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Abstract: We study the Ulam-type stability of a generalization of the Fréchet functional equation.
Our aim is to present a method that gives an estimate of the difference between approximate and
exact solutions of this equation. The obtained estimate depends on the values of the coefficients of
the equation and the form of the control function. In the proofs of the main results, we use a fixed
point theorem to get an exact solution of the equation close to a given approximate solution.

Keywords: stability; inner product space; fixed point theorem; Fréchet equation

1. Introduction

In this paper, we study the functional equation:

A1F(x + y + z) + A2F(x) + A3F(y) + A4F(z) = A5F(x + y) + A6F(x + z) + A7F(y + z), (1)

where A1, . . . , A7 ∈ K are constants and K denotes the fields of real or complex numbers,
in the class of functions F : X → Y from a commutative group X into a Banach space Y
over the field K. This equation is a generalization of the following equation:

F(x + y + z) + F(x) + F(y) + F(z) = F(x + y) + F(x + z) + F(y + z). (2)

Equation (2) was used by Fréchet [1] to obtain a characterization the inner product
spaces among normed linear spaces, and it is called the Fréchet functional equation.
For more results concerning the relationship of Equation (2) with inner product spaces,
we refer to [2–8]. Equation (1) is a linear generalization of Equation (2). A nonlinear
generalization of the Fréchet functional Equation (2) was considered in [9].

The set of solutions of Equation (1) was studied in [10]. The main result of that paper
says that if Ai 6= Aj for some i, j ∈ {1, ..., 7}, then each solution of Equation (1) such that
F(0) = 0 is an additive function. In fact, under the assumption that Ai 6= Aj for some
i, j ∈ {1, ..., 7}, every solution F of Equation (1) is of the form F = a + c, where a is an
additive function and c is a constant.

In this paper, we investigate the problem of the stability of Equation (1) considering
possible values of coefficients Ai for i ∈ {1, ..., 7}. Roughly speaking, for an approximate
solution of Equation (1), we are looking for an exact solution of this equation that is close to
the given approximate solution. Some results in this direction obtained under assumptions
on some coefficients Ai can be found in [10,11]. The Ulam-type stability problem for
functional, difference, differential, and integral equations was described in more detail in
the monographs [12–14] and survey papers [15,16]. For a comparison of the stability results
for functional equations related to the functional equation considered here, the reader is
also referred to [17–28].
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Equation (1) can be treated as a special case of the general linear equation. The stability
problem of the general linear equation was studied in [29–32]. In this article, we want to
look at Equation (1) in order to get estimates of the difference between approximate and
exact solutions more closely connected to the values of the coefficients of the equation and
the form of the control function.

Let us consider the following system of linear equations:

A2 + A3 + A4 = 0
A1 + A2 + A3 = 0
A1 + A2 + A4 = 0
A1 + A3 + A4 = 0
−A2 − A3 + A6 + A7 = 0
−A2 − A4 + A5 + A7 = 0
−A3 − A4 + A5 + A6 = 0.

(3)

Its matrix is the form: 

0 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 0 0
0 −1 −1 0 0 1 1
0 −1 0 −1 1 0 1
0 0 −1 −1 1 1 0


.

The determinant of this matrix is equal to six. Therefore, in the case where not all parameters
A1, . . . , A7 are equal to zero, at least one of the equations of System (3) is not satisfied.

In [10], the stability of Equation (1) was proven under the assumption that A2 + A3 +
A4 6= 0. In this paper, we consider the remaining six cases corresponding to the equations of
System (3). They can be grouped into two classes so that each would contain similar cases.
The division into classes is made due to the symmetry of substitutions for the variables
occurring in Equation (1). We formulate stability results for one case from each class.

Now, we list the appropriate substitutions, the equations obtained from Equation (1)
by using these substitutions, and the form of an operator that can be used in a proof of the
stability result corresponding to consecutive cases:

(I) x = t, y = t, z = t

A1F(3t) + (A2 + A3 + A4)F(t) = (A5 + A6 + A7)F(2t), (4)

F(t) =
A5 + A6 + A7

A2 + A3 + A4
F(2t)− A1

A2 + A3 + A4
F(3t)

(II) x = t, y = t, z = −t

(A1 + A2 + A3)F(t) + A4F(−t) = A5F(2t) + (A6 + A7)F(0), (5)

F(t) =
A5

A1 + A2 + A3
F(2t) +

A6 + A7

A1 + A2 + A3
F(0)− A4

A1 + A2 + A3
F(−t),

(III) x = t, y = −t, z = t

(A1 + A2 + A4)F(t) + A3F(−t) = (A5 + A7)F(0) + A6F(2t), (6)

F(t) =
A5 + A7

A1 + A2 + A4
F(0) +

A6

A1 + A2 + A4
F(2t)− A3

A1 + A2 + A4
F(−t),

(IV) x = −t, y = t, z = t

(A1 + A3 + A4)F(t) + A2F(−t) = (A5 + A6)F(0) + A7F(2t), (7)
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F(t) =
A5 + A6

A1 + A3 + A4
F(0) +

A7

A1 + A3 + A4
F(2t)− A2

A1 + A3 + A4
F(−t),

(V) x = t, y = t, z = 0

(A6 + A7 − A2 − A3)F(t) = (A1 − A5)F(2t) + A4F(0), (8)

F(t) =
A1 − A5

A6 + A7 − A2 − A3
F(2t) +

A4

A6 + A7 − A2 − A3
F(0),

(VI) x = t, y = 0, z = t

(A5 + A7 − A2 − A4)F(t) = (A1 − A6)F(2t) + A3F(0), (9)

F(t) =
A1 − A6

A5 + A7 − A2 − A4
F(2t) +

A3

A5 + A7 − A2 − A4
F(0),

(VII) x = 0, y = t, z = t

(A5 + A6 − A3 − A4)F(t) = (A1 − A7)F(2t) + A2F(0), (10)

F(t) =
A1 − A7

A5 + A6 − A3 − A4
F(2t) +

A2

A5 + A6 − A3 − A4
F(0).

As mentioned above, Case (I) was considered in [10]. In this paper, we deal with Cases
(II) and (V) chosen from classes consisting of Cases (II)–(IV) and (V)–(VII), respectively.
The remaining cases in each class are analogous to those selected.

The proofs of our results are based on the fixed point theorem quoted below. The fixed
point approach to the Ulam-type stability problem can also be found in, e.g., [33–36].

Theorem 1 ([37]). Let the following three hypotheses be valid.

