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Abstract: Pantograph, the technological successor of trolley poles, is an overhead current collector of
electric bus, electric trains, and trams. In this work, we consider the discrete fractional pantograph
equation of the form ∆β

∗ [k](t) = w
(
t + β, k(t + β), k(λ(t + β))

)
, with condition k(0) = p[k] for

t ∈ N1−β, 0 < β ≤ 1, λ ∈ (0, 1) and investigate the properties of asymptotic stability of solutions. We
will prove the main results by the aid of Krasnoselskii’s and generalized Banach fixed point theorems.
Examples involving algorithms and illustrated graphs are presented to demonstrate the validity of
our theoretical findings.

Keywords: fractional pantograph equations; fractional difference equation; asymptotic stability;
caputo difference operator

MSC: 26A33; 47H10; 93D20

1. Introduction

Graphical methods in engineering are very much useful to present clear results,
develop reasoning, and spatial thinking. Dependency on computer-based simulations
has led to the demise of graphical methods [1]. Though computer simulations with the
correct programming convey invariably accurate results, they fail to provide ingenuity,
understanding, and conceptual thinking. Graphical methods provide practical knowledge
which is more efficient than just going through texts. The science of the mechanisms can
be extended beyond its classical limits to include pneumatic, hydraulic, electrical, and
electronic links.

A special type of differential equation with delay was discovered when J.R. Ock-
endon and A.B. Tayler studied motion of pantograph head on an electric locomotive [2].
The equation is of the form

x′(t) = ax(t) + bx(λt) (1)

where x(t) represents the motion of the locomotive and a, b are real constants with
0 < λ < 1. The pantograph is used in locomotion and trams to transfer power from the
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wire to the traction unit by maintaining electrical contact. They are also used to increase or
reduce motion in some definite proportion, as in the indicator rig on an engine where the
motion of the crosshead is reduced proportionally to the desired length of the indicator
diagram [3]. The pantograph is a four-bar mechanism used to enlarge or reduce drawings
for it is evident that similar curves may be traced as well as straight lines. It was originally
used in drafting for copying and scale line drawings. Three-dimensional pantograph is
used in sculpting to enlarge sculptures by interchanging the positions. Windscreen wipers
on pantograph in some vehicles are used to allow blade to cover more windscreen on
each wipe. In 1890, the US census made use of keyboard punch which is a pantograph
design [4]. Some heavy-duty applications of pantograph include scissor lifts, material
handling equipment, stage lifts, etc. During the past few decades, there was a gradual
development of the modeling of nonlinear phenomena that occurs in various science and
engineering fields [5].

Fractional calculus, which is a generalization of classical integer order calculus, has
become popular among the scientists and engineers as it renders new dimension and
flexibility in dealing with real-world problems [6]. Increasing interest towards this field is
due to non-local behavior and ultimate convergence to the integer order systems. Potential
of fractional derivatives has already been widely explored by researchers from different
parts of the world by studying its applications in a range of problems in biology, physics,
electronics (circuit theory), chemistry, etc. Non-standard Lagrangians have wide range of
applications in nonlinear differential equations, dynamical systems, etc. [7–13]. Fractional
action-like variational approach is very useful in giving better description of dissipative
system. The fractional non-standard Lagrangians have been effective in various areas of
physics like astrophysics, cosmology, quantum and classical dynamical systems. Recent
works can be seen in [14–18]. Discrete fractional calculus is gaining its importance in recent
years. Recently, Atici and Eloe [19–22], and Miller and Ross [23], have studied discrete delta
fractional calculus. The study of stability is a venerable branch in the qualitative theory
of differential equations. Asymptotic stability results for fractional difference equations
have been developed by Chen et al. [24–26] for both Caputo- and Riemann Liouville-type
operators. Other authors studied stability results of nabla fractional equations [27–29].
In 2019, the authors investigated the k-dimensional system of Langevin Hadamard-type
fractional differential inclusions with 2k different fractional orders and they established
existence results for a fraction hybrid differential inclusion with Caputo–Hadamard-type
fractional derivative [30,31]. In 2020, Zhou et al. studied a nonlinear non-autonomous
model which is composed of two species in a rocky intertidal community and occupy each
other by individual organisms, in a rocky intertidal community [32]. One can see some
significant applications of fractional differential equations in [33–41].

Though a standard pantograph equation is available in literature, the varying design
of the pantograph in accordance with its application has inspired us to consider the
generalized version of the equation. Motivated by the works in [42–46], we consider the
nonlinear discrete fractional pantograph equation ∆β

∗ [k](t) = w
(
t + β, k(t + β), k(λ(t + β))

)
,

k(0) = p[k],
(2)

for t ∈ N1−β, where 0 < β ≤ 1, 0 < λ < 1, ∆β
∗ is a Caputo like difference operator, k

represents the motion of the pantograph, w : E → R is continuous with respect to k, and t.
Here, E = [0, ∞)× C × C, Nt = {t, t + 1, t + 2, . . .}, and p : C → R is Lipschitz continuous
in k where C = C([0, ∞),C). That is, there is a positive constant M ∈ (0, 1) such that

‖p[k](t)− p[l](t)‖ ≤ M‖k(t)− l(t)‖, (3)

for each t ∈ Nt and almost all k, l ∈ C. The discretized form of standard pantograph
equation can be obtained from Equation (2) when β = 1 and w

(
t + β, k(t + β), k(λ(t +
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β))
)
= ak(t + β) + bk(λ(t + β)) for t ∈ N1−β. By employing fixed point hypotheses

based on Krasnoselskii’s and generalized Banach fixed point theorems, we investigate
the asymptotic stability of solutions of Equation (2). Particular examples are presented
to demonstrate the validity of our theoretical findings. Some interesting observations are
presented at the end of the paper.

This paper is organized as follows. In Section 2, some notations, definitions, and
lemmas that are essential in our further analysis are presented. In Section 3, we analyze the
asymptotic stability of the problem expressed by (2). Section 4 contains some illustrative
examples to show the validity and applicability of our results.

