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Abstract: This work is about the use of some classical spectral collocation methods as well as with the
new software system Chebfun in order to compute the eigenpairs of some high order Sturm–Liouville
eigenproblems. The analysis is divided into two distinct directions. For problems with clamped
boundary conditions, we use the preconditioning of the spectral collocation differentiation matrices
and for hinged end boundary conditions the equation is transformed into a second order system and
then the conventional ChC is applied. A challenging set of “hard” benchmark problems, for which
usual numerical methods (FD, FE, shooting, etc.) encounter difficulties or even fail, are analyzed
in order to evaluate the qualities and drawbacks of spectral methods. In order to separate “good”
and “bad” (spurious) eigenvalues, we estimate the drift of the set of eigenvalues of interest with
respect to the order of approximation N. This drift gives us a very precise indication of the accuracy
with which the eigenvalues are computed, i.e., an automatic estimation and error control of the
eigenvalue error. Two MATLAB codes models for spectral collocation (ChC and SiC) and another
for Chebfun are provided. They outperform the old codes used so far and can be easily modified to
solve other problems.

Keywords: Sturm–Liouville; clamped; hinged boundary condition; spectral collocation; Chebfun;
chebop; eigenpairs; preconditioning; drift; error control
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1. Introduction

Due to the spectacular evolution of advanced programming environments, a special
curiosity arose in the numerical analysis of a classical problem, that of accurate solving
of high order SL eigenproblems. It seems that quantum mechanics is the richest source
of self-adjoint problems, while non-self-adjoint problems arise in hydrodynamic and
magnetohydrodynamic stability theory (see for instance [1] and the vast literature quoted
there). The need to compute accurately and efficiently a large set of eigenvalues and
eigenfunctions, including those of high index, is now an utmost task.

Our main interest here is to evaluate the capabilities of the new Chebfun package as
well as those of conventional spectral methods in meeting these requirements. The latter
work in the classical mode, i.e., “discretize-then-solve”. On the contrary, the Chebfun spirit
consists in the continuous mode, i.e., “solve-then-discretize” (see [2] p. 302).

The effort expended by both classes of methods is also of real interest. It can be
assessed in terms of the ease of implementation of the methods as well as in terms of
computer resources required to achieve a specified accuracy.

Some FORTRAN software packages have been designed over time to solve various
regular and singular SL problems. These seem to be the first attempts to solve numerically
(automatically) eigenvalue problems.The most important would be SLEDGE [3,4], the
NAG’s code SL02F [5,6], SLEIGN and SLEIGN2 [7,8], and later MATSLISE. The SLDRIVER
interactive package supports exploration of a set of SL problems with the first four pre-
viously mentioned packages. The SLEDGE, SL02F, SLEIGN2, and NAG’s D02KDF are

Symmetry 2021, 13, 385. https://doi.org/10.3390/sym13030385 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8512-2466
https://doi.org/10.3390/sym13030385
https://doi.org/10.3390/sym13030385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13030385
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13030385?type=check_update&version=3


Symmetry 2021, 13, 385 2 of 20

“automatic” for eigenvalues and not for eigenfunctions. They have built in error estimation
and from that they achieve error control. They adjust the accuracy of the discretization so
that the delivered eigenvalue has estimated error below a user-supplied tolerance.

Essentially, the numerical method used in these software packages replaces the coeffi-
cients in the equation by a step function approximation. Their most important drawback
remains the impossibility to compute the eigenfunctions and a slow convergence in case of
some singular eigenproblems.

The MATSLISE code introduced in [9] can solve some Schrödinger eigenvalue prob-
lems by a constant perturbation method of a higher order. Very recently, this code has been
improved (see [10]) but it remains for Schrödinger issues which are outside the scope of
this paper.

There is also a class of semi-analytical methods which includes the variational iteration
method, the homotopy perturbation method, homotopy analysis method, and Adomian
decomposition (see for instance [11]) for solving eigenvalue problems. Their accuracy is far
from what spectral collocation methods can provide.

In [12], the authors set up an ambitious method based on the Lie group method along
with the Magnus expansion in order to solve any order of SL problem with arbitrary
boundary conditions.

We believe that spectral collocation methods can contribute to the systematic clarifi-
cation of some still open issues related to the numeric aspects of SL problems. The most
important aspect is how many computed eigenpairs (eigenvalues and eigenfunctions) can
we trust when solving a high order SL? This is the outstanding, not completely resolved
research issue, we want to address in this paper.

Thus, we will argue that generally Chebfun would provide a greater flexibility in solv-
ing various differential problems than the classical spectral methods. This fact is fully true
for regular problems. A Chebfun code contains a few lines in which the differential operator
is defined along with the boundary conditions and then a subroutine to solve the algebraic
eigenproblem. It provides useful information on the optimal order of approximation of
eigenvectors and the degree to which the boundary conditions have been satisfied.

Unfortunately, in the presence of various singularities or for problems of higher
order than 4, the maximum order of approximation of the unknowns can be reached
(N ≥ 4000) and then Chebfun issues a message that warns about the possible inaccuracy of
the results provided.

Alternative use of conventional spectral collocation methods generally helps to over-
come this difficulty.

