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Abstract: The ocean occupies more than two-thirds of the earth’s area, providing a lot of oxygen and
materials for human survival and development. However, with human activities, a large number
of sewage, plastic bags, and other wastes are discharged into the ocean, and the problem of marine
water pollution has become a hot topic in the world. In order to extract the characteristics of marine
water pollution, this study proposed K-means clustering technology based on cosine distance and
discrimination to study the polluted water. In this study, the polygonal area method combined with
six parameters of water quality is used to analyze the marine water body anomalies, so as to realize
the rapid and real-time monitoring of marine water body anomalies. At the same time, the cosine
distance method and discrimination are used to classify marine water pollutants, so as to improve
the classification accuracy. The results show that the detection rate of water quality anomalies is
more than 88.2%, and the overall classification accuracy of water pollution is 96.3%, which proves the
effectiveness of the method. It is hoped that this study can provide timely and effective data support
for the detection of marine water bodies.

Keywords: data mining; polygon area method; K-means clustering; discrimination; abnormal
water quality

1. Introduction

With the unprecedented prosperity of international trade since the 20th century,
the marine transportation industry has been greatly developed, and the marine oil spill
pollution caused by marine oil tankers is becoming more and more serious. In addition, the
discharge of a large amount of wastewater and garbage aggravates the degree of marine
pollution. It can be said that all marine pollution is related to human activities. However,
there is a certain lag in the current water quality monitoring technology, which is very
unfavorable for the timely detection of marine water pollution. With the rapid development
of big data technology, online water quality monitoring technology based on data mining
has begun to develop, but the related research and application are limited. Under the
existing technical means, it is very important to combine the data mining technology to
extract and judge the water quality monitoring information efficiently.

In this study, the conventional simple water quality parameters are used to achieve
rapid detection, the six-parameter water quality model based on the polygon area method is
used to achieve pollution feature extraction, and the K-means clustering analysis is used to
classify the characteristics of marine water pollution. According to the blacklist of priority
pollutants in water, six representative water quality parameters were selected, and a water
quality parameter model was established. In the process of pollution feature classification
and recognition, the idea of cluster analysis is used to transform cosine similarity into
cosine distance, and the index of discrimination is proposed.
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On the other hand, the traditional K-means clustering method is innovated, and the
cosine distance is optimized by differentiation, which is to further improve the accuracy of
marine water pollution classification and recognition.

The research is divided into four parts. The first part describes the international re-
search progress on water quality monitoring and its application in data mining technology;
the second part describes the polygon area method and clustering classification recognition
method in detail; the third part shows the important results of the study and focuses on
the discussion combined with the existing related research; finally, the paper discusses the
current situation of water quality monitoring and its application in data mining technology
The conclusion of the study is summarized, and its academic impact, limitations, and
future research direction are briefly explained.

2. Related Work
2.1. Study on the Method of Water Pollution Feature Extraction

Water is an important resource for human survival. With the development of modern
society, water quality monitoring has become the basic step of environmental protection,
and monitoring technology innovation is the focus of environmental workers. Subbiah
et al. used cyanobacteria as a key indicator to monitor water quality changes, and they
studied the relationship between inorganic ion concentration and cyanobacterial toxin
concentration in water, aiming to reveal the potential relationship between human activities
and water quality [1]. Farnham et al. used the compact dry method (Hyserve) and the
intestinal volume method (IDEXX) to monitor the water environment and its pathogen
hazards, which is not easy to automatically sample. The results showed that although the
detection efficiency of Hyserve method was slightly lower than IDEXX method, it could
also detect more than 80% of water pathogenic bacteria pollution, and the detection cost
and efficiency were higher [2]. John F. Griffith et al. proposed using molecular methods to
monitor beach water quality and analyze the relationship between water quality and health
risk of gastrointestinal diseases. Through prospective cohort study and multiple regression
analysis, it is found that the measurement method and site specificity of beach water
quality will affect the health risk relationship [3]. Majid et al. compared the application
effect of Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) in
marine water salinity estimation, and they found that the GWR model has a better ability
to predict salinity and display its spatial heterogeneity than the OLS model [4]. Pérez et al.,
based on the multi-objective optimization algorithm of artificial bee colony, proposed the
design method of a river basin water quality monitoring network. The results show that
the designed monitoring network is better than the existing network, and the river basin
water quality has been significantly improved [5].