(H1) S is a nonempty set; E is a Banach space; and functions f1, ..., fk : S→ S and l1, . . . , lk : S→
R+ are given, where R+ denotes the set of nonnegative reals.

(H2) T : ES → ES is an operator satisfying the inequality:

∥∥T ξ(x)− T µ(x)
∥∥ ≤ k

∑
i=1

li(x)
∥∥ξ( fi(x))− µ( fi(x))

∥∥, ξ, µ ∈ ES, x ∈ S. (11)

(H3) Λ : R+
S → R+

S is defined by:

Λδ(x) :=
k

∑
i=1

li(x)δ( fi(x)), δ ∈ R+
S, x ∈ S.

Assume that functions ε : S→ R+ and ϕ : S→ E fulfil the following two conditions:∥∥T ϕ(x)− ϕ(x)
∥∥ ≤ ε(x), x ∈ S, (12)

ε∗(x) :=
∞

∑
n=0

Λnε(x) < ∞, x ∈ S. (13)

Then, there exists a unique fixed point ψ of T with:

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ S. (14)

Moreover,
ψ(x) := lim

n→∞
T n ϕ(x), x ∈ S. (15)
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2. The Main Results

In this section, we prove the stability results for two chosen cases from the above list.
In Case (II), we assume that X is a commutative group. However, in Case (V), we can work
under the more general assumption. Namely, similar to Case (I) considered in [10], we
assume that X is a commutative monoid.

We start with Case (II), which corresponds to the second equation of System (3).

Theorem 2. Let (X,+) be an abelian group, Y be a Banach space, and A1, . . . , A7 ∈ K ∈ {R,C}.
Assume that A1 + A2 + A3 6= 0. Let a function L : X3 → [0, ∞) satisfy the condition:

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X3, k ∈ {2, 0,−1}, (16)

with c(2), c(0), c(−1) ∈ [0, ∞) such that b := c(2)d(2) + c(0)d(0) + c(−1)d(−1) < 1, where:

d(2) :=
∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣, d(0) :=
∣∣∣∣ A6 + A7

A1 + A2 + A3

∣∣∣∣, d(−1) :=
∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣. (17)

Assume that f : X → Y is a function such that:

‖A1 f (x + y + z) + A2 f (x) + A3 f (y) + A4 f (z)− A5 f (x + y)− A6 f (x + z) (18)

− A7 f (y + z)‖ ≤ L(x, y, z), (x, y, z) ∈ X3.

Then, there exists a unique function F : X → Y satisfying (1) such that:

‖ f (x)− F(x)‖ ≤ ρL(x), x ∈ X, (19)

where:

ρL(x) :=
L(x, x,−x)

|A1 + A2 + A3|(1− b)
, x ∈ X. (20)

Proof. Taking x = y = t, z = −t in (18), we obtain:

‖(A1 + A2 + A3) f (t) + A4 f (−t)− A5 f (2t)− (A6 + A7) f (0)‖ ≤ L(t, t,−t), t ∈ X.

Hence, for each x ∈ X:∥∥∥∥ f (t) +
A4

A1 + A2 + A3
f (−t)− A5

A1 + A2 + A3
f (2t)− A6 + A7

A1 + A2 + A3
f (0)

∥∥∥∥ ≤ ε(t), (21)

where ε(t) := L(t,t,−t)
|A1+A2+A3|

. Put:

T ξ(t) :=
A5

A1 + A2 + A3
ξ(2t) +

A6 + A7

A1 + A2 + A3
ξ(0)− A4

A1 + A2 + A3
ξ(−t), ξ ∈ YX , t ∈ X. (22)

Let us note that the operator T is linear. From (21), we get that:

‖ f (t)− T f (t)‖ ≤ ε(t), t ∈ X.
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Fix ξ, µ ∈ YX . For every t ∈ X, we have:

‖T ξ(t)− T µ(t)‖ =
∥∥∥∥ A5

A1 + A2 + A3
(ξ(2t)− µ(2t)) +

A6 + A7

A1 + A2 + A3
(ξ(0)− µ(0))

− A4

A1 + A2 + A3
(ξ(−t)− µ(−t))

∥∥∥∥
≤
∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣‖ξ(−2t)− µ(−2t)‖+
∣∣∣∣ A6 + A7

A1 + A2 + A3

∣∣∣∣‖ξ(0)− µ(0)‖

+

∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣‖ξ(−t)− µ(−t)‖.

Thus:

‖T ξ(t) − T µ(t)‖ ≤ d(2)‖ξ(2t)− µ(2t)‖+ d(0)‖ξ(0)− µ(0)‖
+ d(−1)‖ξ(−t)− µ(−t)‖, t ∈ X. (23)

We showed that Condition (H2) is satisfied with k = 3, S = X, E = Y,

f1(t) = 2t, f2(t) = 0, f3(t) = −t,

l1(t) = d(2), l2(t) = d(0), l3(t) = d(−1),

i.e.,:

‖T ξ(t) − T µ(t)‖ ≤
3

∑
i=1

li(t)‖ξ( fi(t))− µ( fi(t))‖, ξ, η ∈ YX , t ∈ X.

Define an operator Λ : R+
X → R+

X by:

Λη(t) :=
3

∑
i=1

li(t)η( fi(t)), t ∈ X

for every η ∈ R+
X . Then, for each η ∈ R+

X , we have:

Λη(t) = d(2)η(2t) + d(0)η(0) + d(−1)η(−t), t ∈ X.

Let us note that the operator Λ is monotone, i.e.,: for all η, ζ ∈ R+
X , if η ≤ ζ, then Λη ≤ Λζ.

Moreover, by (23):

‖T ξ(t)− T µ(t)‖ ≤ Λ(‖ξ − µ‖)(t), ξ, µ ∈ YX , t ∈ X. (24)
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Now, we show that ε∗(t) := ∑∞
n=0 Λnε(t) < ∞ for each t ∈ X, i.e., the function series

∑∞
n=0 Λnε(t) is convergent for each t ∈ X. Fix a t ∈ X. In view of (16), we have:

Λε(t) = d(2)ε(2t) + d(0)ε(0) + d(−1)ε(−t)

= d(2)
L(2t, 2t,−2t))
|A1 + A2 + A3|

+ d(0)
L(0, 0, 0)

|A1 + A2 + A3|

+ d(−1)
L(−(t, t,−t))
|A1 + A2 + A3|

≤ d(2)c(2)
L(t, t,−t)

|A1 + A2 + A3|
+ d(0)c(0)

L(t, t,−t)
|A1 + A2 + A3|

+ d(−1)c(−1)
L(t, t,−t)

|A1 + A2 + A3|

= (d(2)c(2) + d(0)c(0) + d(−1)c(−1))
L(t, t,−t)

|A1 + A2 + A3|
.

