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Abstract: The aim of this work is to investigate the oscillation of solutions of higher-order nonlinear
differential equations with a middle term. By using the integral averaging technique, Riccati transfor-
mation technique and comparison technique, several oscillatory properties are presented that unify
the results obtained in the literature. Some examples are presented to demonstrate the main results.

Keywords: delay; oscillation; higher-order

1. Introduction

Nowadays, analysis of the oscillation properties of partial differential equations is
attracting considerable attention from the scientific community due to numerous appli-
cations in several contexts such as biology, physics, chemistry, and dynamical systems
(see [1–3]). For some details related to recent studies on the oscillation properties of the
equations under consideration, we refer the reader to [4,5]. Moreover, the oscillation of
partial equations contributes to many applications in economics, medicine, engineering,
and biology.

In 2011, Run et al. [6] established new oscillation criteria for second-order partial
differential equations with a damping term. Agarwal et al. [7] obtained some oscillation
criteria for solutions of second-order neutral partial functional differential equations.

Over the past few years, the oscillation of Emden–Fowler-type neutral delay differen-
tial equations has attracted a lot of attention, see [8–15].

In this article, we investigate the oscillation of the higher-order delay differential
equations

(
α1(z)

(
w(j−1)(z)

)γ)′
+ α2(z)

(
w(j−1)(z)

)γ
+

n

∑
i=1

σi(z)wγ(βi(z)) = 0, z ≥ z0 > 0. (1)

Our novel outcomes are obtained by considering the following suppositions:
α1 ∈ C1([z0, ∞),R), α′1(z) ≥ 0, α2, σi, βi ∈ C([z0, ∞),R), σi > 0,
βi ∈ C([z0, ∞),R), βi(z) ≤ z, limz→∞ βi(z) = ∞, i = 1, 2, .., n,
j is even, γ is a quotient of odd positive integers.

The following condition is satisfied:

∫ ∞

z0

(
1

α1(s)
exp

(
−
∫ s

z0

α2(x)
α1(x)

dx
))1/γ

ds = ∞. (2)
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Our main purpose for studying this work is to extend the results in [16]. We will use
different methods to obtain these results.

In [16] the authors obtained oscillation criteria for fourth-order delay differential
equations with middle term[

α1(z)w′′′(z)
]′
+ p(z)w′′′(z) + σ(z)w(β(z)) = 0

under the condition ∫ ∞

z0

1
α1(s)

exp
(
−
∫ s

z0

p(u)
α1(u)

du
)

ds = ∞.

Bazighifan et al. [17,18] obtained some oscillation conditions for the equation
(

α1(z)Φp[w(j−1)(z)]
)′

+ α2(z)Φp[ f
(

w(j−1)(z)
)
] + ∑

j
i=1 σ(z)Φp[g(w(βi(z)))] = 0,

Φp[s] = |s|p−2s, j ≥ 1, z ≥ z0 > 0,

Zhang et al. in [19] investigated some oscillation properties of the equationL′w + α2(z)
∣∣∣w(j−1)(z)

∣∣∣p−2
w(j−1)(z) + σ(z)|w(β(z))|p−2w(β(x)) = 0,

1 < p < ∞, z ≥ z0 > 0, Lw =
∣∣∣w(j−1)(z)

∣∣∣p−2
w(j−1)(z).

Bazighifan and Ramos [20] studied the following delay differential equations:
(

α1(z)
(

w(j−1)(z)
)p−1

)′
+ α2(z)

(
w(j−1)(z)

)p−1
+ σ(z)w(β(z)) = 0,

z ≥ z0 > 0,

where 1 < p < ∞.
Liu et al. [21] derived oscillation theorems for the equations

(
α1(z)Φ

(
w(j−1)(z)

))′
+ α2(z)Φ

(
w(j−1)(z)

)
+ σ(z)Φ(w(β(z))) = 0,

Φ = |s|p−2s, z ≥ z0 > 0,

where n is even and used the integral averaging technique.
Grace et al. [22] discussed the equation[

α1(z)
(

w(j−1)(z)
)r]′

+ σ(z)wr(g(z)) = 0

Zhang et al. [23] considered the even-order equation[
α1(z)

(
w(j−1)(z)

)γ]′
+ σ(z)wr(β(z)) = 0, z ≥ z0,

under condition ∫ ∞

z0

α
−1/γ
1 (s)ds < ∞

and used the comparison technique.
The aim of this paper is to give several oscillatory properties of Equation (1). New

criteria extend the results in [16].
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In the following, we mention some notations.