2.2. Research Work of Data Mining Technology in the Field of Water Pollution

The digital age and the intelligent age promote the deep development of the indus-
trial revolution, and data mining technology creates the value of big data. Aadil et al.
used different measurement techniques for water quality monitoring, and they analyzed
the temporal and spatial changes of monitoring data through the hierarchical clustering
method. Finally, the effect of water quality monitoring and clustering analysis in water
quality prediction was verified [6]. Delpla et al. designed a drinking water source monitor-
ing and early warning system by using data mining technology, established an artificial
neural network model through trend analysis of turbidity based on time series, and veri-
fied the effectiveness of the model in the average turbidity prediction of the investigated
watershed [7]. Sun et al. used a photoelectric sensor network to monitor and obtain the
characteristics of marine water quality, and they proposed a rule updating algorithm to
maintain the rules of marine water quality data. Finally, the practicability of the algorithm
was verified by experiments [8]. Cominola et al. developed a data-driven method that can
extract terminal water consumption and analyze water demand only by reading existing
intelligent water meter data through data mining [9]. Lee et al. used data mining technol-
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ogy to draw a groundwater potential map, and they conducted sensitivity analysis on a
frequency ratio (FR) model and lifting classification tree (BCT) model, aiming to create an
effective and convenient groundwater management plan [10].

2.3. Research on the Advantages of K-Means Clustering in the Field of Environment

Govender and other scholars have reviewed the research of air pollution cluster
analysis, in which K-means clustering method and hierarchical clustering technology are
popular research methods in recent years. They hope to summarize the research results
in recent years and explore new research directions [11]. Mahajan et al. combined the
traditional K-means clustering and Particle Swarm Optimization (PSO) optimization,
and they used the hybrid clustering method to predict the air quality. The research
results showed that the prediction effect of environmental pollution was significantly
improved [12]. Ahmadoazzam and other researchers used the K-means non-hierarchical
algorithm to cluster the spatial and temporal distribution pattern of water quality in the
Kalun River Basin, and they identified the water pollution sources in the Kalun River Basin.
The results show that the K-means algorithm integration can deeply analyze the similarity
of water quality parameters, and it can be used as an effective decision-making tool in
environmental management [13]. Li et al. used K-means clustering to study the spatial
characteristics of water quality in the central and southern Fujian waters, revealing the
relationship between the spatial change of water quality and natural factors and human
activities, and they confirmed the clustering results through principal component analysis.
K-means clustering provides more detailed classification and more information about the
dominant variables, and it is an effective tool to better understand the law and process
of water quality change [14]. Hu et al. used the kernel K-means clustering method and
Empirical Mode Decomposition (EMD) to study the spatial and temporal characteristics of
inhalable particles (PM10) mass concentration in Beijing. The results showed that the city
could be divided into three stations: low pollution, medium pollution, and high pollution,
and the background PM 10 mass concentration in the city showed an upward trend [15].
In conclusion, compared with traditional methods, the K-means clustering analysis method
can deeply analyze the correlation of water quality parameters, deeply reveal the law and
process of water quality change, expand the use of information, and improve the accuracy
of water quality analysis.

From the existing research, the new water quality monitoring methods are still the
focus of many researchers. There are many research studies on the use of data mining
technology for water quality monitoring, but the data mining technology is more used in
water resources management and other aspects, and less in the seawater quality monitoring.
From this point of view, this study has a certain degree of innovation and practicality in its
use of data mining technology for real-time analysis of seawater quality information.