2. Essential Preliminaries

This section is committed to state some notations and essential preliminaries that
are acting as necessary prerequisites for the subsequent sections. First, we recall σ−th
fractional sum of function k ∈ C.

Definition 1 ([19,20]). Let σ > 0. The σ−th fractional sum of k is defined by

∆−σ[k](t) =
1

Γ(σ)

t−σ

∑
s=a

(t− s− 1)(σ−1)k(s), (4)

where k(s) and ∆−σ[k](t) are defined for s ≡ a mod (1), for t ≡ (a + σ) mod (1), respectively,

t(−σ) =
Γ(t + 1)

Γ(t + σ + 1)
, (5)

for t ∈ Na and ∆−σ maps functions defined on Na to functions defined on Na+σ, which, upon sub-
stitution in Equation (4), leads to

∆−σ[k](t) =
1

Γ(σ)

t−σ

∑
s=a

Γ(t− s)
Γ(t− s− σ + 1)

k(s). (6)

Figure 1 presents the convergence of t(−σ) in 3-dimensional view, and it is clear that
the greater the value of σ, the lesser the time taken for t(−σ) to approach zero. Figure 2,
indeed, illustrates the behavior of t(−σ) in (5) whenever a and σ are changed, respectively.
These results are presented in Table 1, and they show that the operator t(−σ) is decreasing
with respect to both σ and t. Thus, t(−σ) → 0 as t→ ∞.

Figure 1. Results of t(−σ) with respect to t where σ ∈ [0, 1] in (5).
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Figure 2. Results of t(−σ) with respect to t where a = 0.1, 0.5, 0.9 in (5) for t ∈ Na, σ = 0.5, 1.1, 2.1,
respectively, according to Table 1.

Further, the authors of [20] proved that

∆−µt(σ) =
Γ(σ + 1)

Γ(σ + µ + 1)
t(σ+µ), (7)

for σ ∈ R \ {· · · ,−2,−1}. At present, suppose that µ > 0 and `− 1 < µ < `, where `
denotes a positive integer, ` = dµe, here d.e denotes the ceiling of number [5]. Set σ = `− µ.
The µ−th fractional Caputo-like difference is defined as

∆µ
∗ [k](t) = ∆−σ

[
∆`[k]

]
(t) =

1
Γ(σ)

t−σ

∑
s=a

(t− s− 1)(σ−1)∆`[k](s), (8)
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where ∆` is the `−th order forward difference operator and ∆µ
∗ maps functions defined on

Na to functions defined on Na−µ.

Table 1. Numerical results of t(−σ) where σ = 0.5, 1.1, 2.1 in (5) for t ∈ Na, a = 0.1, 0.5, 0.9 and
n = 1, 2, · · · , 100 (Algorithm 1).

t t(−σ) t t(−σ) t t(−σ)

(σ = 0.5) n a = 0.1 a = 0.5 a = 0.9

1 0.1 1.06472 0.5 0.88622 0.9 0.77426
2 1.1 0.73200 1.5 0.66467 1.9 0.61295
3 2.1 0.59123 2.5 0.55389 2.9 0.52281
4 3.1 0.50911 3.5 0.48465 3.9 0.46340
5 4.1 0.45377 4.5 0.43618 4.9 0.42049
...

...
...

...
...

...
...

97 96.1 0.10161 96.5 0.10140 96.9 0.10119
98 97.1 0.10109 97.5 0.10088 97.9 0.10068
99 98.1 0.10057 98.5 0.10037 98.9 0.10017
100 99.1 0.10007 99.5 0.09987 99.9 0.09967

(σ = 1.1) n a = 0.1 a = 0.5 a = 0.9

1 0.1 0.86344 0.5 0.61990 0.9 0.48088
2 1.1 0.43172 1.5 0.35763 1.9 0.30455
3 2.1 0.28331 2.5 0.24835 2.9 0.22080
4 3.1 0.20911 3.5 0.18896 3.9 0.17222
5 4.1 0.16488 4.5 0.15184 4.9 0.14065
...

...
...

...
...

...
...

97 96.1 0.00651 96.5 0.00648 96.9 0.00645
98 97.1 0.00644 97.5 0.00641 97.9 0.00638
99 98.1 0.00636 98.5 0.00634 98.9 0.00631
100 99.1 0.00629 99.5 0.00627 99.9 0.00624

(σ = 2.1) n a = 0.1 a = 0.5 a = 0.9

1 0.1 0.392477 0.5 0.238423 0.9 0.160294
2 1.1 0.134913 1.5 0.099343 1.9 0.076139
3 2.1 0.067456 2.5 0.053990 2.9 0.044161
4 3.1 0.040214 3.5 0.033744 3.9 0.028704
5 4.1 0.026593 4.5 0.023007 4.9 0.020093
...

...
...

...
...

...
...

97 96.1 0.000091 96.5 0.000065 96.9 0.000065
98 97.1 0.000089 97.5 0.000064 97.9 0.000063
99 98.1 0.000087 98.5 0.000063 98.9 0.000062
100 99.1 0.000085 99.5 0.000061 99.9 0.000061

Lemma 1 ([5]). For µ > 0, µ is non-integer, ` = dµe, σ = `− µ, it holds

k(t) =
`−1

∑
m=0

(t− a)(m)

m!
∆m[k](a)

+
1

Γ(µ)

t−σ

∑
s=a+σ

(t− s− 1)(µ−1)∆µ
∗ [k](s),

where k is defined on Na with a ∈ Z+. In particular, when 0 < µ < 1 and a = 0, we have

k(t) = k(0) +
1

Γ(µ)

t−µ

∑
s=1−µ

(t− s− 1)(µ−1)∆µ
∗ [k](s), (9)

where k is defined on N1 and ∆µ
∗ is defined on N1−µ.
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Algorithm 1: The MATLAB lines of t(−σ) where σ = 0.5, 1.1, 2.1 in (5) for t ∈ Na, a = 0.1, 0.5, 0.9 and
n = 1, 2, · · · , N.