As a matter of fact, in order to resolve a singularity on one end of the integration
interval, Chebfun uses only the truncation of the domain. Classical spectral methods can
also use this method, but it is not recommended because much more sophisticated methods
are at hand in this case. For singular points at finite distances (mainly origin) we will use
the so-called removing technique of independent boundary conditions (see for a review of this
technique our monograph [13] p. 91). The boundary conditions at infinity can be enforced
using basis functions that asymptotically satisfy these conditions (Laguerre, Hermite, sinc).

A Chebfun code and two MATLAB codes, one for ChC and another for the SiC method,
are provided in order to exemplify. With minor modifications they could be fairly useful
for various numerical experiments. These codes are very easy to implement, efficient, and
reliable. All our numerical experiments have been carried out using MATLAB R2020a on
an Intel (R) Xeon (R) CPU E5-1650 0 @ 3.20 GHz.

The main purpose of this paper was to argue that Chebfun, along with the spectral
collocation methods, can be a very feasible alternative to the above software packages
regarding accuracy, robustness as well as simplicity of implementation. In addition, these
methods can calculate exactly the “ whole” set of eigenvectors approximating eigenfunc-
tions and provide automatic estimation and control of the eigenvalue error. For self-adjoint
problems, checking the orthonormality of computed eigenvectors gives us valuable infor-
mation on the accuracy of the calculation of these vectors.
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The structure of this work is as follows. In Section 2, we recall some specific issues
for the regular as well as singular Sturm–Liouville eigenproblems. In Section 3, we review
briefly the conventional ChC method as well as Chebfun, the relative drift of a set of
eigenvalues and the preconditioning of Chebyshev differentiation matrices. Section 4 is
the core part of our study. By analyzing one set of hinged problems and another one of
clamped problems, we want to evaluate the applicability of the two classes of methods as
well as their performances in terms of the accuracy of the outcomes they produce. There
is also a subsection that contains problems equipped with boundary conditions that are
a mixture of these two types, clamped and hinged. We end up with Section 5 devoted to
conclusions and open problems.

2. 2nd-Order Sturm–Liouville Eigenproblems

The 2nd-order SL equation reads

(−1)n
(

pn(x)u(n)
)(n)

+(−1)n−1
(

pn−1(x)u(n−1)
)(n−1)

+. . .

+(p2(x)u′′)′′ − (p1(x)u′)′ = λu(x), a < x < b, n ∈ N, n ≥ 2,

along with separated, (self-adjoint) boundary conditions. We shall assume that all coeffi-
cient functions are real valued. The technical conditions for the problem to be non singular
are: the interval (a; b) is finite; the coefficient functions pk, 0 < k < n− 1, the weight w and
1/pn are in L1(a, b); and the essential infima of pn and w are both positive. Under these
assumptions, the eigenvalues are bounded below (see for instance [14]).

The eigenvalues can be ordered in the usual form: λ0 ≤ λ1 ≤ λ2 ≤ ..., such that
limk→∞ λk = +∞. In this sequence, each eigenvalue has multiplicity at most n (so k+ n > k
for all k). The restriction on the multiplicity arises from the fact that for each λ there are at
most n linearly independent solutions of the differential equation satisfying either of the
endpoint conditions which we shall consider below.

Some of the problems we deal with are also found in the monographic paper [15].
It contains over 50 challenging examples from mathematical physics and applied mathe-
matics along with a summary of SL theory, differential operators, Hilbert function spaces,
classification of interval endpoints, and boundary condition functions.

3. Chebfun vs. Conventional Spectral Collocation
3.1. Chebfun

For details on Chebfun we refer to [2,16–18]. The Chebfun system, in object-oriented
MATLAB, contains algorithms which amount to spectral collocation methods on Cheby-
shev grids of automatically determined resolution. This is the main difference compared to
conventional spectral methods in which the resolution (order of approximation) is imposed
almost arbitrarily. Its properties are briefly summarized in [17]. In [16] the authors explain
that chebops are the fundamental Chebfun tools for solving ordinary, partial differential or
integral equations.

The implementation of chebops combines the numerical analysis idea of spectral
collocation with the computer science idea of lazy or delayed evaluation of the associated
spectral discretization matrices. The grammar of chebops along with a lot of illustrative
examples is displayed in the above quoted papers as well as in the text [2]. Thus, one can
get a suggestive image of what they can do working with Chebfun.

Moreover, in ([16] p. 12) the authors explain clearly how the Chebfun works, i.e., it
solves the eigenproblem for two different orders of approximation, automatically chooses a
reference eigenvalue and checks the convergence of the process. At the same time, it warns
about the possible failures due to the high non-normality of the analyzed operator (matrix).

Actually, we want to show in this paper that Chebfun along with chebops can do
much more, i.e., can accurately solve high order SL problems.
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3.2. Spectral Collocation Methods

Spectral methods have been shown to provide exponential convergence for a large
variety of problems, generally with smooth solutions, and are often preferred [19]. In
all spectral collocation methods designed so far, we have used the collocation differenti-
ation matrices from the seminal paper [20]. We preferred this MATLAB differentiation
suite for the accuracy, efficiency as well as for the ingenious way of introducing various
boundary conditions.

In order to impose (enforce) the boundary conditions we have used the boundary
bordering, which is a simplified variant of the above mentioned removing technique of
independent boundary conditions, as well as the basis recombination. We have used the first
technique in the large majority of our papers except [21] where the latter technique has been
employed. In the last quoted paper a modified ChT method based on basis recombination
has been used in order to solve an Orr-Sommerfeld problem with an eigenparameter
dependent boundary condition.

