 = 25, λ1 = 1− 1/(10PL1), and λ2 = 1− 1/(10PL2). The forgetting factor of the RLS algorithm is
λ = 1− 1/(10L). The input signal is an AR(1) process and echo-to-noise ratio (ENR) = 20 dB.
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Figure 21. Performance of the RLS-NKP and RLS algorithms for the identification of the acoustic
impulse response h from Figure 2b, with the length L = 1000. The RLS-NKP algorithm uses L1 = 40,
L2 = 25, λ1 = 1− 1/(10PL1), and λ2 = 1− 1/(10PL2). The forgetting factor of the RLS algorithm is
λ = 1− 1/(10L). The input signal is a speech sequence and ENR = 20 dB.

7. Conclusions and Future Works

In this paper, we have presented a family of tensor-based adaptive filtering algorithms,
targeting an efficient way to solve high-dimension MISO system identification problems.
The main feature of this solution is the decomposition-based approach, which allows
us to deal with the individual components of a high-order tensor, instead of following
the conventional approach that only focuses on the identification of the system global
impulse response. In other words, the tensor-based algorithms combine the solutions
of N shorter filters (where N is the tensor order) in order to estimate the global impulse
response. Consequently, since the filter length influences the performance of any adap-
tive algorithm, the proposed solutions outperform the conventional methods in terms



Symmetry 2021, 13, 481 26 of 27

of the main performance criteria, thus providing faster convergence rate/tracking and
lower misadjustment.

The resulting tensor-based algorithms, namely, LMS/NLMS-T and RLS-T, have been
built on the two main categories of adaptive filters, which are based on the minimization
of the mean-squared error and least-squares criteria, respectively. Among them, the RLS-T
algorithm outperforms its LMS-based counterparts, especially in terms of convergence rate
and tracking. In perspective, the RLS-T algorithm could be combined with line searching
techniques (e.g., the dichotomous coordinate descent iterations), in order to further improve
its computational efficiency. Furthermore, it would be interesting to explore a solution
based on different combinations of adaptive filters, thus using different types of algorithms
to model the individual components that form the global estimate. In this way, we could
further exploit the particularities and advantages of each category of adaptive algorithms,
in order to improve the overall performance. Furthermore, extending the approach in
case of higher rank tensors could lead to improved identification methods, which could be
efficiently applied when dealing with more general forms of impulse responses, especially
of long length.
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42. Paleologu, C.; Ciochină, S.; Benesty, J. Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation.
IEEE Signal Process. Lett. 2008, 15, 5–8. [CrossRef]

http://dx.doi.org/10.1016/j.sigpro.2018.12.010
http://dx.doi.org/10.3390/sym11040556
http://dx.doi.org/10.1016/S0165-1684(00)00085-2
http://dx.doi.org/10.1109/LSP.2017.2685461
http://dx.doi.org/10.1016/j.dsp.2018.01.010
http://dx.doi.org/10.1016/j.dsp.2018.09.005
http://dx.doi.org/10.3390/a11120211
http://dx.doi.org/10.3390/a13060135
http://dx.doi.org/10.1109/TASL.2010.2097251
http://dx.doi.org/10.1109/TASLP.2018.2842146
http://dx.doi.org/10.1109/TASLP.2019.2903276
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1137/110836067
http://dx.doi.org/10.1186/s13634-018-0549-5
http://dx.doi.org/10.1109/TAC.2018.2842145
http://dx.doi.org/10.1109/LSP.2010.2040203
http://dx.doi.org/10.1109/TASL.2011.2125955
http://dx.doi.org/10.1007/s00034-019-01111-3
http://dx.doi.org/10.1109/LSP.2007.910276

	Introduction
	System Model
	Tensor-Based LMS Algorithms
	Tensor-Based RLS Algorithm
	Beyond the Identification of Rank-1 Tensors
	Simulation Results
	Conclusions and Future Works
	References