format long
sigma = [0.5 1.1 2.1];
[xsigma ysigma] = size(sigma);
a = [0.1 0.5 0.9];
N = 100;
column = 1;
for i = 1:ysigma

for j = 1:ya
n = 1;
t = a(j);
while t ≤ N

parammatrix(n, column) = n;
parammatrix(n, column+1) = t;
parammatrix(n, column+2) = round(gamma(t + 1)/gamma(t + 1 + sigma(i)), 6);
t = t + 1;
n = n + 1;

end;
column = column + 3;

end;
end;

Remark 1. According to Lemma 1, k in (9) should be defined on N0. The sum

t−µ

∑
s=1−µ

(t− s− 1)(µ−1)∆µ
∗ [k](s),

has no sense when t = 0, then we define k on N1.

Lemma 2 ([20]). Assume that the following factorial functions are well defined.

(i) If 0 < ν < 1, then t(cν) ≥
(

t(ν)
)c

.

(ii) t(ν+c) = (t− c)(ν)t(c).

Lemma 3 ([47]). The quotient expansion of two Gamma functions at infinity is

Γ(y + a)
Γ(y + b)

= ya−b
[

1 + O
(

1
y

)]
, (‖arg(y + a)‖ < π, |y| → ∞). (10)

Definition 2 ([25]). Let k = ϕ(t) be a solution of Equation (2).

(1) The solution k is said to be stable, whenever for any ε > 0 and t0 ∈ R+, there exists
δ = δ(t0, ε) > 0 such that

‖k(t, k0, t0)− ϕ(t)‖ < ε,

for ‖k0 − ϕ(t0)‖ ≤ δ(t0, ε) and each t ≥ t0.
(2) The solution k is said to be attractive, if there exists η(t0) > 0 such that ‖k0‖ ≤ η implies

limt→∞ k(t, k0, t0) = 0.
(3) The solution k is said to be asymptotically stable, whenever it is stable and attractive.

Definition 3 ([48]). Let k = ϕ(t) be a solution of Equation (2). A set Ψ of sequences in l∞
n0

is uniformly Cauchy or equi-Cauchy, if for every ε > 0, there exists an integer N such that
‖k(i)− k(j)‖ < ε whenever i, j > N for every k = {k(n)} in Ψ.
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Theorem 1 ([48] Discrete Arzelà–Ascoli theorem). A bounded, uniformly Cauchy subset Ω of
l∞
n0

is relatively compact.

Theorem 2 ([49] Krasnoselskii fixed point theorem). Let Ψ be a nonempty, closed, convex, and
bounded subset of the Banach space X and let G : X → X and H : Ψ → X be two operators
such that

(a) G is a contraction with constant M < 1.
(b) H is continuous, G(Ψ) resides in a compact subset of X .
(c) For all l ∈ Ψ, if k = G(k) + H(l) then k ∈ Ψ.

Then the operator equation G[k] + H[k] = k has a solution in Ψ.

Lemma 4 ([50] Generalized Banach Fixed Point Theorem). Let Ψ be a nonempty, closed subset

of a Banach space (X , ‖·‖) and ρn ≥ 0 for every n ∈ N0 such that
∞
∑

n=0
ρn converges. Moreover, let

the mapping Q : Ψ→ Ψ satisfy the inequality

‖Qn[k]−Qn[l]‖ ≤ ρn‖k− l‖,

for all n ∈ N1 and any k, l ∈ Ψ. Then, Q has a uniquely defined fixed point k∗. Furthermore,
for any k0 ∈ Ψ, the sequence {Qn[k0]}∞

n=1 converges to this fixed point k∗.

3. Main Results

For the purpose of convenience, we set

W β
λ [k](t) = w

(
t + β, k(t + β), k(λ(t + β))

)
. (11)

Let l∞
1 be the set of all real sequences k = {k(t)}∞

t=1 with norm

‖k‖ = sup
t∈N1

‖k(t)‖,

then l∞
1 is a Banach space. Define the operators G[k](t) = p[k](t) and

H[k](t) =
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s),

Q[k](t) = p[k](t) +
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s),

(12)

where p : C → R is Lipschitz continuous map andW β
λ [k](s) is defined in Equation (11).

Clearly, Q[k] = G[k] + H[k]. Let k, l ∈ l∞
β . Then, we have

‖G[k](t)− G[l](t)‖ = ‖p[k](t)− p[l](t)‖ ≤ M‖k− l‖.

Thus, the operator G is contraction with M < 1. Condition (a) of the Lemma 2 holds and
k(t) is a solution of (2) if it is a fixed point of Q. Now, we proof our key lemmas.

Lemma 5. The map k : N1 → R is a solution of (2) if and only if k(t) is a solution of the fractional
Taylor’s difference formula given by

k(t) = k(0) +
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s), (13)

for each t ∈ N1, whereW β
λ [k](s) is defined in (11).
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Proof. Suppose that k(t) is a solution of (2), we have from (9)

k(t) = k(0) +
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)∆β
∗ [k](s)

= k(0) +
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s).

This implies that (13) holds. Conversely, if k(t) is solution of (13), comparing (9) and
(13) yields,

t−β

∑
s=1−β

(t− s− 1)(β−1)∆β
∗ [k](s) =

t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s),

which takes the form

t−β

∑
s=1−β

(t− s− 1)(β−1)
[
∆β
∗ [k](s)−W

β
λ [k](s)

]
= 0, (14)

for each t ∈ N1. If t = 1 then (14) becomes

(β− 1)(β−1)
[
∆β
∗ [k](1− β)−W β

λ [k](1− β)
]
= 0,

which implies
∆β
∗ [k](1− β) =W β

λ [k](1− β). (15)

If t = 2 then from (14) it follows that

(β)(β−1)
[
∆β
∗ [k](1− β)−W β

λ [k](1− β)
]

+ (β− 1)(β−1)
[
∆β
∗ [k](2− β)−W β

λ [k](2− β)
]
= 0.