Once eigenvectors are calculated in physical space they are transposed into the space
of coefficients using FCT. In this way, it is possible to estimate the way in which their
coefficients decrease.

3.3. The Drift of Eigenvalues

Two techniques are used in order to eliminate the “bad” eigenvalues as well as to
estimate the stability (accuracy) of ChC or Chebfun computations. The first one is the drift,
with respect to the order of approximation or the scaling factor, of a set of eigenvalues of
interest. The second one is based on the check of the eigenvectors’ orthogonality.

In other words, we want to separate the “good” eigenvalues from the “bad” ones, i.e.,
inaccurate eigenvalues. An obvious way to achieve this goal is to compare the eigenvalues
computed for different orders of some parameters such as the approximation order (cut-
off parameter) N or the scaling factor (length of integration interval). Only those whose
difference or “resolution-dependent drift” is “small” can be believed. In this connection, in
the paper [22], the so called absolute (ordinal) drift with respect to the order of approximation
has been introduced. We extend this definition in our recent paper [23] and will use it
without repeating it here.

Whenever the exact eigenvalues of a problem are known, the relative drift is reduced
to the relative error.

At this point, the following observation is extremely important. In the highly cited
monograph [24], the author makes a subtle analysis of spectral methods in solving linear
eigenproblems. Among others, he states the so called Boyd’s Eigenvalues Rule-of-Thumb
in which he notices that in solving such a problem with a spectral method using (N + 1)
terms in the truncated spectral series, the lowest N/2 eigenvalues are usually accurate to
within a few percent, while the larger N/2 numerical eigenvalues differ from those of the
differential equation by such large amounts as to be useless.

3.4. Preconditioning

To simplify the introduction of a preconditioner, we use the differential operator

L(n)(u) :=
dnu
dxn , x ∈ (−1, 1), (1)

subject to clamped boundary conditions

u(µ)(−1) = 0, 0 ≤ µ ≤ ln, (2)

and
u(ν)(1) = 0, 0 ≤ ν ≤ rn, (3)

where n > 1, ln, and rn are positive integers such that rn + ln + 2 = n.
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It is well known that for general collocation points the first order differentiation matrix
has a condition number of order N2 and the second order differentiation matrix has a
condition number of order N4 as N → ∞. We comment on the preconditioner introduced
in [25]. These authors show that the preconditioning matrix

D := diag
(
(1 + xk)

lk+1(1− xk)
rk+1

)
, 2 ≤ k ≤ N − 1,

applied to ChC as well as to Chebfun discretization L(n)
ChCor Cheb f un of differential operator

L(n), produces matrices DL(n)
ChCor Cheb f un of an inferior condition number, namely Nn.

4. Numerical Experiments
4.1. Hinged Ends or Simply Supported Boundary Conditions
4.1.1. The Viola’s Eigenproblem-Revisited

Let us consider now the so called Viola’s eigenproblem. It is encountered in porous
stability problems (see [1], Chapter 9) and reads

d2

dx2

[
(1− θx)3 d2u

dx2

]
= λ(1− θx)u, x ∈ (0, 1), 0 ≤ θ < 1,

u(0) = u′′(0) = u(1) = u′′(1).
(4)

It is singular as θ → 1− in accordance with the definition introduced in Section 2.
By straightforward variational arguments, we have shown in ([13] p. 50) that the

lowest eigenvalue is positive. In this text, we have solved the above problem by ChC using
the so called D2 strategy which involves the change of variables

v := (1− θx)3 d2u
dx2 .

The main deficiency of this strategy is the fact that it produces a lot of numerical
spurious eigenvalues (at infinity).

In spite of this, we succeeded in stating the conjecture according to which λ1(θ), the lowest
eigenvalue of the problem (4), approaches 1 as θ → 1−.

Now, taking advantage of Chebfun we solve directly problem (4). Thus, the depen-
dence of the lowest eigenvalue of the problem (4), computed by Chebfun, on the parameter
θ is depicted in Figure 1. Actually, we have obtained

λ1(0.98765) = 8.775218471808549e− 01,

which only partly confirms the above conjecture.

0 0.2 0.4 0.6 0.8 1

θ

0

20

40

60

80

100

λ
1
(θ

)

Figure 1. The dependence of the lowest eigenvalue of the Viola’s eigenproblem (4), computed by
Chebfun, on the parameter θ.



Symmetry 2021, 13, 385 6 of 20

As a validation issue for our computations we have obtained the known value

λ1(0.0) = π4,

within an approximation of a thousand.
For the highest computable value of parameter θ, we display in Figure 2 the first four

eigenvectors of problem (4) and in Figure 3 the Chebyshev coefficients of these eigenvectors.
We have to mention that the singularity in the right end x = 1 becomes more promi-

nent as the θ tends to 1. This is confirmed by increasing the degree of the Chebfun
approximation. For instance, when θ := 0 only a 25 degree Chebyshev polynomial uses it
and when θ := 0.98765 the degree of approximation grows to more than 80 (see Figure 3).
It is also worth mentioning that only for θ growing very close to 1 a truncation of the
domain along with the use of the option splitting have been necessary when Chebfun
has been used.
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Figure 2. From upper left to lower right we display the first four eigenvectors of the Viola’s eigen-
problem (4) computed by Chebfun with θ = 0.98765.
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Figure 3. The Chebyshev coefficients of the first four eigenvectors of the Viola’s eigenproblem (4)
computed by Chebfun with θ = 0.98765. A very narrow rounding-off plateau can be seen.