η(z) : =
∫ ∞

z

[
1

α1(s)
exp

(
−
∫ s

z0

α2(x)
α1(x)

dx
)]1/γ

ds.

B(z) : =

∫ ∞
z (θ − z)j−4

( ∫ ∞
θ ∑n

i=1 σi(s)
(

βi(s)
s

)γ
ds

α1(θ)

)1/γ

dθ

(j− 4)!

and

D(s) :=
α1(s)δ1(s)|h(z, s)|γ+1

γ + 1γ+1
[

H(z, s)A(s)µ sj−2

(j−2)!

]γ .

2. Main Results

Here we present the following lemmas.

Lemma 1 ([24]). Let y(r) > 0 for all r = 0, 1, ..., j, and y(j+1) < 0, then

j!
zj y(z)− (j− 1)!

zj−1
d
dz

y(z) ≥ 0.

Lemma 2 ([25]). Let y ∈ Cj([z0, ∞), (0, ∞)) and y(j−1)(z)y(j)(z) ≤ 0.If we have lim
z→∞

y(z) 6= 0,

then
y(z) ≥ ε

(j− 1)!
zj−1

∣∣∣y(j−1)(z)
∣∣∣

for all ε ∈ (0, 1) and z ≥ zε.

Lemma 3 ( [26]). Let y(z) ∈ Cr[z0, ∞), y(r)(z) 6= 0 on [z0, ∞) and y(z)y(r)(z) ≤ 0. Then

(I) there exists a z1 ≥ z0 such that the functions y(m)(z), m = 1, 2, ..., r− 1 are of constant sign
on [z0, ∞);

(II) there exists a number a ∈ {1, 3, 5, ..., r− 1} when r is even, a ∈ {0, 2, 4, ..., r− 1} when r is
odd, such that, for z ≥ z1,

y(z)y(m)(z) > 0,

for all m = 0, 1, ..., a and
(−1)r+m+1y(z)y(m)(z) > 0.

Definition 1. Let

D = {(z, s) ∈ R2 : z ≥ s ≥ z0} and D0 = {(z, s) ∈ R2 : z > s ≥ z0}.

We say that a function H ∈ C(D,R) belongs to the class w if
(I1) H(z, z0) = 0, H∗(z, z0) = 0 for z ≥ z0, H(z, s) > 0, H∗(z, s) > 0, (z, s) ∈ D0;
(I2)H, H∗ have a nonpositive continuous partial derivative ∂H/∂s, ∂H∗/∂s on D0 with

respect to the second variable, and there exist functions δ1, A, δ2, A∗ ∈ C1([z0, ∞), (0, ∞)) and
h, h∗ ∈ C(D0,R) such that

− ∂

∂s
(H(z, s)A(s)) = H(z, s)A(s)

δ′1(z)
δ1(z)

+ h(z, s) (3)

and

− ∂

∂s
(H∗(z, s)A∗(s)) = H∗(z, s)A∗(s)

δ′2(z)
δ2(z)

+ h∗(z, s). (4)
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Theorem 1. Let j ≥ 4 be even. Let Equations (3) and (4) hold. If there exist functions δ1, δ2 ∈
C1([z0, ∞), (0, ∞)) such that

lim
z→∞

sup
1

H(z, z0)

∫ z

z0

H(z, s)A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

− D(s)

ds = ∞, (5)

for some constant µ ∈ (0, 1) and

lim
z→∞

sup
1

H∗(z, z0)

∫ z

z0

(
H∗(z, s)A∗(s)δ2(s)B(s)− δ2(s)|h∗(z, s)|2

4H∗(z, s)A∗(s)

)
ds = ∞, (6)

then Equation (1) is oscillatory.