3. Study on Water Quality Anomaly Detection Based on Polygon Area Method
3.1. Marine Water Quality Anomaly Detection Technology Based on Polygon Area Method

Water quality monitoring is of great significance for the detection of water pollution,
which can provide support for the protection of water resources and the improvement
of water pollution decision-making efficiency. In order to effectively detect water quality
anomalies, the conventional simple water quality sensor is used to detect the state of the
marine water body, and the X-control chart is used to judge the water quality abnormal-
ity [11]. The combination of X-control chart and computer technology can realize the
efficient early warning of water quality abnormality. Its structure is shown in Figure 1.

Figure 1 is the structure diagram of the X control chart, in which abscissa represents
time series or sample series and ordinate represents water quality characteristics; UCL, Cl,
and TCL represent the upper control limit line, center line, and lower control limit line,
respectively; and the mean value of water quality characteristics in a given time interval
is taken as the center line of water quality control. If the water quality characteristics of a
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certain point are higher or lower than three times the standard deviation, it is beyond two
control limits. The range of the limit line is considered to be abnormal.
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Figure 1. Schematic diagram of the basic structure of the X control chart.

When the abnormal water body is detected, it is necessary to make a preliminary
judgment on its pollution type. In order to improve the objectivity of water quality
detection, the polygon method was used. In the polygon area method, multiple evaluation
indexes of the object to be evaluated are dimensionless, and a polygon is formed on each
coordinate axis. Finally, the polygon area is taken as the comprehensive evaluation result.
In this study, referring to the conventional water quality detection indicators, six indicators
including conductivity, temperature, pH value, redox potential, dissolved oxygen, and
UV absorbance value at 254 nm were used as the water quality detection and evaluation
indicators. The detection time window was selected as ∆N. From the beginning of time
(t-N) to the end of time (t-1), the standardized treatment formula of the water quality index
is shown in Formula (1).

X∗i =

∣∣Xi − X′i
∣∣

Si
, i ∈ {K, T, pH, ORP, DO, UV254} (1)

In Formula (1), Xi
* is the dimensionless parameter output value, Xi is the parameter

measurement value, Xi
′, Si is the average value and standard deviation in ∆N.

The six-parameter model of water quality based on the polygon area method is shown
in Figure 2. In Figure 2, each axis of the polygon represents different detection indicators,
and the length of the axis represents the size of the index after dimensionless processing.
Connect the end points of each axis to get a polygon. According to the area of the polygon,
the water quality can be judged. The area of hexagon is represented by S, and S0 is the
area threshold. If the polygon area s exceeds the area threshold S0, it indicates that the
water quality is abnormal. Formula (2) is the polygon area formula. In Formula (1), n is the
number of indicators, in this study, n = 6; Li is the axis length of each index.

S =
1
2
∗ (L1 ∗ L2 + L2 ∗ L3 + · · ·+ Ln−1 ∗ Ln + Ln ∗ L1) ∗ sin(

2π

n
) (2)

In this way, how to determine the size of area threshold S0 is the key. According to the
judgment principle of the x-control chart for abnormal water quality, that is UCL = X′i + 3Si,
if the absolute value of water quality parameters is more than three times the standard
deviation, it is regarded as abnormal. Therefore, in theory, if the value of water quality
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parameters after data standardization is more than three, it is regarded as the characteristic
anomaly. Assuming that all features are at the edge of the anomaly, S = 1/2× (3× 3)×
6× sin(2π/6) = 23.4, it means that the marine water environment is seriously abnormal,
which is shown in red in Figure 2.
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However, in practice, six parameters are not abnormal at the same time; even if
six parameters are not abnormal at the same time and only one parameter is seriously
abnormal, the polygon area may be larger than 23.4; in addition, if only one water quality
parameter is abnormal, but the degree of abnormality is not obvious, the polygon area
threshold may be smaller than 23.4, and this method is not feasible. The abnormal condition
of the water body can not be judged. Therefore, based on the area threshold S0 = 23.4, the
water quality Anomaly Index Y is proposed, and its expression is shown in Formula (3).