We have to observe that the problem (4) has been solved by compound matrix method
in [26] for θ < 0.9. The author asserts that other methods have to be used in order to
resolve the singularity in this problem. We hope that the above analysis sheds some light
in this direction.
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4.1.2. The Bénard Stability Problem

A simplified form of the Bénard stability problem supplied with self-adjoint boundary
conditions reads (see for instance [14,27])

u(vi) − (2ν + 3)u(iv) +
(
ν2 + 4ν + 3

)
u′′ −

(
ν2 + 2ν + 2

)
u = λu(x), x ∈ (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0.
(5)

The constant ν is regarded as a parameter which typically can take the values

ν±j := −
(

1 + j2π2
)
±
(

1 + j2π2
)−1/2

, j = 1, 2, . . . .

All our attempts to solve this problem using Chebfun have failed, so we have resorted
to the old D2 strategy.

Thus, we rewrite problem (5) as a homogeneous Dirichlet one attached to a second
order differential system, namely

u′′ = v(x), x ∈ (0, 1),
v′′ = w(x),

w′′ − (2ν + 3)w +
(
ν2 + 4ν + 3

)
v−

(
ν2 + 2ν + 2

)
u = λu(x),

u = v = w = 0 in x = 0 and x = 1.

(6)

Now we apply to each line the ChC discretization. It leads to the generalized and
singular eigenpencil

(A, B), (7)

where the block matrices are defined by

A :=

 4D̃(2) I Z
Z 4D̃(2) I

−
(
ν2 + 2ν + 2

)
I
(
ν2 + 4ν + 3

)
I 4D̃(2) − (2ν + 3)I

,

and

B :=

 Z Z Z
Z Z Z
I Z Z

.

The factor 4 in front of D̃(2) comes from the shift of interval (0, 1) to the canonical
Chebyshev interval [−1, 1] and the matrix D̃(2) signifies the second order Chebyshev
differentiation matrix with the homogeneous Dirichlet boundary conditions enforced.
The matrices I and Z stand respectively for the identity and zeros matrices of the same
dimension as D̃(2).

The following short MATLAB code has been used to solve (6):

N=256; % order of approximation
nu=-(1+4*(pi^2))-sqrt(1+4*(pi^2)); % parameter \nu
[x,D]=chebdif(N,2); D2=D(2:N-1,2:N-1,2); % differentiation matrices
I=eye(size(D2)); Z=zeros(size(D2));
A=[ 4*D2 -I Z; Z 4*D2 -I; -(nu^2+2*nu+2)*I (nu^2+4*nu+3)*I 4*D2-(2*nu+3)*I];
B=[Z Z Z; Z Z Z; I Z Z]; % block matrices in pencil
k = 8 ; % number of computed eigs
E=eigs( @(x)(A\(B*x)), size(A,1),k, ’SM’) % Arnoldi method

When the order of approximation is N, both matrices in (7) have order 3× (N − 1).
This tripling of the dimensions of the matrices involved is not a major disadvantage. On
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the contrary, if we use Henrici’s number as a measure of normality (see for instance our
text [13] pp. 22–23), we see from the inequality

Henrici(A) = 0.300293 < Henrici
(

D̃(2)
)
= 0.395205,

that matrix A is more normal than D̃(2).
In our previous paper [28], we have analyzed various methods to solve singular

eigenproblems attached to pencils of the form (7). For the problem at hand we have
used the Arnoldi method with the MATLAB sequence eigs(A−1B) and with the above
code obtained the eigenvalue reported in Table 1. It is very clear that for the values of
ν considered, the block matrix A is non singular and the block matrix B is singular and
independent of ν.

It is extremely important to point out that for the first two values of the parameter
ν in Table 1 our results are very close to those reported in [14]. For the other parameter
values this no longer happens. A similar situation occurs even for the second eigenvalue.
Then, to decide over the accuracy of our outcomes, we resorted to drift. The relative
drift, with respect to the order of approximation N, of the first forty eigenvalues when
ν := −(1 + π2) − (1 + π2)−1/2 is displayed in Figure 4. It suggests that the first two
eigenvalues are computed with an accuracy of at least 10−12 and the first forty with an
accuracy of at least 10−2. This leads us to believe that we have produced much better
approximations for these eigenvalues than those reported in [14] as well as [27]. Actually,
in [14] the authors use the SLEUTH code and accept that “it is clear that the code is not
very accurate on this problem”.
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Figure 4. The relative drift of the first forty eigenvalues of Bénard problem is displayed when
ν := −(1 + π2)− (1 + π2)−1/2-red dotted line when N1 := 256 and N2 := 128 and green circled line
when N1 := 64 and N2 := 128.
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Table 1. The first two eigenvalues of Bénard problem (5) for various ν computed by D2 strategy along with ChC.