Proof. Let w be a nonoscillatory solution of Equation (1), then w(z) > 0. From Lemma 3,
we have two possible cases:

(C1) w(z) > 0, w′(z) > 0, ... , w(j−1)(z) > 0, w(j)(z) < 0,
(C2) w(z) > 0, w(r)(z) > 0, w(r+1)(z) < 0 for all odd integers

r ∈ {1, 2, ..., j− 3}, w(j−1)(z) > 0, w(j)(z) < 0.

Let case (C1) hold. Define the function y1(z) by

y1(z) := δ1(z)

α1(z)
(

w(j−1)(z)
)γ

wγ(z)

. (7)

Then y1(z) > 0 for z ≥ z1 and

y′1(z) ≤ δ′1(z)
α1(z)

(
w(j−1)(z)

)γ

wγ(z)
+ δ1(z)

(
α1(z)

(
w(j−1)(z)

)γ)′
wγ(z)

−δ1(z)
γw′(z)α1(z)

(
w(j−1)(z)

)γ

wγ+1(z)
.

By Lemma 2, we get

w′(z) ≥ µ

(j− 2)!
zj−2w(j−1)(z). (8)

Using Equations (7) and (8), we obtain

y′1(z) ≤ δ′1(z)
α1(z)

(
w(j−1)(z)

)γ

wγ(z)
+ δ1(z)

(
α1(z)

(
w(j−1)(z)

)γ)′
wγ(z)

(9)

−δ1(z)
γµzj−2

(j− 2)!

α1(z)
(

w(j−1)(z)
)γ+1

wγ+1(z)
.

By Lemma 1, we find
w(z)
w′(z)

≥ z
j− 1

.

Thus we obtain that w/zj−1 is nonincreasing and so

w(βi(z))
w(z)

≥
β

j−1
i (z)
zj−1 . (10)
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From Equations (1) and (9), we get

y′1(z) ≤ δ′1(z)
α1(z)

(
w(j−1)(z)

)γ

wγ(z)
− δ1(z)

∑n
i=1 σi(z)(wγ(βi(z)))

wγ(z)
(11)

−δ1(z)
α2(z)

(
w(j−1)(z)

)γ

wγ(z)
− δ1(z)

γµzj−2

(j− 2)!

α1(z)
∣∣∣(w(j−1)(z)

)∣∣∣γ+1

wγ+1(z)
.

From Equations (10) and (11), we obtain

y′1(z) ≤
(

δ′1(z)
δ1(z)

− α2(z)
α1(z)

)
y1(z)− δ1(z)

n

∑
i=1

σi(z)

(
β

j−1
i (z)
zj−1

)γ

(12)

− (γ)µzj−2

(j− 2)!(δ1(z)α1(z))
1/(γ)

y(γ+1)/γ
1 (z).

It follows from Equation (12) that

δ1(z)
n

∑
i=1

σi(z)

(
β

j−1
i (z)
zj−1

)γ

≤
(

δ′1(z)
δ1(z)

− α2(z)
α1(z)

)
y1(z)− y′1(z)−

γµzj−2

(j− 2)!(δ1(z)α1(z))
1/(γ)

y(γ+1)/γ
1 (z).

Replacing z by s, multiplying two sides by H(z, s)A(s), and integrating the resulting
inequality from z1 to z, we have

∫ z

z1

H(z, s)A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

ds (13)

≤ −
∫ z

z1

H(z, s)A(s)y′1(s)ds +
∫ z

z1

H(z, s)A(s)
(

δ′1(s)
δ1(s)

− α2(s)
α1(s)

)
y1(s)ds

−
∫ z

z1

H(z, s)A(s)
γµsj−2

(j− 2)!(δ1(s)α1(s))
1/(γ)

y(γ+1)/γ
1 (s)ds

= H(z, z1)A(z1)y1(z1)−
∫ z

z1

(
− ∂

∂s
(H(z, s)A(s))− H(z, s)A(s)

(
δ′1(s)
δ1(s)

− α2(s)
α1(s)

))
y1(s)ds

−
∫ z

z1

H(z, s)A(s)
γµsj−2

(j− 2)!(δ1(s)α1(s))
1/(γ)

y(γ+1)/γ
1 (s)ds

≤ H(z, z1)A(z1)y1(z1) +
∫ z

z1

|h(z, s)|y1(s)d(s)

−
∫ z

z1

H(z, s)A(s)
γµsj−2

(j− 2)!(δ1(s)α1(s))
1/γ

y(γ+1)/γ
1 (s)ds.