Thus:

Λε(t) ≤ bε(t), t ∈ X. (25)

By induction, we show that:

Λnε(t) ≤ bnε(t), t ∈ X, n ∈ N. (26)

For n = 1, Condition (26) coincides with Condition (25). For n = 2, by the monotonicity
and linearity of Λ, we get from (25):

Λ2ε(t) = Λ(Λε)(t) ≤ Λ(bε)(t) = bΛε(t) ≤ b2ε(t)

for all t ∈ X. Now, suppose that (26) holds for some n ∈ N. Then, for every t ∈ X, we have:

Λn+1ε(t) = Λ(Λnε)(t) ≤ Λ(bnε)(t) = bnΛε(t) ≤ bn+1ε(t).

From (26), we receive the following estimate for each t ∈ X:

ε∗(t) =
∞

∑
n=0

Λnε(t) ≤
∞

∑
n=0

bnε(t) =
ε(t)

1− b
=

L(t, t,−t)
|A1 + A2 + A3|(1− b)

.

By Theorem 1 (with S = X and E = Y), there exists a function F : X → Y such that:

F(t) =
A5

A1 + A2 + A3
F(2t) +

A6 + A7

A1 + A2 + A3
F(0)− A4

A1 + A2 + A3
F(−t), t ∈ X, (27)

and:

‖ f (t)− F(t)‖ ≤ ε∗(t) ≤ L(t, t,−t)
|A1 + A2 + A3|(1− b)

, t ∈ X. (28)

Moreover,

F(t) = lim
n→∞

T n f (t), t ∈ X.

Next, by induction, we show that for every (x, y, z) ∈ X3, n ∈ N0 := N∪ {0}:

‖A1T n f (x + y + z) + A2T n f (x) + A3T n f (y) + A4T n f (z) (29)

− A5T n f (x + y)− A6T n f (x + z)− A7T n f (y + z)‖
≤ bn L(x, y, z), (x, y, z) ∈ X3.
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For n = 0, Condition (29) is simply (18). For n = 1 using (22), we have:∥∥A1T f (x + y + z) + A2T f (x) + A3T f (y) + A4T f (z)

A5T f (x + y)− A6T f (x + z)− A7T f (y + z)
∥∥

=
∥∥ A5

A1 + A2 + A3
A1 f (2(x + y + z)) +

A6 + A7

A1 + A2 + A3
A1 f (0))

− A4

A1 + A2 + A3
A1 f (−(x + y + z))

+
A5

A1 + A2 + A3
A2 f (2x) +

A6 + A7

A1 + A2 + A3
A2 f (0)

− A3

A1 + A2 + A3
A2 f (−x)

+
A5

A1 + A2 + A3
A3 f (2y) +

A6 + A7

A1 + A2 + A3
A3 f (0)

− A4

A1 + A2 + A3
A3 f (−y)

+
A5

A1 + A2 + A3
A4 f (2z) +

A6 + A7

A1 + A2 + A3
A4 f (0)

− A4

A1 + A2 + A3
A4 f (−z)

− A5

A1 + A2 + A3
A5 f (2(x + y))− A6 + A7

A1 + A2 + A3
A5 f (0)

+
A4

A1 + A2 + A3
A5 f (−1(x + y))

− A5

A1 + A2 + A3
A6 f (2(x + z))− A6 + A7

A1 + A2 + A3
A6 f (0)

+
A4

A1 + A2 + A3
A5 f (−1(x + z))

− A5

A1 + A2 + A3
A7 f (2(y + z))− A6 + A7

A1 + A2 + A3
A7 f (0)

+
A4

A1 + A2 + A3
A7 f (−1(y + z))

∥∥
≤

∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣L(2x, 2y, 2z) +
∣∣∣∣ A6 + A7

A1 + A2 + A3

∣∣∣∣L(0, 0, 0)

+

∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣L(−x,−y,−z)

≤ (d(2)c(2) + d(0)c(0) + d(−1)c(−1))L(x, y, z)

= bL(x, y, z).

Now, suppose that (29) holds for some n ∈ N0. Then, for every (x, y, z) ∈ X3, we have:
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∥∥A1T n+1 f (x + y + z) + A2T n+1 f (x) + A3T n+1 f (y) + A4T n+1 f (z)

A5T n+1 f (x + y)− A6T n+1 f (x + z)− A7T n+1 f (y + z)
∥∥

=
∥∥ A5

A1 + A2 + A3
A1T n f (2(x + y + z)) +

A6 + A7

A1 + A2 + A3
A1T n f (0))

− A4

A1 + A2 + A3
A1T n f (−(x + y + z))

+
A5

A1 + A2 + A3
A2T n f (2x) +

A6 + A7

A1 + A2 + A3
A2T n f (0)

− A3

A1 + A2 + A3
A2T n f (−x)

+
A5

A1 + A2 + A3
A3T n f (2y) +

A6 + A7

A1 + A2 + A3
A3T n f (0)

− A4

A1 + A2 + A3
A3T n f (−y)

+
A5

A1 + A2 + A3
A4T n f (2z) +

A6 + A7

A1 + A2 + A3
A4T n f (0)

− A4

A1 + A2 + A3
A4T n f (−z)

− A5

A1 + A2 + A3
A5T n f (2(x + y))− A6 + A7

A1 + A2 + A3
A5T n f (0)

+
A4

A1 + A2 + A3
A5T n f (−1(x + y))

− A5

A1 + A2 + A3
A6T n f (2(x + z))− A6 + A7

A1 + A2 + A3
A6T n f (0)

+
A4

A1 + A2 + A3
A5T n f (−1(x + z))

− A5

A1 + A2 + A3
A7T n f (2(y + z))− A6 + A7

A1 + A2 + A3
A7T n f (0)

+
A4

A1 + A2 + A3
A7T n f (−1(y + z))

∥∥
≤

(∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣bnL(2x, 2y, 2z) +
∣∣∣∣ A6 + A7

A1 + A2 + A3

∣∣∣∣bnL(0, 0, 0)

+

∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣bnL(−x,−y,−z)
)

≤ bn(d(2)c(2) + d(0)c(0) + d(−1)c(−1))L(x, y, z)

= bn+1L(x, y, z).

Thus, by induction, we obtain Condition (29). Letting n→ ∞ in (29), we get:

A1F (x + y + z) + A2F(x) + A3F(y) + A4F(z) (30)

= A5F(x + y) + A6F(x + z) + A7F(y + z), (x, y, z) ∈ X3.