ν λ0(ν) λ1(ν) λ0(ν) according to [14]

−(1 + π2) −1.000000000102923e + 00 −3.548769279033568e + 04 −1.000005
−(1 + 4π2) −1.000000009534114e + 00 −9.530184561696226e + 03 −1.0001

−(1 + π2)− (1 + π2)−1/2 −1.191482998363510e + 02 −2.802486989002433e + 04 −1× 10−7

−(1 + 4π2)− (1 + 4π2)−1/2 −1.639502291744172e + 03 −1.406538196754713e + 04 −3× 10−5

4.1.3. A Self-Adjoint Eighth-Order Problem

The eigenproblem of the highest order we consider in this paper is the following

u(8)(x) = λu(x), 0 < x < 1,
u(0) = u′′(0) = u(4)(0) = u(6)(0) = u(1) = u′′(1) = u(4)(1) = u(6)(1) = 0,

(8)

with exact eigenvalues λk = (kπ)8, k = 1, 2, . . . .
All our attempts to solve this problem with Chebfun have failed. The abortion message

referred to the extremely small conditioning of the eight order Chebyshev collocation
differentiation matrix (of the order 10−40).

Instead, the D2 strategy along with ChC worked well and produced vectors from
Figure 5.
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Figure 5. From upper left to lower right we display the first four eigenvectors of problem (8)
computed by ChC along with D2 method when the order of approximation has been N := 256.

In order to estimate the error with which the eigenvalues were calculated, we display
in Figure 6b the relative drift of the first twelve eigenvalues for different approximation
orders. As a result that we know the exact eigenvalues, we also display the relative
errors. It is very clear that the first eigenvalue is computed with better accuracy than 10−12.
Unfortunately, this means a lower performance by three decimals than that of Magnus
expansion reported in Table 10 from [12].

Moreover, this means that we cannot trust more than twelve eigenvalues for this problem.
It is clear that ChC along with the D2 method have the potential to find the first

eigenvalues of an SL problem of arbitrary (even) order with good accuracy. In addition
to the Magnus method, this strategy calculates its eigenfunctions (eigenvectors) with
reasonable accuracy as can be seen in Figure 6a. We use FCT to compute the Chebyshev
coefficients of the eigenvectors.



Symmetry 2021, 13, 385 10 of 20

0 50 100

a) Modes

10-10

10-8

10-6

10-4

10-2

A
b

s
o

lu
te

 v
a

lu
e

s
 o

f 
C

h
e

b
y
s
h

e
v
 c

o
e

ff
ic

ie
n

ts

1st

2nd

3rd

4th

2 4 6 8 10 12

b) Modes

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e

la
ti
v
e

 d
ri
ft

 w
it
h

 r
e

s
p

e
c
t 

to
 N

Figure 6. (a) The Chebyshev coefficients of the first four vectors of the problem (8) computed by FCT
(fast Chebyshev transform). (b) The relative drift of the first twelve eigenvalues to problem (8), red
dotted line N1 := 96, N2 := 200, green stared line N1 := 128, N2 := 200, and magenta circled line
N1 := 200, N2 := exact.

4.2. Clamped Boundary Conditions
4.2.1. A Fourth Order Problem with a Third Derivative Term

With this first example we have to highlight the importance of preconditioning in
improving the accuracy of Chebfun. In the papers [25,29], as well as in the monograph [30],
the following eigenproblem is carefully studied. It consists of the fourth order differen-
tial equation

u(iv) + Ru′′′ = su′′, x ∈ (−1, 1), R ∈ R, (9)

supplied with the clamped boundary conditions

u(±1) = u′(±1) = 0. (10)

The eigencondition for this problem is(
R2 + 4s

)1/2
[

cosh(R)− cosh
(

R2 + 4s
)1/2

]
+ 2s sinh

(
R2 + 4s

)1/2
= 0. (11)

Problems similar to this appear, for example, in linearized stability analysis in fluid
dynamics. In [29], the authors noticed spurious eigenvalues when the problem (9) and (10)
is solved by ChT method. These spurious eigenvalues appears in the right-half plane
suggesting physical instabilities that do not exist.

We have solved the problems (9) and (10) by Chebfun with and without precondition-
ing. The numerical outcomes are displayed in Table 2. Boldfaced digits in the computed
eigenvalues show the extent of agreement with the exact values. Thus, it is very clear that
preconditioning Chebfun can considerably improve its accuracy.

Table 2. First two eigenvalues of problems (9) and (10).

i λi Chebfun λi Preconditioned Chebfun λi Solution to (11)

1 −9.870154876048822e + 00 −9.869604528925013e + 00 −9.8696044
2 −2.019216607051227e + 01 −2.019072837497370e + 01 −20.1907286
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4.2.2. A Fourth Order Eigenproblem from Spherical Geometry

In [29], the authors consider the eigenproblem

D(D− s)u = 0, 0 < r1 < r2, r1 > 0,
u(r1) = u(r2) = u′(r1) = u′(r2) = 0,

(12)

where the operator D is defined by

D(u) := u′′ +
2
r

u′ − l(l + 1)
r2 ,

and l is a positive integer. They solve this problem by a modified ChT method in order to
avoid spurious eigenvalues. We have solved this problem by ChC and obtained for the fist
two eigenvalues the numerical values

s1 = −3.947819275687863e + 01, s2 = −8.076297512888706e + 01,

which agree up to the fourth decimal with the the true values (determined from the
eigencondition.