By using (15), the above equation becomes

∆β
∗ [k](2− β) =W β

λ [k](2− β).

Thus, by induction, we have that ∆β
∗ [k](t) = W β

λ [k](t) for all t ∈ N1−β and so k(t) is a
solution of (2). This completes the proof.

In order to prove the main results, we make the following assumption.

(W1)There exists constants σ1 ∈ (β, 1) and B1, B2 > 0 such that∥∥w
(
t, k(t), k(λt)

)∥∥ ≤ (B1 + B2)t(−σ1), (16)

for t ∈ N1.

Lemma 6. Assume that (3) and (W1) hold. Then, H is continuous and H[Ψ] is a compact subset
of R for t ∈ N1, where

Ψ =
{

k(t) : ‖k(t)‖ ≤ t(−ξ1), t ∈ N1

}
, (17)

ξ1 = − 1
2 (β− σ1) satisfies

(B1 + B2)Γ(1− σ1)

(1−M)Γ(1 + β− σ1)
(1 + ξ1)

(−ξ1) ≤ 1. (18)
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Proof. For t ∈ N1, ξ1 > 0

t(−ξ1) =
Γ(t + 1)

Γ(t + ξ1 + 1)
. (19)

Clearly the set Ψ defined in (17) is closed, bounded, and convex subset of R. First, we
prove the continuity of the operator H. Using Equations (7) and (12) and the condition
(W1), we have

‖H[k](t)‖ = 1
Γ(β)

∥∥∥∥∥ t−β

∑
s=1−β

(t− s− 1)(β−1)W β
λ [k](s)

∥∥∥∥∥
≤ 1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)
∥∥∥W β

λ [k](s)
∥∥∥

≤ 1
Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)(B1 + B2)(s + β)(−σ1)

= (B1 + B2)∆−β(t + β)(−σ1)

= (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β)(β−σ1)

= (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β)(−2ξ1).

For t ∈ N1, by using Lemma 2 we obtain

‖H[k](t)‖ ≤ (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β)(−2ξ1)

= (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β + ξ1)

(−ξ1)(t + β)(−ξ1)

≤ (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(1 + ξ1)

(−ξ1)(t)(−ξ1).

Using (18), it is clear that ‖H[k](t)‖ ≤ t(−ξ1). Thus, H[Ψ] ⊂ Ψ for t ∈ N1. Let ε > 0 be
given. Then, there exists S1 ∈ N1, such that t > S1 implies

(B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
t(β−σ1) <

ε

2
. (20)

Consider the sequence {kn} such that kn → k. By the continuity of the function f and
Lemma 5 for t ∈ {1, 2, . . . S1}, we obtain

‖H[kn](t) −H[k](t)‖

≤ 1
Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)
∥∥∥W β

λ [kn](s)−W β
λ [k](s)

∥∥∥
≤ t(β)

Γ(β + 1)
max

s∈{1−β,...,S1−β}

∥∥∥W β
λ [kn](s)−W β

λ [k](s)
∥∥∥

≤ Γ(β + S1)

Γ(S1)Γ(β + 1)
max

s∈{1−β,...,S1−β}

∥∥∥W β
λ [kn](s)−W β

λ [k](s)
∥∥∥→ 0,
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as n→ ∞, For t ∈ NS1+1,

‖H[kn](t) −H[k](t)‖

≤ 1
Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)
∥∥∥W β

λ [kn](s)−W β
λ [k](s)

∥∥∥
≤ 2(B1 + B2)

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)(s + β)(−σ1)

≤ 2(B1 + B2)Γ(1− σ1)

Γ(1 + β− σ1)
(t)(β−σ1)

< ε.

Thus,
‖H[kn](t)− H[k](t)‖ → 0,

as n → ∞ for all t ∈ N1. Therefore, the operator H is continuous. Let δ1, δ2 ∈ N1 and
δ1 < δ2. Then, we get

‖H[k](δ2)− H[k](δ1)‖ ≤
1

Γ(β)

δ2−β

∑
s=1−β

(δ2 − s− 1)(β−1)
∥∥∥W β

λ [k](s)
∥∥∥

+
1

Γ(β)

δ1−β

∑
s=1−β

(δ2 − s− 1)(β−1)
∥∥∥W β

λ [k](s)
∥∥∥

≤ (B1 + B2)Γ(1− σ1)

Γ(1 + β− σ1)
δ
(β−σ1)
2

+
(B1 + B2)Γ(1− σ1)

Γ(1 + β− σ1)
δ
(β−σ1)
1 < ε.

It is clear from the definition of uniformly Cauchy that {H[k], k ∈ Ψ} is bounded and
uniformly Cauchy subset and from Discrete Arzelà–Ascoli’s Theorem stated in Lemma 1,
H[Ψ] is relatively compact. This completes the proof.

Lemma 7. Assume that (3) and condition (W1) hold, then for t ∈ N1 a solution of (2) is in Ψ.

Proof. Condition (c) of Lemma 2 is yet to be proved. If k = G[k] + H[l], l ∈ Ψ for t ∈ N1,
we have

‖k(t)‖ ≤ ‖G[k](t)‖+ ‖H[l](t)‖

≤ ‖p[k](t)‖+ (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β)(β−σ1)

≤ M‖k(t)‖+ (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)
(t + β)(β−σ1).

Therefore,

‖k(t)‖ ≤ (B1 + B2)
Γ(1− σ1)

Γ(1 + β− σ1)(1−M)
(t)(β−σ1)

≤
[

(B1 + B2)Γ(1− σ1)

(1−M)Γ(1 + β− σ1)
(1 + ξ1)

(−ξ1)

]
t(−ξ1).