Thus, we proved that there exists a function F : X → Y satisfying Equation (1) for all
x, y, z ∈ X and such that:

‖ f (x)− F(x)‖ ≤ ε∗(x) ≤ ρL(x), x ∈ X. (31)

Finally, we prove the uniqueness of the exact solution F satisfying (19). To this end,
we show by induction that for every n ∈ N:

‖T nξ(x)− T nµ(x)‖ ≤ Λn(‖ξ − µ‖)(x), ξ, µ ∈ YX , x ∈ X. (32)
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For n = 1, Condition (32) is simply (24). For n = 2 using (24) and the monotonicity of Λ,
we have:

‖T 2ξ(x)− T 2µ(x)‖ = ‖T (T ξ)(x)− T (T µ)(x)‖ ≤ Λ(‖T ξ − T µ‖)(x)

≤ Λ(Λ(‖ξ − µ‖))(x) = Λ2(‖ξ − µ‖)(x), x ∈ X

for ξ, µ ∈ YX. Fix ξ, µ ∈ YX, and assume that for an n ∈ N, Relation (32) holds. Then,
by (24):

‖T n+1ξ(x)− T n+1µ(x)‖ = ‖T (T nξ)(x)− T (T nµ)(x)‖
≤ Λ(‖T nξ − T nµ‖)(x), x ∈ X.

Hence, by the inductive hypothesis and the monotonicity of Λ, we obtain:

‖T n+1ξ(x)− T n+1µ(x)‖ ≤ Λ(Λn(‖ξ − µ‖))(x) = Λn+1(‖ξ − µ‖)(x), x ∈ X.

Let G : X → Y be also a solution of (1) such that ‖ f (x)− G(x)‖ ≤ ρL(x) for x ∈ X.
Then:

‖G(x)− F(x)‖ ≤ 2ρL(x), x ∈ X. (33)

Hence, by (32), we obtain:

‖T nG(x)− T nF(x)‖ ≤ 2ΛnρL(x) ≤ 2Λnε(x)
1− γ(x)

, x ∈ X,

since Λ is linear and monotone. Letting n → ∞, by the convergence of the series
∑∞

n=0 Λnε(x), we get:

lim
n→∞

‖T nG(x)− T nF(x)‖ = 0, x ∈ X.

Hence, ‖G(x)− F(x)‖ = 0 for x ∈ X, since G and F are fixed points of T . Consequently,
G(x) = F(x) for every x ∈ X.

Let us point out that the numerator |A6 + A7| of the constant d(0) can be much
smaller than the sum |A6| + |A7| in the case where the numbers A6, A7 have opposite
signs. Therefore, for some values of coefficients Ai, the above theorem can give the better
approximation of the exact solution of Equation (1) than the known results. Moreover,
replacing |A6|+ |A7| with |A6 + A7| causes a larger set of coefficients to be covered by the
stability results, since the above theorem contains the assumption b < 1, and analogous
assumptions occur in the known results concerning the stability of more general equations.

Let us note that if L(0, 0, 0) 6= 0, then by (16), we get that c(0) ≥ 1. However, in the
case where L(0, 0, 0) = 0, without loss of generality, we can put c(0) = 0. Then, the constant
b occurring in (20) is of the form:

b = c(2)d(2) + c(−1)d(−1), (34)

where d(2) and d(−1) are given by (17). Hence, if A4 = A5 = 0, then d(2) = d(−1) = 0.
Thus, b = 0, and consequently, ε∗(x) = ε(x). In this case, we can easily determine the exact
solution of the considered functional equation.

Corollary 1. Let (X,+) be an abelian group, Y be a Banach space, and A1, . . . , A7 ∈ K ∈ {R,C}.
Assume that A1 + A2 + A3 6= 0 and A4 = A5 = 0. Let a function L : X3 → [0, ∞) satisfy the
conditions L(0, 0, 0) = 0 and:
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L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X3, k ∈ {2,−1},

with some c(2), c(−1) ∈ [0, ∞). Assume that f : X → Y is a function such that Condition (18) is
fulfilled. Then, there exists a unique function F : X → Y satisfying (1) such that:

‖ f (x)− F(x)‖ ≤ ρL(x), x ∈ X,

where:

ρL(x) :=
L(x, x,−x)
|A1 + A2 + A3|

, x ∈ X.

Moreover, F is a constant function given by the formula:

F(x) =
A6 + A7

A1 + A2 + A3
f (0), x ∈ X. (35)

Proof. From (22), under our assumption on coefficients Ai, we get that:

T ξ(t) =
A6 + A7

A1 + A2 + A3
ξ(0), ξ ∈ YX , t ∈ X.

Moreover, by (27), we have:

F(t) =
A6 + A7

A1 + A2 + A3
F(0), t ∈ X. (36)

By (17) and (34), we obtain that b = 0. Hence, by (26):

Λnε(t) = 0, t ∈ X, n ∈ N,

where:

ε(t) =
L(t, t,−t)

|A1 + A2 + A3|
, t ∈ X.

From (28), we obtain that F(0) = f (0), since L(0, 0, 0) = 0. Hence, by (36), we get
Formula (35).

Now, we proceed to Case (V).

Theorem 3. Let (X,+) be a commutative monoid, Y be a Banach space, and A1, . . . , A7 ∈ K ∈
{R,C}. Assume that −A2 − A3 + A6 + A7 6= 0. Let a function L : X3 → [0, ∞) satisfy
the condition:

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X3, k ∈ {0, 2}, (37)

with c(2), c(0) ∈ [0, ∞) such that b := c(2)d(2) + c(0)d(0) < 1, where:

d(2) :=
∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣, d(0) :=
∣∣∣∣ A4

A6 + A7 − A2 − A3

∣∣∣∣. (38)

Assume that f : X → Y is a function such that Condition (18) is fulfilled. Then, there exists a
unique function F : X → Y satisfying (1) such that Condition (19) holds, where:

ρL(x) :=
L(x, x, 0)

|A6 + A7 − A2 − A3|(1− b)
, x ∈ X. (39)
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Proof. Taking x = t, y = t, z = 0 in (18), we obtain:

‖(A6 + A7 − A2 − A3) f (t)− (A1 − A5) f (2t) + A4 f (0)‖ ≤ L(t, t, 0), t ∈ X.