The first four vectors to problem (12) computed by Chebfun are depicted in Figure 7a.
It is visible that they satisfy the boundary conditions. Their Chebyshev coefficients are
displayed Figure 7b. About the first twenty coefficients of the first four eigenvectors
decrease just as abruptly and smoothly.
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Figure 7. (a) The first four eigenvectors to problem (12) computed by Chebfun. (b) The coefficients of
first four eigenvectors to problem (12).

4.2.3. A Set of Sixth Order Eigenproblems

In [31], the authors consider the following sixth order eigenproblems

u(vi)(x) = λu(j)(x), u(±1) = u′(±1) = u′′(±1) = 0, j = 0, 2, 4, (13)

and introduce an extremely simple modification to the ChT method which eliminates the
spurious eigenvalues when such high order eigenproblems are solved.

We have tried to solve problem (13) with j := 4 by Chebfun but all our attempts failed
due to the very small conditioning of matrix involved, i.e., around O

(
10−40). The situation

became much better with the preconditioner introduced in Section 3.4.



Symmetry 2021, 13, 385 12 of 20

Thus, the first four eigenvectors along with their Chebyshev coefficients are depicted
in Figure 8. As it is apparent from the lower panel of this figure the coefficients of degree up
to 30 drop sharply to an absolute value below 10−10 and then slowly decrease to machine
accuracy. This happens at an degree around 120.

The eigenvalues computed by Chebfun agree up to the first three digits with those
provided in ([25] p. 405).
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Figure 8. The first four eigenvectors of problem (13) with j := 4, computed by Chebfun, are reported
in the the upper panels and their Chebyshev coefficients are displayed in the lower panel.

4.3. Problems with Mixed Boundary Conditions
4.3.1. The Free Lateral Vibration of a Uniform Clamped–Hinged Beam

The fourth order eigenproblem

u(iv)(x) = λu(x), 0 < x < 1, u(0) = u′(0) = u(1) = u′′(1) = 0, (14)

is considered in [32] and is solved by a non conventional spectral collocation method. In
this paper, the author shows that the eigenvalues satisfy the transcendental equation

tanh 4√
λ = tan 4√

λ. (15)

It is extremely important to observe that neither preconditioning nor D2 strategy can
handle the mixture of boundary conditions in (14). Thus, this problem tests how well the
Chebfun can cope with various boundary conditions.

As the eigenvalues computed from (15) are compared with those obtained by Magnus
expansion in [12], we report in Table 3 the latter eigenvalues compared with those provided
by Chebfun. A coincidence of at least three decimals can be observed.



Symmetry 2021, 13, 385 13 of 20

Table 3. The first five eigenvalues to problem (14) computed by Chebfun and compared with those
provided by Magnus expansion.

j λj Chebfun λj According to [12]

1 2.377373239875730e + 02 2.377210675300e + 02
2 2.496524908617440e + 03 2.496487437860e + 03
3 1.086783642364734e + 04 1.086758221697e + 04
4 3.177977410414838e + 04 3.178009645380e + 04
5 7.400167551416633e + 04 7.400084934040e + 04

The first four eigenvectors to problem (14) computed by Chebfun are displayed in
Figure 9. It is perfectly visible that they satisfy the boundary conditions assumed in
this problem.
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Figure 9. From upper left to lower right we display the first four eigenvectors to problem (14)
computed by Chebfun.

The Chebyshev coefficients of the first four eigenvectors to problem (14) computed by
Chebfun are displayed in Figure 10. They decrease smoothly to somewhere around 10−12

which is an argument in favor of the accuracy of numerical results.
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Figure 10. In a log-linear plot we display the Chebyshev coefficients of the first four eigenvectors to
problem (14) computed by Chebfun.
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4.3.2. A Fourth Order Eigenproblem with Higher Order Boundary Conditions

In order to show again the Chebfun versatility in introducing boundary conditions,
we consider the following problem called the cantilevered beam in Euler–Bernouilli theory
(see for instance [33]). The equation simply reads

u(iv) = β4u, x ∈ (0, π), (16)

and is equipped with the following boundary conditions

u(0) = 0, u′(0) = 0,
u′′(π) = 0, u′′′(π) = 0.

(17)

The first two boundary conditions state that the beam is clamped in 0 and the last two
state that the bean is free in the right hand end. The eigenvalues β satisfy the eigencondition

cosh(βπ)cos(βπ) + 1 = 0. (18)

Actually, the problems (16) and (17) are self-adjoint. Without going into details, we
will notice that the first eigenvalue of this eigenproblem is the solution of the minimiza-
tion problem

β4 = min
v∈V

∫ π
0 (v′′)2dx∫ π

0 v2dx
,

where, roughly, V is a space of continuous functions satisfying the boundary conditions in
(17). This Ritz formulation, as well as a weak (variational) formulation can be obtained by
multiplying the equation with a function v from V and a double integration by parts.

Again, these boundary conditions are not treatable by preconditioning or D2 strategy.
The following simple and short Chebfun code solves the problems (16) and (17).

% Cantilevered beam in Euler-Bernouilli theory
dom=[0,pi];x=chebfun(’x’,dom); % the domain
L = chebop(dom);
L.op = @(x,y) diff(y,4); % the operator
L.lbc = @(y)[y; diff(y,1)]; % fixed b. c.
L.rbc = @(y)[diff(y,2); diff(y,3)];% free b. c.
[U,D]=eigs(L,40,’SM’); % first six eigs.
% Sorted eigenpairs (eigenvalues and eigenvectors)
D=diag(D); [t,o]=sort(D); D=D(o); disp((D.^(1/4)))
U=U(:,o);

In Table 4, the first four eigenvalues computed by Chebfun and by Magnus expansion
are reported. A satisfactory agreement is observed.