Note that
εUVε−1 −Uε ≤ (ε− 1)Vε, ε > 1, U ≥ 0, V ≥ 0. (14)

Here

ε = (γ + 1)/γ, U =

(
γH(z, s)A(s)

µsj−2

(j− 2)!

)γ/(γ+1) y1(s)

(δ1(s)α1(s))
1/(γ+1)

and

V =

(
γ

γ + 1

)γ

|h(z, s)|γ

 δ1(s)α1(s)(
γH(z, s)A(s) µsj−2

(j−2)!

)γ


γ/(γ+1)

.
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From Equation (14), we get

|h(z, s)|y1(s)− H(z, s)A(s)
γµsj−2

(j− 2)!(δ1(s)α1(s))
1/γ

y(γ+1)/γ
1

≤ δ1(s)α1(s)(
H(z, s)A(s) µsj−2

(j−2)!

)γ

(
|h(z, s)|
γ + 1

)γ+1
.

Putting the resulting inequality into Equation (13), we obtain

∫ z

z1

H(z, s)A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

−
δ1(s)α1(s)

(
|h(z,s)|

γ+1

)γ+1

(
H(z, s)A(s) µsj−2

(j−2)!

)γ

ds

≤ H(z, z1)A(z1)y1(z1)

≤ H(z, z0)A(z1)y1(z1).

Then

1
H(z, z0)

∫ z

z0

H(z, s)A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

− D(s)

ds

≤ A(z1)y1(z1) +
∫ z1

z0

A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

ds < ∞,

for some µ ∈ (0, 1), which contradicts Equation (5).
Let Case (C2) hold. By virtue of w′(z) > 0 and w′′(z) < z, from Lemma 1, we obtain

w(z) ≥ ty′(z).

Thus we obtain that w/z is nonincreasing and so

w(βi(z)) ≥ w(z)
βi(z)

z
. (15)

From Equation (15) and integrating Equation (1) from z to ∞, we obtain

−α1(z)
(

w(j−1)(z)
)γ

+
∫ ∞

z

n

∑
i=1

σi(s)w(s)γ βi(s)
γ

sγ
ds ≤ 0.

It follows from w′(z) > 0 that

− w(j−1)(z) +
w(z)

α
1/γ
1 (z)

(∫ ∞

z

n

∑
i=1

σi(s)
(

βi(s)
s

)γ

ds

)1/γ

≤ 0. (16)

Integrating Equation (16) from z to ∞ for a total of (j− 3) times, we obtain

w′′(z) +
1

(j− 4)!

∫ ∞

z
(θ − z)j−4


∫ ∞

θ ∑n
i=1 σi(s)

(
βi(s)

s

)γ
ds

α1(θ)


1/γ

dθw(z) ≤ 0. (17)

Now, define

y2(z) := δ2(z)
w′(z)
w(z)

. (18)
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Then y1(z) > 0 for z ≥ z1 and

y′2(z) = δ′2(z)
w′(z)
w(z)

+ δ2(z)
w′′(z)w(z)− (w′(z))2

w2(z)
.

It follows from Equations (17) and (18) that

δ2(z)B(z) ≤ −y′2(z) +
δ′2(z)
δ2(z)

y2(z)−
1

δ2(z)
y2

2(z).