Indeed ‖k(t)‖ ≤ t(−ξ1). Thus, k(t) ∈ Ψ for t ∈ N1. By Theorem 2, Q has a fixed point in Ψ
which is solution of (2).
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Theorem 3. Assume that (3) and condition (W1) hold, then the solutions of (2) are attractive.

Proof. By Lemma 7, the solutions of (2) exist and are in Ψ. Further, the function k(t) in Ψ
tends to zero as t→ ∞. Then, clearly the solutions of (2) tend to zero with t approaching
infinity. The proof is complete.

Before establishing the theorems, we make the following assumption.

(W2)There exists σ2 ∈ (β, 1) and B3, B4 ≥ 0 such that

‖w(t, k1(t), l1(t))− w(t, k2(t), l2(t))‖ ≤
[
B3‖k1 − k2‖+ B4‖l1 − l2‖

]
t(−σ2), (21)

for any ki, li ∈ l∞, i = 1, 2.

Theorem 4. Assume that (3) together with the condition (W2) is satisfied, then the solution of (2)
is unique bounded solution in l∞ provided that

ρ = M +
(B3 + B4)Γ(1− σ2)

Γ(1 + β− σ2)Γ(2− β + σ2)
< 1. (22)

Proof. Let the iterates of operator Q be defined as Q1 = Q and Qn = Q(Qn−1) for each
n ∈ N1. Now, we shall prove that Q is a contraction operator for sufficiently large n. We
have that

‖Qn[k]−Qn[l]‖ ≤ ρn‖k− l‖ (23)

and

‖Q[k](t)−Q[l](t)‖ ≤ ‖p[k]− p[l]‖

+
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)
∥∥∥W β

λ [kn](s)−W β
λ [k](s)

∥∥∥
≤ M‖k− l‖+ (B3 + B4)

Γ(1− σ2)

Γ(1 + β− σ2)
(t)(β−σ2)‖k− l‖

≤ M‖k− l‖+ (B3 + B4)
Γ(1− σ2)

Γ(1 + β− σ2)
(1)(β−σ2)‖k− l‖

≤
[

M +
(B3 + B4)Γ(1− σ2)

Γ(1 + β− σ2)Γ(2− β + σ2)

]
‖k− l‖,

which implies
‖Q[k]−Q[l]‖ ≤ ρ‖k− l‖.

Therefore, the (23) is true for n = 1. Assuming (23) is true for n, we obtain∥∥∥Qn+1[k](t) −Qn+1[l](t)
∥∥∥ = ‖Q(Qn)[k]−Q(Qn)[l]‖

≤ ‖p[Qn[k]]− p[Qn[l]]‖

+
1

Γ(β)

t−β

∑
s=1−β

(t− s− 1)(β−1)
∥∥∥W β

λ [Q
n[k]](s)−W β

λ [Q
n[l]](s)

∥∥∥
≤ ρn M‖k− l‖+ (B3 + B4)ρ

n Γ(1− σ2)

Γ(1 + β− σ2)
(t)(β−σ2)‖k− l‖

≤ M‖k− l‖+ (B3 + B4)
Γ(1− σ2)

Γ(1 + β− σ2)
(1)(β−σ2)‖k− l‖

≤ ρn
[

M +
(B3 + B4)Γ(1− σ2)

Γ(1 + β− σ2)Γ(2− β + σ2)

]
‖k− l‖,
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which implies ∥∥∥Qn+1[k]−Qn+1[l]
∥∥∥ ≤ ρn+1‖k− l‖.

By the principle of mathematical induction on n, the statement (23) is true for all n ∈ N1.
The geometric series ∑∞

n=0 ρn converges, as ρ < 1 and so Q has a unique bounded fixed
point in Ψ.

Theorem 5. Assume that (3) and condition (W2) hold, then the solutions of (2) are stable provided
that (22) holds.

The proof follows from Theorem 4.

Theorem 6. Assume that (3) and conditions (W1) and (W2) hold. Then, the solutions of (2) are
asymptotically stable provided that (22) holds.

The proof is the consequence of Theorems 3 and 5.

4. Numerical Examples

Example 1. Consider the following discrete fractional pantograph equation, ∆0.8[k](t) =
1

10

[
0.04 k(t + 0.8) + 0.01 sin

(
k
(

t + 0.8
2

))]
,

k(0) = p[k],
(24)

for each t ∈ N0.2, where
‖p[k]‖ ≤ 0.2‖k‖.

Clearly, β = 0.8 ∈ (0, 1], M = 0.2 ∈ (0, 1), λ = 1
2 ∈ (0, 1). Take

W β
λ [k](t) =

1
10

[
0.04 k(t + 0.8) + 0.01 sin

(
k
(

t + 0.8
2

))]
. (25)

Let k1, k2, l1, l2 ∈ C. Then, we have∥∥w
(
t, k1(t), l1(λt)

)
−w

(
t, k2(t), l2(λt)

)∥∥
=

∥∥∥∥ 1
10

[
0.04 k1(t + 0.8) + 0.01 sin

(
l1

(
t + 0.8

2

))]
− 1

10

[
0.04 k2(t + 0.8) + 0.1 sin

(
l2

(
t + 0.8

2

))]∥∥∥∥
≤ 0.004‖k1(t + 0.8)− k2(t + 0.8)‖

+ 0.001
∥∥∥∥ sin

(
l1

(
t + 0.8

2

))
− sin

(
l2

(
t + 0.8

2

))∥∥∥∥
≤ 0.004‖k1(t + 0.8)− k2(t + 0.8)‖

+ 0.001
∥∥∥∥l1

(
t + 0.8

2

)
− l2

(
t + 0.8

2

)∥∥∥∥.