Y = S/S0 (3)

In the actual detection process, six groups of parallel samples were set up, and the
last measurement results were compared with the previous five measurement results so
as to judge the water quality. In general, when the water quality anomaly index is higher,
the corresponding polygon area is larger. This study judged the water quality from two
aspects: one is the water quality anomaly index, the other is the polygon area. Table 1 is
the judgment standard of water quality. If Y ≤ 1 and S < 23.4, the water quality is normal;
if Y > 1 and S < 23.4, the water quality is abnormal; if Y > 1 and S ≥ 23.4, the water quality
is seriously abnormal.

Table 1. Water quality status judgment table.

Hexagon Area Y Abnormal Water Quality Index S Water Quality Status

≤1 <23.4 Normal
>1 <23.4 Abnormal
>1 ≥23.4 Severe abnormality

After the calculation of six parameters of water quality and polygon area, it is necessary
to evaluate the performance of the results. Comparing the actual water quality with the
predicted water quality, four results are obtained, as shown in Table 2.
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Table 2. Output correlation.

Forecast Water Quality
Abnormalities

Corresponding
Parameters

Forecast of Normal
Water Quality

Corresponding
Parameters

Actual water quality is abnormal True positive TP False positive FP
Actual water quality is normal False negative FN True negative TN

Generally, the performance evaluation indexes for water quality anomaly detection
algorithms include false alarm rate (FAR), detection rate (PD), and false classification rate
(FCR). According to Table 2, the calculation formulas of the three evaluation indexes are
shown in Formulas (4) to (6).

PD =
TP

TP + FN
× 100% (4)

FAR =
FP

TN + FP
× 100% (5)

FCR =
FP + FN

TP + FN + FP + TN
× 100% (6)

3.2. Classification and Recognition Technology of Water Pollutants Based on K-Means Clustering

Marine water pollution not only threatens the survival of marine organisms, but
it also has a great impact on the natural environment on which human beings depend.
When marine water pollution occurs, the traditional pollutant identification methods can
not work quickly and effectively, which may lead to the delay of pollution control. The
polygonal area model proposed in this study can only carry out preliminary anomaly
recognition and classification. In this study, based on the six-parameter model of water
quality, the idea of clustering in data mining is used to realize pollutant classification.

In this paper, the K-means clustering algorithm is used for the fast identification
and classification of marine water pollution. Firstly, the k value and the initial centroid
of the classification need to be determined. Secondly, the distance from other points to
each centroid is calculated according to the distance criterion, and the points with similar
distance are classified into one class. After all the data points are classified, the centroid of
each set is recalculated. If the distance between the new centroid and the original centroid
is less than the set threshold, the clustering is considered successful, and the algorithm
ends; otherwise, go to step 2 until the maximum number of iterations is reached. The loss
function of K-means clustering algorithm is shown in Equation (7).

J =
N

∑
n=1

K

∑
k=1

rnk‖xn − µk‖2 (7)

In Equation (7), xn is the point to be classified; µk is the cluster center of the k-th cate-
gory; and rnk ∈ {0, 1} is the attribution of point xn to cluster k (n = 1, . . . , N; k = 1, . . . , K).
If point xn belongs to the k-th cluster, then rnk = 1; otherwise, rnk = 0. Through iterative
solution, the algorithm obtains the belonging value rnk and cluster center µk of all points
that minimize the loss function J. Based on this, the clustering center of the K-means
clustering algorithm is obtained.

In the same ocean pollution model, the objects of the same category have similar
characteristics. Taking heavy metal polluted water and phenol aniline polluted water as
examples, the six-parameter model of water quality is analyzed, as shown in Figure 3,
where B and M represent phenol aniline pollutants and heavy metal pollutants, respectively.
It is obvious from Figure 3 that the response of different characteristic parameters in water
body to different types of pollution is different, so the six-parameter characteristic shapes of
different types of pollutants are quite different; meanwhile, the six-parameter characteristic
shapes of the same type of pollutants at different concentrations are similar. In this study,
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the characteristics of marine water quality are expressed in vector form; that is, X = (K, T,
pH, ORP, DO, UV254). From Figure 3, it can be seen that the water quality characteristic
vectors of different pollution types have different performance.
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In this paper, cosine distance is used to cluster and classify water pollution. The cosine
distance method is based on the angle of vector space between objects. By calculating the
cosine value of the angle, the similarity between objects is obtained. The smaller the cosine
distance, the higher the similarity between them. Assuming that the vectors of the research
object are X and Y, the scalar product can be obtained; on this basis, the cosine similarity
calculation formula of the two vectors is shown in Equation (8).