Replacing z by s, multiplying two sides by H∗(z, s)A∗(s), and integrating the resulting
inequality from z1 to z, we have

∫ z

z1

H∗(z, s)A∗(s)δ2(s)B(s)ds ≤ −
∫ z

z1

H∗(z, s)A∗(s)y′2(s)ds

+
∫ z

z1

H∗(z, s)A∗(s)
δ′2(s)
δ2(s)

y2(s)ds

−
∫ z

z1

H∗(z, s)A∗(s)
δ2(s)

y2
2(s)ds

= H∗(z, z1)A∗(z1)y2(z1)−
∫ z

z1

H∗(z, s)A∗(s)
δ2(s)

y2
2(s)ds

−
∫ z

z1

(
− ∂

∂s
(H∗(z, s)A∗(s))− H∗(z, s)A∗(s)

δ′2(z)
δ2(z)

)
y2(s)ds

≤ H∗(z, z1)A∗(z1)y2(z1) +
∫ z

z1

|h∗(z, s)|y2(s)d(s)

−
∫ z

z1

H∗(z, s)A∗(s)
δ2(s)

y2
2(s)ds.

Hence we have ∫ z

z1

[
H∗(z, s)A∗(s)δ2(s)α1(s)−

δ2(s)|h∗(z, s)|2

4H∗(z, s)A∗

]
ds

≤ H∗(z, z1)A∗(z1)y2(z1)

≤ H∗(z, z0)A∗(z1)y2(z1).

Then

1
H∗(z, z0)

∫ z

z0

[
H∗(z, s)A∗(s)δ2(s)B(s)− δ2(s)|h∗(z, s)|2

4H∗(z, s)A∗

]
ds

≤ A∗(z1)y2(z1) +
∫ z

z0

A∗(s)δ2(s)B(s)ds < ∞,

which contradicts Equation (6). Therefore, the theorem is proved.

Theorem 2. Let j ≥ 2 be even and the equation

x(z)

(
x′(z) +

α2(z)
α1(z)

x(z) +
∑n

i=1 σi(z)
α1(βi(z))

(
εβ

j−1

i (z)
(j− 1)!

)
x(βi(z))

)
= 0, (19)

has no positive solutions. Then Equation (1) is oscillatory.

Proof. Let w be a nonoscillatory solution of Equation (1), then w(z) > 0. Hence we have

w′(z) > 0, w(j−1)(z) > 0 and w(j)(z) < 0. (20)
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From Lemma 2, we obtain

w(z) ≥ εzj−1

(j− 1)!α1/γ
1 (z)

α
1/γ
1 (z)w(j−1)(z), (21)

for all ε ∈ (0, 1). Set

x(z) = α1(z)
[
w(j−1)(z)

]γ
.

Using Equation (21) in Equation (1), we obtain the inequality

x′(z) +
α2(z)
α1(z)

x(z) +
∑n

i=1 σi(z)
α1(βi(z))

(
εβ

j−1

i (z)
(j− 1)!

)γ

x(βi(z)) ≤ 0.

That is, x is a positive solution of the inequality in Equation (19), which is a contradic-
tion. Thus the theorem is proved.

Corollary 1. Let j ≥ 2 be even. If

lim
z→∞

inf
∫ z

βi(z)

∑n
i=1 σi(s)

α1(βi(s))

(
β

j−1

i (s)
)γ

exp
(∫ s

βi(s)

α2(u)
α1(u)

du
)

ds >
((j− 1)!)γ

e
, (22)

then Equation (1) is oscillatory.

3. Applications

As a matter of fact, the natural of the half-linear/Emden–Fowler differential equation
appears in the study of several real-world problems such as biological systems, population
dynamics, pharmacokinetics, theoretical physics, biotechnology processes, chemistry, engi-
neering, and control (see [27–29]). In the context of these applications, we provide some
examples below in this section.

Example 1. Consider the delay equation

w(4)(z) +
1
z

w(3)(z) +
ε

z4 w
( z

4

)
= 0, ε > 0, z ≥ 1, (23)

we see that j = 4, γ = 1, α1(z) = 1, α2(z) = 1/z, β(z) = z/4, σ(z) = ε/z4and

η(s) =
∫ ∞

z0

[
1

α1(s)
exp

(
−
∫ s

z0

α2(u)
α1(u)

du
)]1/γ

ds = ∞.