Table 4. The first four eigenvalues of problems (16) and (17) computed by Chebfun compared with
numerical solutions to Equation (18).

j βj by Chebfun βj Exact Solutions of (18)

1 5.967718563107258e− 01 0.59686
2 1.494163617547652e + 00 1.49418
3 2.500244462376521e + 00 2.50025
4 3.499990154542449e + 00 3.49999

The first four eigenvectors are displayed in Figure 11a and their Chebyshev coeffi-
cients are displayed in the same figure panel b. It is clear that Chebfun uses Chebyshev
polynomials of slightly lower degree than 20 and from this level only a sharply decreasing
rounding-off plateau follows.
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Figure 11. (a) The first four eigenvectors of problem (16) and (17) computed by Chebfun. (b) The
absolute values of Chebyshev coefficients of these vectors are displayed in a log-linear plot.

The first four eigenvectors approximating the eigenfunctions are in very good agree-
ment with those exposed in literature. Using the definition of the scalar product of two
vectors u and v, namely u′ ∗ v, we can easily check the orthonormality of eigenvectors.

The curves in Figure 12 clearly show that the eigenvectors of this problem computed
by Chebfun are orthonormal.
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Figure 12. In a log-linear plot we display the scalar products u′1 ∗ uj—red dotted line, u′3 ∗ uj—blue
dotted line, u′5 ∗ uj—green dotted line and u′10 ∗ uj—magenta dotted line, j := 1, 2, . . . , 50 when the
eigenproblem (16) and (17) is solved by Chebfun.

4.3.3. The Harmonic Oscillator and Its Second and Third Powers

We wanted to test our strategy on a problem whose differential equation exhibits
stiffness in at least part of the range. Thus, along with the well known harmonic oscillator
operator

h(u) := −u′′ + x2u, x ∈ (−∞, ∞)

we will consider its second and third powers, namely

h2(u) = u(iv) − 2
(

x2u′
)′

+
(

x4 − 2
)

u, x ∈ (−∞, ∞),
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and

h3(u) = −u(vi) +
(

3x2u′′
)′′

+
((

8− 3x4
)

u′
)′

+
(

x6 − 14x2
)

u, x ∈ (−∞, ∞).

Actually we want to solve the fourth order eigenvalue problem for h2(u), namely

h2(u) = λu, (19)

and the sixth order eigenvalue problem

h3(u) = λu, (20)

corresponding to the cube of the harmonic oscillator operator. The eigenvalues of the
harmonic oscillator are λk = (2k + 1), k = 0, 1, 2, . . . , and those of h2 and h3 are the second
and the third powers, respectively of λk. According to the definition for classification of SL
problems, given in this Section 2, the eigenproblems (19) and (20) are singular.

We have to observe that no boundary conditions are needed because the problem is of
limit-point type [15]: the requirement that the eigenfunctions be square integrable suffices
as a boundary condition. In [14] the problem (20) is solved by a SLEUTH code along with
domain truncation. Actually the authors truncate this problem to the interval (−100, 100),
and impose the simplest boundary conditions u = u′ = u′′ = 0 at x = ±100. Along with
these boundary conditions the eigenproblem becomes self-adjoint.

The first four eigenvectors of the cube of harmonic oscillator computed by SiC are
displayed in the upper panels of Figure 13. Their sinc coefficients are displayed in the
lower panel of the same figure. Roughly speaking, it guarantees us an accuracy of at least
10−12 in the computation of these eigenvectors.
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Figure 13. A zoom in on the first four eigenvectors of the cube of harmonic oscillator (20) computed
by SiC is displayed in the upper panels and the sinc coefficients of eigenvectors are reported in the
lower panel.
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SiC computes the integers λk with an accuracy of at least six digits.
The relative drift, with respect to N, of the first 250 eigenvalues of the cube of harmonic

oscillator computed by SiC are displayed in Figure 14a). It tells us that the first 200
eigenvalues are “good" within an accuracy of approximately 10−2. It also means the
“highest” confirmation of Boyd’s Eigenvalues Rule-of-Thumb (see Section 3.3).
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Figure 14. (a)The relative drift of the first 250 eigenvalues of the cube of harmonic oscillator computed
by SiC. Red stared line compares the exact values with the eigenvalues computed with N := 400 and
the circled green line compares the latter eigenvalues with those computed when in SiC N := 500. In
both cases, the scaling factor h equals 0.1. (b) The orthonormality of the first 250 eigenvectors, i.e.,
the scalar products, u′1 ∗ uj red dotted line, u′10 ∗ uj blue dotted line, u′50 ∗ uj green dotted line and
u′100 ∗ uj magenta dotted line, j := 1, 2, . . . , 250.

Trying to explain this spectacular phenomenon we cannot forget the fact that the
derivation matrices of SiC are symmetric. This leads to normal matrices (operators) whose
eigenpairs are properly computable.

If we compare this result with Table 10 from [14], where the best accuracy in com-
puting of the first eigenvalue is 10−2, we can speak of a total superiority of SiC method
over SLEUTH.