similarity(X, Y) = cos(X, Y) =
X·Y
|X| ∗ |Y| =

n
∑

i=1
XiYi√

n
∑

i=1
Xi

2
n
∑

i=1
Yi

2

(8)

The similarity between water quality feature vectors can be calculated by Equation (8).
When the cosine value of the angle between the two eigenvectors is larger, the similarity
between them is higher; otherwise, the similarity is lower. In this study, cosine similarity is
transformed into cosine distance, which is more suitable for the classification of pollutants
with unknown concentration, and its expression is shown in Equation (9).

dist(X, Y) = 1− similarity(X, Y) (9)

If there are n types of pollutant samples and they satisfy Equation (10), X can be
classified into Yi class.

dist(X, Yi) = min{dist(X, Y1), dist(X, Y2), · · · , dist(X, Yn)}i = 1, 2, . . . , n (10)

After completing the classification of pollutants, in order to evaluate the classification
effect, this study established the classification accuracy A as an index to evaluate the
classification effect, and its expression is as follows.
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A =
CC

CC + IC
(11)

In Equation (11), IC is the number of samples with wrong classification, and CC is
the number of samples with correct classification. The higher the A value of classification
accuracy is, the better the classification effect.

When the difference of cosine distance between pollutants is very small, only using
cosine distance may not be able to achieve pollutant classification. For the sake of the
preciseness of the experiment, this study introduces the discrimination and compares it
with the classification effect of cosine distance. The formula of discrimination is shown in
Equation (12).

D(X, Yi) =
dist(X, Yi)

dist(Y∗i , Yi)
=

1− cos(X, Yi)

1− cos(Y∗i , Yi)
(12)

In Formula (12), X is the sample to be classified, Yi
*, Yi is the standard sample of the

same kind, dist(X, Yi) is the cosine distance between the standard sample and the sample
to be classified, and dist(Yi

*, Yi) is the average cosine distance between the same standard
sample. When the pollutants in the standard samples and the pollutants in the classified
samples belong to the same category, the distinction value should be close to 1; when
the pollutants in the standard samples and the pollutants in the classified samples do not
belong to the same category, the corresponding distinction value should be greater than 1.

D(X, Yi) = min{D(X, Y1), D(X, Y2), . . . , D(X, Yi)}i = 1, 2, . . . , n (13)

When the sample has the relationship described in Equation (13), sample X can be
divided into Yi class.

By establishing the model of six water quality parameters and using the K-means
clustering analysis method, the cosine similarity of each parameter is converted into cosine
distance, so as to classify and distinguish the characteristics of water pollution more
conveniently and accurately.

4. Experimental Design and Analysis
4.1. Analysis of Abnormal Water Quality Detection Results

In this study, the unpolluted seawater of a coastal city was taken as the standard
seawater sample, the water quality was monitored and sampled from March 2019 to
July 2020, and the sampling time was throughout the four seasons. In the process of
seawater monitoring, a total of five parallel sampling points are set up, and their depth
is consistent with the coastline distance. Sampling was conducted every 20 days. Due to
the impact of the epidemic, the sampling work was suspended in January and February
2020. A total of 120 water samples were obtained during the whole experiment.The water
quality parameters of water samples are composed into a dataset, which contains six water
quality parameters, and the algorithm proposed in this paper is used for processing. The
experimental environment is as follows: Intel (R) core (TM) i3-4130 CPU, main frequency
is 3.4 GHz, memory is 8 GB, and operating system is win10. On the MATLAB simulation
platform, the results are as follows.