Hence, for each x ∈ X:∥∥∥∥ f (t)− A1 − A5

A6 + A7 − A2 − A3
f (2t)− A4

A6 + A7 − A2 − A3
f (0)

∥∥∥∥ ≤ ε(t), (40)

where ε(t) := L(t,t,0)
|A6+A7−A2−A3|

. Put:

T ξ(t) :=
A1 − A5

A6 + A7 − A2 − A3
ξ(2t) +

A4

A6 + A7 − A2 − A3
ξ(0), ξ ∈ YX , t ∈ X. (41)

Let us note that the operator T is linear. From (40), we get that:

‖ f (t)− T f (t)‖ ≤ ε(t), t ∈ X.

Fix ξ, µ ∈ YX . For every t ∈ X, we have:

‖T ξ(t)− T µ(t)‖ =
∥∥∥∥ A1 − A5

A6 + A7 − A2 − A3
(ξ(2t)− µ(2t)) +

A4

A6 + A7 − A2 − A3
(ξ(0)− µ(0))

∥∥∥∥
≤
∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣‖ξ(2t)− µ(2t)‖

+

∣∣∣∣ A4

A6 + A7 − A2 − A3

∣∣∣∣‖ξ(0)− µ(0)‖.

Thus:

‖T ξ(t) − T µ(t)‖ ≤ d(2)‖ξ(2t)− µ(2t)‖+ d(0)‖ξ(0)− µ(0)‖, t ∈ X. (42)

We have shown that Condition (H2) is satisfied with k = 2, S = X, E = Y,

f1(t) = 2t, f2(t) = 0, l1(t) = d(2), l2(t) = d(0),

i.e.,:

‖T ξ(t) − T µ(t)‖ ≤
2

∑
i=1

li(t)‖ξ( fi(t))− µ( fi(t))‖, ξ, µ ∈ YX , t ∈ X.

Define an operator Λ : R+
X → R+

X by:

Λη(t) :=
2

∑
i=1

li(t)η( fi(t)), t ∈ X

for every η ∈ R+
X . Then, for each η ∈ R+

X , we have:

Λη(t) := d(2)η(2t) + d(0)η(0), t ∈ X.

Let us note that the operator Λ is monotone, i.e., for all η, ζ ∈ R+
X if η ≤ ζ, then Λη ≤ Λζ.

Moreover, by (42):

‖T ξ(t)− T µ(t)‖ ≤ Λ(‖ξ − µ‖)(t), ξ, µ ∈ YX , t ∈ X. (43)
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Now, we show that ε∗(t) := ∑∞
n=0 Λnε(t) < ∞ for each t ∈ X, i.e., the function series

∑∞
n=0 Λnε(t) is convergent for each t ∈ X. Fix a t ∈ X. In view of (37), we have:

Λε(t) = d(2)ε(2t) + d(0)ε(0)

= d(2)
L(2t, 2t, 0)

|A6 + A7 − A2 − A3|
+ d(0)

L(0, 0, 0)
|A6 + A7 − A2 − A3|

≤ d(2)c(2)
L(t, t, 0)

|A6 + A7 − A2 − A3|
+ d(0)c(0)

L(t, t, 0)
|A6 + A7 − A2 − A3|

= (d(2)c(2) + d(0)c(0))
L(t, t, 0)

|A6 + A7 − A2 − A3|
.

Thus:

Λε(t) ≤ bε(t), t ∈ X. (44)

By induction, we show that:

Λnε(t) ≤ bnε(t), t ∈ X. (45)

For n = 1, Condition (45) coincides with Condition (44). For n = 2, by the monotonicity
and linearity of Λ, we get from (44):

Λ2ε(t) = Λ(Λε)(t) ≤ Λ(bε)(t) = bΛε(t) ≤ b2ε(t)

for all t ∈ X. Now, suppose that (45) holds for some n ∈ N. Then, for every t ∈ X, using
the inductive hypothesis, we have:

Λn+1ε(t) = Λ(Λnε)(t) ≤ Λ(bnε)(t) = bnΛε(t) ≤ bn+1ε(t).

Using (45), we obtain:

ε∗(t) =
∞

∑
n=0

Λnε(t) ≤
∞

∑
n=0

bnε(t) =
ε(t)

1− b
=

L(t, t, 0)
|A6 + A7 − A2 − A3|(1− b)

for each t ∈ X. By Theorem 1 (with S = X and E = Y), there exists a function F : X → Y
such that:

F(t) =
A1 − A5

A6 + A7 − A2 − A3
F(2t) +

A4

A6 + A7 − A2 − A3
F(0), t ∈ X,

and:

‖ f (t)− F(t)‖ ≤ ε∗(t) ≤ L(t, t, 0)
|A6 + A7 − A2 − A3|(1− b)

, t ∈ X.

Moreover,
F(t) = lim

n→∞
T n f (t), t ∈ X.

Next, by induction, we show that for every (x, y, z) ∈ X3, n ∈ N0 := N∪ {0}:

‖A1T n f (x + y + z) + A2T n f (x) + A3T n f (y) + A4T n f (z) (46)

− A5T n f (x + y)− A6T n f (x + z)− A7T n f (y + z)‖
≤ bn L(x, y, z), (x, y, z) ∈ X3.

For n = 0, Condition (46) is simply (18). For n = 1 using (41), we have:
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∥∥A1T f (x + y + z) + A2T f (x) + A3T f (y) + A4T f (z)

− A5T f (x + y)− A6T f (x + z)− A7T f (y + z)
∥∥

=
∥∥ A1 − A5

A6 + A7 − A2 − A3
A1 f (2(x + y + z)) +

A4

A6 + A7 − A2 − A3
A1 f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A2 f (2x) +

A4

A6 + A7 − A2 − A3
A2 f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A3 f (2y) +

A4

A6 + A7 − A2 − A3
A3 f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A4 f (2z) +

A4

A6 + A7 − A2 − A3
A4 f (0)

− A1 − A5

A6 + A7 − A2 − A3
A5 f (2(x + y))− A4

A6 + A7 − A2 − A3
A5 f (0)

− A1 − A5

A6 + A7 − A2 − A3
A6 f (2(x + z))− A4

A6 + A7 − A2 − A3
A6 f (0)

− A1 − A5

A6 + A7 − A2 − A3
A7 f (2(y + z))− A4

A6 + A7 − A2 − A3
A7 f (0)

≤
∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣L(2x, 2y, 2z) +
∣∣∣∣ A4

A6 + A7 − A2 − A3

∣∣∣∣L(0, 0, 0
)

≤ (d(2)c(2) + d(0)c(0))L(x, y, z)

= bL(x, y, z).