Now, we find that

lim
z→∞

inf
∫ z

βi(z)

∑n
i=1 σi(s)

α1(βi(s))

(
β

j−1

i (s)
)γ

exp
(∫ s

βi(s)

α2(u)
α1(u)

du
)

ds

= lim
z→∞

inf
∫ z

βi(z)

ε

s4

(
s3

64

)
exp(ln 4)ds

= lim
z→∞

inf
∫ z

βi(z)

ε

16s
ds =

ε

16
ln 4 >

6
e

, if ε > 96/(e ln 4) = 24.

Thus, using Corollary 1, Equation (23) is oscillatory if ε > 24.

Example 2. Consider the delay equation(
1
z

w′′′(z)
)′

+
(

1\
(

2z2
))

w′′′(z) +
ε

z
w
( z

2

)
= 0, z ≥ 1, (24)
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where ε > 0. Let j = 4, γ = 1, α1(z) = 1/z, α2(z) = 1/
(
2z2), β(z) = z/2, σ(z) = ε/z and

η(s) =
∫ ∞

z0

[
1

α1(s)
exp

(
−
∫ s

z0

α2(u)
α1(u)

du
)]1/γ

ds = ∞.

Now, we see that Equation (22) holds. Thus, by Corollary 1, Equation (24) is oscillatory.

Example 3. Consider the equation

w(4)(z) +
1
z2 w(3)(z) +

ε

z4 w
(

4−1/3z
)
= 0, z ≥ 1, (25)

where ε > 0 is a constant. Let

j = 4, α1(z) = 1, α2(z) = 1/z2, γ = 1, β(z) = 4−1/3z, σ(z) = ε/z4,

H(z, s) = H∗(z, s) = (z− s)2, A(s) = A∗(s) = 1,

δ1(s) = z3, δ2(s) = z, h(z, s) = h∗(z, s) = (z− s)
(

5− s−1 + z
(

s−2 − 3s−1
))

.

Then we get

η(s) =
∫ ∞

z0

[
1

α1(s)
exp

(
−
∫ s

z0

α2(u)
α1(u)

du
)]1/γ

ds = ∞,

B(z) =

∫ ∞
z (θ − z)j−4

( ∫ ∞
θ ∑n

i=1 σi(s)
(

βi(s)
s

)γ
ds

α1(θ)

)1/γ

dθ

(j− 4)!

≥ ε/
(

12z2
)

.

Now, we see that

lim
z→∞

sup
1

H(z, z0)

∫ z

z0

H(z, s)A(s)δ1(s)
n

∑
i=1

σi(s)

(
β

j−1
i (s)
sj−1

)γ

− D(s)

ds

= lim
z→∞

sup
1

(z− 1)2

∫ z

1
[
ε

4
z2s−1 +

ε

4
s− ε

2
z− s

2µ
(25 + s−2 − 10s−1 + z2s−4

+9z2s−2 − 6z2s−3 + 16ts−2 − 2ts−3 − 30ts−1)]ds

= ∞, if ε > 18/µ for some µ ∈ (0, 1).

Set

H∗(z, s) = (z− s)2, A∗(s) = 1, δ2(s) = z, h∗(z, s) = (z− s)
(

3− ts−1
)

.

Then we have

lim
z→∞

sup
1

H∗(z, z0)

∫ z

z0

(
H∗(z, s)A∗(s)δ2(s)α1(s)−

δ2(s)|h∗(z, s)|2

4H∗(z, s)A∗(s)

)
ds

≥ lim
z→∞

sup
1

(z− 1)2

∫ z

1

[ ε

12
z2s−1 +

ε

12
s− ε

6
z− s

4

(
9− 6ts−1 + z2s−2

)]
ds

= ∞, if ε > 3.

Thus, by Theorem 1, Equation (25) is oscillatory if ε ≥ 19.
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4. Conclusions

In this article, we give several oscillation criteria of even-order differential equations
with damped. These criteria that we obtained complement some oscillation theorems for
delay differential equations with damping. In future work, we will discuss the oscillatory
behavior of these equations by using a comparing technique with second-order equations
under the condition ∫ ∞

z0

[
1

α1(s)
exp

(
−
∫ s

z0

α2(x)
α1(x)

dx
)]1/γ

ds < ∞.
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