Then, from (21), for σ2 = 0.85 ∈ (β, 1), we get∥∥w
(
t, k1(t), l1(λt)

)
− w

(
t, k2(t), l2(λt)

)∥∥
≤
[
0.004‖k1(t + 0.8)− k2(t + 0.8)‖+ 0.001‖l1(t + 0.8)− l2(t + 0.8)‖

]
t(−0.85),

for all t ∈ N1−β = N0.2 = {0.2, 1.2, 2.2, · · · }.



Symmetry 2021, 13, 473 13 of 22

By using (5) and consider three sample values for σ, we will have

t(−σ2) =
Γ(t + 1)

Γ(t + σ2 + 1)
=



Γ(t + 1)
Γ(t + 0.81 + 1)

= 0.9143, 0.5458, · · · , 0.1109,

Γ(t + 1)
Γ(t + 0.90 + 1)

= 0.8774, 0.5014, · · · , 0.0866,

Γ(t + 1)
Γ(t + 0.99 + 1)

= 0.8379, 0.4591, · · · , 0.0676,

for t = 0.2, 1.2, · · · , 14.2 respectively. Table 2 shows these numerical results. Therefore,

B3 = 0.004, B4 = 0.001.

Figure 3 illustrates t(−σ2) for σ2 = 0.81, 0.90, 0.99 and t ∈ N0.2. These results are shown in
Table 2.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (t)

t(−
σ

2
)

 

 

σ
2
 = 0.81

σ
2
 = 0.9

σ
2
 = 0.99

Figure 3. The behavior of t(−σ2) with respect to t where σ2 = 0.81, 0.9, 0.99 in Example 1, respectively,
for t ∈ N0.2 and n = 1, 2, · · · , 100, according to Table 2.

Table 2. Numerical results of t(−σ2) where σ2 = 0.81, 0.90, 0.99 in Example 1 for t ∈ N1−β = N0.2 and
n = 1, 2, · · · , 15 (Algorithm 2).

t(−σ2)

n t 0.81 0.9 0.99

1 0.2000 0.9143 0.8774 0.8379
2 1.2000 0.5458 0.5014 0.4591
3 2.2000 0.3989 0.3558 0.3166
4 3.2000 0.3184 0.2777 0.2418
5 4.2000 0.2669 0.2287 0.1957
6 5.2000 0.2309 0.1950 0.1644
7 6.2000 0.2042 0.1702 0.1418
8 7.2000 0.1836 0.1513 0.1246
9 8.2000 0.1671 0.1364 0.1112
10 9.2000 0.1536 0.1242 0.1004
11 10.2000 0.1423 0.1141 0.0915
12 11.2000 0.1327 0.1056 0.0841
13 12.2000 0.1244 0.0984 0.0778
14 13.2000 0.1172 0.0921 0.0723
15 14.2000 0.1109 0.0866 0.0676
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Now, by employing Equation (22), the ρ obtained for different fractional order β and for
different values of σ2. For this purpose, let σ2 = 0.81, 0.90, and 0.99, and because σ2 should be in
(β, 1), then we have

ρ = M +
(B3 + B4)Γ(1− σ2)

Γ(1 + β− σ2)Γ(2− β + σ2)

=



0.2 +
0.005 Γ(1− 0.81)

Γ(1 + β− 0.81)Γ(2− β + 0.81)
,

0.2 +
0.005 Γ(1− 0.90)

Γ(1 + β− 0.90)Γ(2− β + 0.90)
,

0.2 +
0.005 Γ(1− 0.99)

Γ(1 + β− 0.99)Γ(2− β + 0.99)
,

=



0.2 +
0.005 Γ(0.19)

Γ(β + 0.19)Γ(2.81− β)
= 0.2030, 0.2039, · · · , 0.2240,

0.2 +
0.005 Γ(0.10)

Γ(β− 0.10)Γ(2.90− β)
= 0.2027, 0.2044, · · · , 0.2451,

0.2 +
0.005 Γ(0.01)

Γ(β− 0.01)Γ(2.99− β)
= 0.2025, 0.2163, · · · , 0.6768,

for
β = 0.05, 0.10, 0.15, · · · , 0.8,

whenever σ2 = 0.81, for
β = 0.05, 0.10, 0.15, · · · , 0.9,

whenever σ2 = 0.90, for
β = 0.05, 0.10, 0.15, · · · , 0.95,

whenever σ2 = 0.99, respectively.
The solution is given by

k(t) = p(k) +
1

Γ(0.8)

t−0.8

∑
s=0.2

(t− s− 1)(β−1)

× 1
10

[
0.04 k(s + 0.8) + 0.01 sin

(
k
(

s + 0.8
2

))]
,

for almost all t ∈ N1. Simple calculations yield,

B3 = 0.004, B4 = 0.001,

M = 0.2, σ2 = 0.85 and ρ = 0.2295. The conditions in Theorem 4 hold and thus the solutions of
(24) are asymptotically stable.

Remark 2. It is clear from Figure 4 that the increase in fractional order (β) results in gradual
increase in the value of ρ in (22) and all the values of ρ are less than one. The values of ρ are
tabulated in Table 3 which ensures the stability of (24). The value of ρ is plotted against β ∈ (0, 0.8)
and σ2 in the range (0.8, 1) in Figure 5. Thus, it is evident that the solutions of discrete fractional
equations of order β = 0.8 remains stable (i.e., ρ < 1) for any values of σ2 ∈ (0.8, 1).
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Table 3. Numerical results of ρ versus σ2 ∈ {0.15, 0.30, 0.45, 0.60, 0.75, 0.9} for β ∈ (0, 1) in
Example 1 (Algorithm 3).