Now, suppose that (46) holds for some n ∈ N0 and for every (x, y, z) ∈ X3. Then, we have:∥∥A1T n+1 f (x + y + z) + A2T n+1 f (x) + A3T n+1 f (y) + A4T n+1 f (z)

− A5T n+1 f (x + y)− A6T n+1 f (x + z)− A7T n+1 f (y + z)
∥∥

=
∥∥ A1 − A5

A6 + A7 − A2 − A3
A1T n f (2(x + y + z)) +

A4

A6 + A7 − A2 − A3
A1T n f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A2T n f (2x) +

A4

A6 + A7 − A2 − A3
A2T n f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A3T n f (2y) +

A4

A6 + A7 − A2 − A3
A3T n f (0)

+
A1 − A5

A6 + A7 − A2 − A3
A4T n f (2z) +

A4

A6 + A7 − A2 − A3
A4T n f (0)

− A1 − A5

A6 + A7 − A2 − A3
A5T n f (2(x + y))− A4

A6 + A7 − A2 − A3
A5T n f (0)

− A1 − A5

A6 + A7 − A2 − A3
A6T n f (2(x + z))− A4

A6 + A7 − A2 − A3
A6T n f (0)

− A1 − A5

A6 + A7 − A2 − A3
A7T n f (2(y + z))− A4

A6 + A7 − A2 − A3
A7T n f (0)

≤
∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣bnL(2x, 2y, 2z) +
∣∣∣∣ A4

A6 + A7 − A2 − A3

∣∣∣∣bnL
(
0, 0, 0

)
≤ (d(2)c(2) + d(0)c(0))L(x, y, z)

= bn+1L(x, y, z).

Thus, by induction, we obtain Condition (46). Letting n→ ∞ in (46), we get:

A1F (x + y + z) + A2F(x) + A3F(y) + A4F(z) (47)

= A5F(x + y) + A6F(x + z) + A7F(y + z), (x, y, z) ∈ X3.
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Therefore, we proved that there exists a function F : X → Y satisfying Equation (1) for all
x, y, z ∈ X and such that:

‖ f (x)− F(x)‖ ≤ ε∗(x) ≤ ρL(x), x ∈ X. (48)

Finally, we prove the uniqueness of the exact solution F satisfying (19). To this end,
we show by induction that for every n ∈ N:

‖T nξ(x)− T nµ(x)‖ ≤ Λn(‖ξ − µ‖)(x), ξ, µ ∈ YX , x ∈ X. (49)

For n = 1, Condition (49) is simply (43). For n = 2 using (43) and the monotonicity of Λ,
we have:

‖T 2ξ(x)− T 2µ(x)‖ = ‖T (T ξ)(x)− T (T µ)(x)‖ ≤ Λ(‖T ξ − T µ‖)(x)

≤ Λ(Λ(‖ξ − µ‖))(x) = Λ2(‖ξ − µ‖)(x), x ∈ X

for ξ, µ ∈ YX. Fix ξ, µ ∈ YX, and assume that for an n ∈ N, Relation (49) holds. Then,
by (43):

‖T n+1ξ(x)− T n+1µ(x)‖ = ‖T (T nξ)(x)− T (T nµ)(x)‖
≤ Λ(‖T nξ − T nµ‖)(x), x ∈ X.

Hence, by the inductive hypothesis and the monotonicity of Λ, we obtain:

‖T n+1ξ(x)− T n+1µ(x)‖ ≤ Λ(Λn(‖ξ − µ‖))(x) = Λn+1(‖ξ − µ‖)(x), x ∈ X.

Let G : X → Y be also a solution of (1) such that ‖ f (x) − G(x)‖ ≤ ρL(x) for
x ∈ X. Then:

‖G(x)− F(x)‖ ≤ 2ρL(x), x ∈ X. (50)

Hence, by (49), we obtain:

‖T nG(x)− T nF(x)‖ ≤ 2ΛnρL(x) ≤ 2Λnε(x)
1− γ(x)

, x ∈ X,

since Λ is linear and monotone. Letting n → ∞, by the convergence of the series
∑∞

n=0 Λnε(x), we get:

lim
n→∞

‖T nG(x)− T nF(x)‖ = 0, x ∈ X.

Hence, ‖G(x)− F(x)‖ = 0 for x ∈ X, since G and F are fixed points of T . Consequently,
G(x) = F(x) for every x ∈ X.

Similar as before, let us note that if L(0, 0, 0) 6= 0, then by (16), we get that c(0) ≥ 1.
However, in the case where L(0, 0, 0) = 0, without loss of generality, we can put c(0) = 0.
Then, the constant b occurring in (39) is of the form:

b = c(2)d(2), (51)

where d(2) is given by (38). If A1 = A5, then b = 0, and consequently, ε∗(x) = ε(x).

Corollary 2. Let (X,+) be a commutative monoid, Y be a Banach space, and A1, . . . , A7 ∈ K ∈
{R,C}. Assume that A6 + A7 − A2 − A3 6= 0 and A1 = A5. Let a function L : X3 → [0, ∞)
satisfy the conditions L(0, 0, 0) = 0 and:

L(kx, ky, kz) ≤ c(2)L(x, y, z), (x, y, z) ∈ X3,
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with a constant c(2) ∈ [0, ∞). Assume that f : X → Y is a function such that Condition (18) is
fulfilled. Then, there exists a unique function F : X → Y satisfying (1) such that Condition (19)
holds, where:

ρL(x) :=
L(x, x, 0)

|A6 + A7 − A2 − A3|
, x ∈ X.

Moreover, F is a constant function given by the formula:

F(x) =
A4

A6 + A7 − A2 − A3
f (0), x ∈ X. (52)

3. Applications

For each of Cases (I)–(VII), we can obtain the estimation:

‖ f (x)− F(x)‖ ≤ ρL(x)

of the distance between an approximate solution of Equation (1) and its exact solution
obtained by using Theorem 1. We list below the formula for the function ρL and respective
constants for consecutive cases (cf. Relations (4)–(10)).