In Figure 14b, we display the scalar product of some eigenvectors. They prove that
the SiC computed eigenvectors are orthonormal. This means that we can trust at least the
first 200 eigenpairs computed by SiC. The following few lines of MATLAB compute the
above eigenpairs:

% The sinc differentiation matrices [Weideman & Reddy]
N=400;M=6;h=0.1;
%Orders of approximation and differentiation and scaling factor
[x, D] = sincdif(N, M, h); D1=D(:,:,1);D2=D(:,:,2);D6=D(:,:,6);
% The cube of the "harmonic oscillator" operator
L=-D6+D2*(3*diag(x.^2)*D2)+D1*(diag(8-3*(x.^4))*D1)+diag(x.^6-14*(x.^2));
% Finding eigenpairs of L
[U,S]=eigs(L,250,0); S=diag(S); [t,o]=sort(S); S=S(o);

Unfortunately, Chebfun along with domain truncation fails in solving the sixth order
problem (20) with or without preconditioning. Actually, a warning concerning the very
bad conditioning of the matrix is issued.

However, Chebfun behaves fairly well in solving the fourth order problem (19), i.e.,
computes the corresponding integers with the same accuracy as SiC. We have solved the
Equation (19) on the truncated interval (−X, X) for various X along with the boundary
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conditions u(±X) = u′(±X) = 0. The Chebyshev coefficients of the first four eigenvectors
of eigenproblem (19) computed by Chebfun are displayed in Figure 15a). An important
aspect must be highlighted, namely the first about 1000 polynomial coefficients decrease
steeply and smoothly to about 10−14 after which up to the order of 2500 follows a wide
rounding-off plateau.This is the polynomial of the highest degree that Chebfun has used in
our numerical experiments. The curves in Figure 15b) show the orthonormality of Chebfun
eigenvectors.
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Figure 15. (a) We display the Chebyshev coefficients of the first four eigenvectors of eigenproblem
(19); red dotted line-first vector, green stared line-second, blue circles-third and magenta diamonds-
fourth vector. (b) In a log-linear plot we display the scalar products u′1 ∗ uj—red dotted line, u′3 ∗ uj—
blue dotted line, u′5 ∗ uj—green dotted line and u′10 ∗ uj—magenta dotted line, j := 1, 2, . . . , 200 when
the eigenproblem (19) is solved by Chebfun.

The relative drift with respect to the length of integration interval X of the first 250
eigenvalues to problem (19), when it is solved by Chebfun, is displayed in Figure 16.
It means that the numerical stability is lost for larger X than 100 and a set of small eigenval-
ues can be computed with an accuracy better than 10−9.
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Figure 16. The relative drift (errors) with respect to X of the first 250 eigenvalues of second order
harmonic oscillator operator h2.

5. Conclusions and Open Problems

After analyzing these challenging problems, some firm conclusions can be drawn.
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First of all, Chebfun can easily handle any type of boundary condition. This is a signif-
icant advantage. Thus, for fourth order eigenproblems, the direct application of Chebfun
is versatile in handling various high order boundary conditions and produces reliable
outcomes. Furthermore, for problems with clamped boundary conditions both methods,
Chebfun as well as ChC, improve their results with two, three decimals by preconditioning.

For sixth order eigenproblems, the Chebfun situation is not so encouraging. Its
direct application is very uncertain. Matrices whose conditioning order drops to 10−40

appear, which most often lead to inaccurate results. For problems of this order or more,
subjected to hinged boundary conditions, the reduction to second-order systems and then
the application of the ChC method is the best strategy. In this way, we managed to establish
a conjecture for the Viola’s problem regarding its lowest eigenvalue.

For fourth order problems on the real line Chebfun along with the truncation of the
domain worked fairly well as was the case with the second power harmonic oscillator. As
an absolute novelty, we have established in this case the numerical stability with respect to
the length of the integration interval. Instead, for the sixth order eigenproblems on the real
line, the SiC method remains the unique feasible alternative.

In fact, this method is the best in the sense that we can trust the first half of computed
eigenpairs. To our knowledge, no software package has reached this performance so far.

An open problem remains for finding preconditioning methods for the case of hinged
boundary conditions or some other types of boundary conditions.

This paper comes shortly after when in another one (see [23]) we have approached,
with the same two classes of methods, singular Schröedinger eigenproblems. In this sit-
uation we can appreciate that ChC along with Chebfun are a better alternative in some
respects to other existing methods for a very wide range of eigenproblems. Both compute
eigenvectors (approximating eigenfunctions) and by drift estimation demonstrate numer-
ical stability. In addition, the drift with respect to N shows the degree of accuracy up to
which a set of eigenvalues is computed. The situation when both types of methods can be
applied to the same problem is the ideal one and the one that produces the safest results.
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Abbreviations
The following abbreviations are used in this manuscript:

ChC Chebyshev collocation method
ChT Chebyshev tau method
D2 strategy to reduce a 2nd-order equation to a second order system
FCT fast Chebyshev transform
FD finite difference method
FE finite element method
MATSLISE a MATLAB package for the numerical solution of SL and Schröedinger equations
SiC sinc spectral collocation
SL Sturm–Liouville
SLEDGE Sturm–Liouville estimates determined by global errors
SLEUTH Sturm–Liouville Eigenvalues using Theta Matrices
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