ρ(σ2)

n β 0.15 0.30 0.45 0.60 0.75 0.9

1 0.0400 0.2049 0.2046 0.2043 0.2040 0.2038 0.2040
2 0.0800 0.2052 0.2049 0.2047 0.2045 0.2044 0.2054
3 0.1200 0.2054 0.2052 0.2050 0.2050 0.2052 0.2070
4 0.1600 0.2055 0.2054 0.2055 0.2059 0.2086
5 0.2000 0.2058 0.2058 0.2060 0.2067 0.2103
6 0.2400 0.2061 0.2062 0.2065 0.2075 0.2121
7 0.2800 0.2064 0.2066 0.2071 0.2083 0.2140
8 0.3200 0.2070 0.2076 0.2092 0.2160
9 0.3600 0.2073 0.2081 0.2100 0.2181

10 0.4000 0.2077 0.2086 0.2109 0.2202
11 0.4400 0.2080 0.2092 0.2118 0.2224
12 0.4800 0.2097 0.2126 0.2246
13 0.5200 0.2102 0.2135 0.2268
14 0.5600 0.2106 0.2143 0.2291
15 0.6000 0.2152 0.2314
16 0.6400 0.2160 0.2337
17 0.6800 0.2168 0.2360
18 0.7200 0.2176 0.2382
19 0.7600 0.2404
20 0.8000 0.2425
21 0.8400 0.2446
22 0.8800 0.2466

Algorithm 2: The MATLAB lines of t(−σ2) where σ = 0.81, 0.9, 0.99 in Example 1 for t ∈ N1−β,
t = 0.2, 1.2, 2.2, · · · , 14.2 and n = 1, 2, · · · , N.

format long
sigma = [0.81 0.9 0.99];
[xsigma ysigma] = size(sigma);
beta = 0.2;
N = 100;
column = 1;
for i = 1:ysigma

n = 1;
t = beta;
while t ≤ N

parammatrix(n, column) = n;
parammatrix(n, column+1) = t;
parammatrix(n, column+2) = round(gamma(t + 1)/gamma(t + 1 + sigma(i)), 6);
t = t + 1;
n = n + 1;

end;
column = column + 3;

end;



Symmetry 2021, 13, 473 16 of 22

Example 2. Consider the following discrete fractional pantograph equation, ∆0.5[k](t) =
1
25

[
0.09 k(t + 0.5) + 0.3 cos2

(
k
(

t + 0.5
5

))]
,

k(0) = p[k],
(26)

for each t ∈ N0.5, where
‖p[k]‖ ≤ 0.1‖k‖.

Clearly, β = 0.5 ∈ (0, 1], M = 0.1 ∈ (0, 1), λ = 1
5 ∈ (0, 1). Take

W β
λ [k](t) =

1
25

[
0.09 k(t + 0.5) + 0.3 cos2

(
k
(

t + 0.5
5

))]
. (27)

Let k1, k2, l1, l2 ∈ C. Then, we have∥∥w
(
t, k1(t), l1(λt)

)
−w

(
t, k2(t), l2(λt)

)∥∥
=

∥∥∥∥ 1
25

[
0.09 k1(t + 0.5) + 0.3 cos2

(
l1

(
t + 0.5

5

))]
− 1

25

[
0.09 k2(t + 0.5) + 0.3 cos2

(
l2

(
t + 0.5

5

))]∥∥∥∥
≤ 9

2500
‖k1(t + 0.5)− k2(t + 0.5)‖

+
3

250

∥∥∥∥ cos2
(

l1

(
t + 0.5

5

))
− cos2

(
l2

(
t + 0.8

5

))∥∥∥∥
≤ 9

2500
‖k1(t + 0.5)− k2(t + 0.5)‖

+
3

250

∥∥∥∥l1

(
t + 0.5

5

)
− l2

(
t + 0.5

5

)∥∥∥∥.

Then, from (21), for σ2 = 0.75 ∈ (β, 1), we get∥∥w
(
t, k1(t), l1(λt)

)
− w

(
t, k2(t), l2(λt)

)∥∥
≤
[
0.0036‖k1(t + 0.5)− k2(t + 0.5)‖+ 0.012‖l1(t + 0.5)− l2(t + 0.5)‖

]
t(−0.75),

for all t ∈ N1−β = N0.5 = {0.5, 1.5, 2.5, · · · }.
By using (5) and consider three sample values for σ, we will have

t(−σ2) =
Γ(t + 1)

Γ(t + σ2 + 1)
=



Γ(t + 1)
Γ(t + 0.55 + 1)

= 0.8669, 0.6343, · · · , 0.2232,

Γ(t + 1)
Γ(t + 0.75 + 1)

= 0.7821, 0.5214, · · · , 0.1287,

Γ(t + 1)
Γ(t + 0.9 + 1)

= 0.7134, 0.4459, · · · , 0.0851,

for t = 0.5, 1.5, · · · , 14.5, respectively. Table 4 contains values of t(−σ2) for σ2 = 0.55, 0.75, 0.9
and t ∈ N0.5. Therefore, B3 = 0.0036 and B4 = 0.012. Now, by employing Equation (22), the ρ
obtained for different fractional order β and for different values of σ2. For this purpose, let σ2 = 0.55,
0.75, and 0.9, and because σ2 should be in (β, 1), then we have
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ρ = M +
(B3 + B4)Γ(1− σ2)

Γ(1 + β− σ2)Γ(2− β + σ2)

=



0.1 +
0.0156 Γ(1− 0.55)

Γ(1 + β− 0.55)Γ(2− β + 0.55)
,

0.1 +
0.0156 Γ(1− 0.75)

Γ(1 + β− 0.75)Γ(2− β + 0.75)
,

0.1 +
0.0156 Γ(1− 0.9)

Γ(1 + β− 0.9)Γ(2− β + 0.9)
.
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Figure 4. ρ versus β where σ2 ∈ {0.15, 0.30, 0.45, 0.60, 0.75, 0.9} in Example 1, respectively, for
β ∈ (0, 1), according to Table 3.