(I) ρL(x) :=
L(x, x, x)

|A6 + A7 − A2 − A3|(1− b)
, b := c(2)d(2) + c(3)d(3) < 1,

d(2) :=
∣∣∣∣A5 + A6 + A7

A2 + A3 + A4

∣∣∣∣, d(3) :=
∣∣∣∣ A1

A2 + A3 + A4

∣∣∣∣;
(II) ρL(x) :=

L(x, x,−x)
|A1 + A2 + A3|(1− b)

, b := c(2)d(2) + c(0)d(0) + c(−1)d(−1)) < 1,

d(2) :=
∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣, d(0) :=
∣∣∣∣ A6 + A7

A1 + A2 + A3

∣∣∣∣, d(−1) :=
∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣;
(III) ρL(x) :=

L(x,−x, x)
|A1 + A2 + A4|(1− b)

, b := c(2)d(2) + c(0)d(0) + c(−1)d(−1)) < 1,

d(2) :=
∣∣∣∣ A6

A1 + A2 + A4

∣∣∣∣, d(0) :=
∣∣∣∣ A5 + A7

A1 + A2 + A4

∣∣∣∣, d(−1) :=
∣∣∣∣ A3

A1 + A2 + A4

∣∣∣∣;
(IV) ρL(x) :=

L(−x, x, x)
|A1 + A3 + A4|(1− b)

, b := c(2)d(2) + c(0)d(0) + c(−1)d(−1)) < 1,

d(2) :=
∣∣∣∣ A7

A1 + A3 + A4

∣∣∣∣, d(0) :=
∣∣∣∣ A5 + A6

A1 + A3 + A4

∣∣∣∣, d(−1) :=
∣∣∣∣ A2

A1 + A3 + A4

∣∣∣∣;
(V) ρL(x) :=

L(x, x, 0)
|A6 + A7 − A2 − A3|(1− b)

, b := c(2)d(2) + c(0)d(0)) < 1,

d(2) :=
∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣, d(0) :=
∣∣∣∣ A4

A6 + A7 − A2 − A3

∣∣∣∣;
(VI) ρL(x) :=

L(x, 0, x)
|A5 + A7 − A2 − A4|(1− b)

, b := c(2)d(2) + c(0)d(0)) < 1,
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d(2) :=
∣∣∣∣ A1 − A6

A5 + A7 − A2 − A4

∣∣∣∣, d(0) :=
∣∣∣∣ A3

A5 + A7 − A2 − A4

∣∣∣∣;
(VII) ρL(x) :=

L(0, x, x)
|A5 + A6 − A3 − A4|(1− b)

, b := c(2)d(2) + c(0)d(0)) < 1,

d(2) :=
∣∣∣∣ A1 − A7

A5 + A6 − A3 − A4

∣∣∣∣, d(0) :=
∣∣∣∣ A2

A5 + A6 − A3 − A4

∣∣∣∣.
Now, we give some examples. Let X be a normed space. Consider the control function

L : X3 → [0, ∞) given by:

L(x, y, z) := ‖x‖p + ‖y‖p + ‖z‖p, (x, y, z) ∈ X3, (53)

with some p ∈ R such that p > 0. It satisfies the condition:

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X3

with c(k) = |k|p for each k ∈ Z, since L(kx, ky, kz) = |k|pL(x, y, z). Hence, c(0) = 0 and
c(k) ≥ 1 for all k ∈ Z \ {0}. Thus, for this c, we have the following assumptions:

(I) d(2) + d(3) ≤ b < 1, d(2) + d(3) =
∣∣∣∣A5 + A6 + A7

A2 + A3 + A4

∣∣∣∣+ ∣∣∣∣ A1

A2 + A3 + A4

∣∣∣∣;
(II) d(2) + d(−1) ≤ b < 1, d(2) + d(−1) =

∣∣∣∣ A5

A1 + A2 + A3

∣∣∣∣+ ∣∣∣∣ A4

A1 + A2 + A3

∣∣∣∣;
(III) d(2) + d(−1) ≤ b < 1, d(2) + d(−1) =

∣∣∣∣ A6

A1 + A2 + A4

∣∣∣∣+ ∣∣∣∣ A3

A1 + A2 + A4

∣∣∣∣;
(IV) d(2) + d(−1) ≤ b < 1, d(2) + d(−1) =

∣∣∣∣ A7

A1 + A3 + A4

∣∣∣∣+ ∣∣∣∣ A2

A1 + A3 + A4

∣∣∣∣;
(V) d(2) ≤ b < 1, d(2) =

∣∣∣∣ A1 − A5

A6 + A7 − A2 − A3

∣∣∣∣;
(VI) d(2) ≤ b < 1, d(2) =

∣∣∣∣ A1 − A6

A5 + A7 − A2 − A4

∣∣∣∣;
(VII) d(2) ≤ b < 1, d(2) =

∣∣∣∣ A1 − A7

A5 + A6 − A3 − A4

∣∣∣∣.
Now, we show how one can use Theorems 2 and 3 to prove the stability of Equation (1)

for some particular values of coefficients Ai. To apply Theorem 2, let us take:

A1 = 6, A2 = 1, A3 = 2, A4 = A5 = 3, A6 = 4, A7 = 5.

By (17), we have:

d(2) =
1
3

, d(−1) =
1
3

,
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whence by (34), we get that:

b = c(2)d(2) + c(−1)d(−1) =
2p

3
+

1
3

.

Consequently, b < 1 if and only if p ∈ (0, 1). In particular, for p = 1
2 , we have

b =
√

2+1
3 and:

ρL(x) =
L(x, x,−x)

9(1−
√

2+1
3 )

=
2 +
√

2
2

√
‖x‖.

Thus:

‖ f (x)− F(x)‖ ≤ 2 +
√

2
2

√
‖x‖,

where F is of the form:
F(x) = a(x) + c, x ∈ X,

with an additive function a : X → Y and c = f (0).
Let us note that we obtain the same approximate if, e.g., A6 = 100 and A7 = −91,

since the constant b occurring in Theorem 2 depends on |A6 + A7| and the values of A6
and A7 taken into account separately have no effect on b.

To prove the stability of Equation (1) for these values of the coefficients, we can also
use Theorem 3. Then, by (38) and (51), we have d(2) = 1

2 and:

b = c(2)d(2) =
2p

2
.

Consequently, b < 1 if and only if p ∈ (0, 1). In particular, for p = 1
2 , we have b =

√
2

2 and:

ρL(x) =
L(x, x, 0)

6(1−
√

2
2 )

=
2 +
√

2
3

√
‖x‖.

Thus:

‖ f (x)− F(x)‖ ≤ 2 +
√

2
3

√
‖x‖.

Summing up, for the considered values of coefficients, Theorem 3 gives a better approxi-
mation than Theorem 2, since in the case p ∈ (0, 1), we have:

2p

2
<

2p

3
+

1
3

.

Now, let us take:

A1 = A2 = A3 = 2, A4 = A5 = A6 = A7 = 1.

First, we use Theorem 2. By (17), we have:

d(2) =
1
6

, d(−1) =
1
6

,

whence by (34), we get that:

b = c(2)d(2) + c(−1)d(−1) =
2p

6
+

1
6

.

Consequently, b < 1 if and only if p ∈ (0, log2 5). In particular, for p = 1, we have
b = 1

2 and:

ρL(x) =
L(x, x,−x)

6(1− 1
2 )

=
L(x, x,−x)

3
= ‖x‖.
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For p = 1
2 , we have b =

√
2+1
6 and:

ρL(x) =
L(x, x,−x)

6(1−
√

2+1
6 )

=
L(x, x,−x)

5−
√

2
=

3(5 +
√

2)
23

√
‖x‖ ≈ 0.8366

√
‖x‖.

To prove the stability of Equation (1) for these values of the coefficients, we can also
use Theorem 3. Then, by (38) and (51), we have d(2) = 1

2 and:

b = c(2)d(2) =
2p

2
.

Consequently, b < 1 if and only if p ∈ (0, 1). In particular, for p = 1
2 , we have b =

√
2

2 and:

ρL(x) =
L(x, x, 0)

2(1−
√

2
2 )

= (2 +
√

2)
√
‖x‖ ≈ 3.4142

√
‖x‖.

Thus, now, Theorem 2 gives a better approximation than Theorem 3, since for p > 0,
we have:

2p

6
+

1
6
<

2p

2
.

Moreover, in this case, using Theorem 2, we obtain a wider interval for p.

4. Final Remarks

Let L : X3 → K satisfy:

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X3

for some k ∈ Z. Define L̃ : X3 → K by the formula:

L̃(x, y, z) := L(x, y, z) + δ,

where δ > 0. Then, if c(k) ≥ 1, then:

L̃(kx, ky, kz) = L(kx, ky, kz) + δ

≤ c(k)L(x, y, z) + δ

≤ c(k)
(

L(x, y, z) +
δ

c(k)

)
≤ c(k)(L(x, y, z) + δ) = c(k)L̃(x, y, z).

Let L be given by (53). Then:

L̃(x, y, z) = ‖x‖p + ‖y‖p + ‖z‖p + δ, (x, y, z) ∈ X3. (54)

and the condition:

L̃(kx, ky, kz) ≤ c̃(k)L̃(x, y, z), (x, y, z) ∈ X3 (55)

holds for each k ∈ Z \ {0} with c̃(k) = |k|p. For k = 0, we have L̃(kx, ky, kz) = δ for all
(x, y, z) ∈ X3. Hence, Relation (55) holds with c̃(0) = 1, since δ is the minimum of L. Thus,
we obtain:

c̃(k) :=
{
|k|p, if k 6= 0,
1, if k = 0.

Let:
A1 = A2 = A3 = 2, A4 = A5 = A6 = A7 = 1.
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By Theorem 2

b̃ = c̃(2)d(2) + c̃(0)d(0) + c̃(−1)d(−1) =
2p + 3

6
.

Hence, b̃ < 1 if and only if p ∈ (0, log2 3). For p = 1, we have b̃ = 5
6 and:

ρL(x) =
L̃(x, x,−x)

6(1− 5
6 )

= L̃(x, x,−x) = 3‖x‖p + δ.

Now, let A2 = A3 = 2, A1 = A4 = A5 = A6 = A7 = 1. By Theorem 2,
b̃ = 2p+3

5 , since:

d(2) =
1
5

, d(0) =
2
5

, d(−1) =
1
5

.

Then, b̃ < 1 if and only if p ∈ (0, 1). In particular, for p = 1
2 , we obtain:

b =
3 +
√

2
5

, ρL(x) =
L̃(x, x,−x)

5(1− 3+
√

2
5 )

=
3
√
‖x‖+ δ

2−
√

2
=

2 +
√

2
2

(
3
√
‖x‖+ δ

)
.

By Theorem 3 with the same constants as above, we get that b̃ = 1
2 , and b̃ < 1 if and only if

p ∈ (0, ∞), because d(2) = 0, d(0) = 1
2 . The estimate is:

ρL(x) =
L̃(x, x, 0)
2(1− 1

2 )
= 2‖x‖p + δ.

For p = 1
2 , we have b̃ = 1

2 , and ρL(x) = 2
√
‖x‖+ δ.

5. Discussion

In order to obtain a solution of a generalized Fréchet functional equation, we used
the iterative method based on a fixed point theorem. The distance between the obtained
exact solution and the approximate solution being the starting point of the iterative process
depends on the length of the first step of this process and the parameter b controlling the
length of the subsequent steps. The choice of the operator generating the iterative sequence
tending to the exact solution has a big impact on the accuracy of the estimation of the
distance between this solution and the initial approximate solution.

In this paper, we distinguished seven cases depending on the conditions met by the
coefficients of the generalized Fréchet equation having constant coefficients. The result for
the first of these cases was presented in [10]. It gives a good estimate for some values of
the coefficients of the considered equation. However, for other values of the coefficients,
these estimates may not be very accurate. Therefore, we distinguished other cases in order
to compare the obtained estimates. For each of these cases, we provided an estimate of the
distance between the exact and approximate solutions of the generalized Fréchet equation.
For the given values of the coefficients of the equation, we can choose the case that gives
a good estimate after checking if its assumptions are met. In particular, we showed an
example of the coefficients for which Theorem 2 gives a better estimate than Theorem 3
and an example where Theorem 3 gives a more accurate result.

The system of linear equations defining the list of cases was selected so that, on the one
hand, for any values of the coefficients, at least one of the cases was satisfied, and on the
other hand, the operator defining the iterative sequence did not have too many summands.
One can try to use such a system for a generalized Fréchet functional equation with variable
coefficients, but then, it may happen that an equation of the system is satisfied for some
values of x, y, and z, and for others, it does not hold.
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6. Conclusions

In this paper, we study the dependence of an estimation of the distance between
approximate and exact solutions of the generalized Fréchet functional equation from the
values of coefficients Ai of this equation. We distinguish seven cases, of which at least one is
always true. However, usually more than one of these cases holds, and then, we can choose
the one that gives the best estimate among them. Generally speaking, we try to group the
coefficients of the equation in a way that gives a good estimation of the distance between
the approximate and exact solutions. The division into groups is important because within
the groups, we sum up directly the coefficients and not their absolute values.

The desired estimate depends not only on the coefficients of the equation, but also
on the control function L, as we showed in the examples. Nevertheless, grouping the
coefficients may also be useful in investigating the stability of more general functional
equations than the equation discussed in this article.
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36. Cădariu, L.; Găvruţa, L.; Găvruţa, P. Fixed points and generalized Hyers-Ulam stability. Abstr. Appl. Anal. 2012, 2012, 712743.

[CrossRef]
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