Table 4. Numerical results of t(−σ2) where σ2 = 0.55, 0.75, 0.9 in Example 2 for t ∈ N1−β = N0.5 and
n = 1, 2, · · · , 15 (Algorithm 2).

t(−σ2)

n t 0.55 0.75 0.9

1 0.5000 0.8669 0.7821 0.7134
2 1.5000 0.6343 0.5214 0.4459
3 2.5000 0.5199 0.4011 0.3278
4 3.5000 0.4493 0.3303 0.2608
5 4.5000 0.4004 0.2831 0.2173
6 5.5000 0.3640 0.2491 0.1867
7 6.5000 0.3356 0.2233 0.1640
8 7.5000 0.3126 0.2030 0.1464
9 8.5000 0.2936 0.1866 0.1322
10 9.5000 0.2776 0.1729 0.1209
11 10.5000 0.2638 0.1614 0.1114
12 11.5000 0.2517 0.1515 0.1033
13 12.5000 0.2411 0.1429 0.0964
14 13.5000 0.2317 0.1354 0.0903
15 14.5000 0.2232 0.1287 0.0851
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Figure 5. ρ versus β and σ2 where β = 0.8 and σ2 ∈ (0.8, 1) in Example 1.

The conditions in Theorem 4 hold and are plotted against the fractional order (β) and σ2 in
Figure 6. Figure 7 presents the corresponding 2-dimensional plot of ρ against the fractional order
(β) for fixed values of σ2 = {0.25, 0.45, 0.65, 0.75, 0.85, 0.95} and numerical values are tabulated
in Table 5. Thus, the solutions of (26) are asymptotically stable.

Table 5. Numerical results of ρ versus σ2 ∈ {0.25, 0.45, 0.65, 0.75, 0.85, 0.95} for β ∈ (0, 1)
in (26) (Algorithm 4).

ρ(σ2)

n β 0.25 0.45 0.65 0.75 0.85

1 0.0400 0.1147 0.1133 0.1121 0.1117 0.1118 0.1155
2 0.0800 0.1156 0.1145 0.1138 0.1138 0.1150 0.1236
3 0.1200 0.1165 0.1157 0.1155 0.1161 0.1183 0.1324
4 0.1600 0.1173 0.1170 0.1173 0.1184 0.1219 0.1419
5 0.2000 0.1181 0.1182 0.1191 0.1209 0.1257 0.1521
6 0.2400 0.1189 0.1194 0.1210 0.1234 0.1296 0.1629
7 0.2800 0.1205 0.1229 0.1259 0.1337 0.1744
8 0.3200 0.1217 0.1248 0.1286 0.1379 0.1864
9 0.3600 0.1228 0.1267 0.1312 0.1423 0.1990

10 0.4000 0.1239 0.1286 0.1339 0.1468 0.2120
11 0.4400 0.1250 0.1305 0.1367 0.1513 0.2255
12 0.4800 0.1324 0.1394 0.1559 0.2393
13 0.5200 0.1342 0.1421 0.1606 0.2534
14 0.5600 0.1360 0.1448 0.1652 0.2678
15 0.6000 0.1377 0.1474 0.1699 0.2823
16 0.6400 0.1393 0.1499 0.1745 0.2969
17 0.6800 0.1524 0.1791 0.3115
18 0.7200 0.1248 0.1835 0.3260
19 0.7600 0.1878 0.3403
20 0.8000 0.1920 0.3544
21 0.8400 0.1961 0.3682
22 0.8800 0.3816
23 0.9200 0.3945
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Figure 6. ρ versus β and σ2 where β = 0.5 and σ2 ∈ (0.5, 1) in Example 2.
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Figure 7. ρ versus β where σ2 ∈ {0.25, 0.45, 0.65, 0.75, 0.85, 0.95} in (26), respectively, for β ∈ (0, 1),
according to Table 5.
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Algorithm 3: The MATLAB lines of ρ where σ2 ∈ {0.15, 0.30, 0.45, 0.60, 0.75, 0.9} for β ∈ (0, 1) in Example 1.
format long
M = 0.2;
B3 = 0.004; B4 = 0.001;
beta = 0.04;
sigma = [0.15 0.3 0.45 0.6 0.75 0.9];
[xsigma ysigma] = size(sigma);
n = 1;
while beta < 1

column = 1;
for i = 1:ysigma

if sigma(i)>beta
parammatrix(n, column) = n;
parammatrix(n, column + 1) = beta;
parammatrix(n, column + 2) = sigma(i);
parammatrix(n, column + 3) = round(M + (B3 + B4) · · ·
*gamma(1-sigma(i))/(gamma(1 + beta-sigma(i))· · ·
*gamma(2-beta + sigma(i))), 6);

end;
column = column + 4;

end;
beta = beta + 0.04;
n = n + 1;
end;

Algorithm 4: The MATLAB lines of ρ where β ∈ (0, 1) where σ2 = 0.25, 0.45, 0.65, 0.75, 0.85, 0.95 in (26).
format long
M = 0.1;
B3 = 0.0036; B4 = 0.012;
sigma = [0.25 0.45 0.65 0.75 0.85 0.95];
[xsigma ysigma] = size(sigma);
for i = 1:ysigma

column = 1;;
beta = 0.04;
while beta < sigma(i)

parammatrix(i, column) = i;
parammatrix(i, column + 1) = sigma(i);
parammatrix(i, column + 2) = beta;
parammatrix(i, column + 3) = round(M + (B3 + B4)· · ·
*gamma(1-sigma(i))/(gamma(1 + beta-sigma(i))· · ·
*gamma(2-beta + sigma(i))), 6);
beta = beta + 0.04;
column = column + 4;

end;
end;

5. Conclusions

Asymptotic stability of the initial value discrete fractional pantograph equation is
established using Krasnoselskii theorem, generalized Banach fixed point theorem, and
discrete Arzelà-Ascoli theorem. Numerical simulations are carried out for the stability
results illustrating the effects of the fractional order on the stability conditions. The values
are tabulated and plotted. The 3-dimensional images are presented to analyze the stability
of the equation with simultaneous variation of the fractional order and σ2 ∈ (β, 1).
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