Figure 4 is the time series diagram of some water quality background monitoring
data, and the abscissa is the number of water samples according to the time series. Samples
No. 1–15 are data from March to April 2019. During this period, the temperature T
is generally low, ORP is generally high, pH slightly rises, and other parameters have
relatively small changes. Samples No. 16–37 are data from May, June, July, and September
2019. During this period, the temperature increases to a certain extent, the dissolved
oxygen in water decreases, and the fluctuation of other water quality parameters increases.
Samples No. 38–51 are data from October to December 2019. At this time, the water
temperature is significantly reduced, and other parameters fluctuate. Abscissa No. 52–73
are the data of March and April 2020, and No. 74–120 are the data of May to July 2020,
when the temperature gradually increases. Except for the polluted seawater, the dissolved
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oxygen content decreases with the increase of temperature, so the dissolved oxygen content
in winter is higher than that in other seasons. There was no significant change in other
parameters. It can be seen from Figure 4 that the variation range of water quality parameters
is large for a long time, but the variation range is small for a short time, which means that
the water quality detection time window should not be too large.
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adding the heavy metal pollutant with the concentration of C6, the water quality anom-
aly index reached 30.3, and the corresponding polygon area was 282.6; after adding the 
phenol aniline pollutant with the concentration of C6, the water quality anomaly index 
reached 4.82, and the corresponding polygon area was 44.9. According to the time series, 
the raw water samples are divided into two parts, heavy metal pollutants are added to 
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In order to judge the validity of the polygon area method, heavy metal pollutants and
phenol aniline pollutants with a concentration of c1–c6 were added to the water with serial
numbers of 70, 74, 86, 92, 103, and 111, respectively, and the abnormal water quality was
detected. The concentrations of heavy metal pollutants corresponding to c1~c6 were 0.6,
1.2, 3.5, 7.0, 10.5, and 14.0mg/L, respectively. The concentrations of phenol and aniline
were 1.3, 2.4, 6.0, 12.0, 18.0, and 24.0mg/L, respectively. Figure 5 is a broken line diagram of
water quality Anomaly Index Y, in which the dotted line is Y = 1, (a) heavy metal pollutants,
(b) phenol and aniline pollutants.
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It can be seen from Figure 5 that with the increase of pollutant concentration, the
water quality anomaly index increases and far exceeds the set area threshold. In (a), after
adding the heavy metal pollutant with the concentration of C6, the water quality anomaly
index reached 30.3, and the corresponding polygon area was 282.6; after adding the phenol
aniline pollutant with the concentration of C6, the water quality anomaly index reached
4.82, and the corresponding polygon area was 44.9. According to the time series, the raw
water samples are divided into two parts, heavy metal pollutants are added to one, and
phenol and aniline pollutants are added to the other. The abnormal points in the experiment
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were removed, and the data results were statistically analyzed, including 119 heavy metal
pollutants and 113 phenol aniline pollutants. The statistical results are shown in Table 3.

Table 3. Evaluation of abnormal water quality detection results.

Pollutants FP TN FN TP FAR PD FCR

Phenolanilines (113) 0 61 12 90 0% 88.2% 7.36%
Heavy metals (119) 2 46 5 130 4.17% 96.3% 3.83%

Table 3 is the evaluation of water quality anomaly detection results. From the results
of PD value, the proposed method can detect 88.2% of phenol aniline pollutants, and the
detection rate of heavy metal pollutants is as high as 96.3%, which shows that the proposed
method can effectively detect pollutants in seawater. According to the FAR value, the
misjudgment rate of phenol aniline pollutants is 0%, and that of heavy metal pollutants
is only 4.17%, which means that the method has a low misjudgment rate in water quality
detection. FCR is the experimental misclassification rate. The misclassification rates of
phenol aniline pollutants and heavy metal pollutants are 7.36% and 3.83%, respectively.
In order to verify the detection performance of this method, the molecular method and
hyperserve method are used to carry out the same detection experiment, and the results
are shown in Table 4.

Table 4. Evaluation of water quality anomaly detection results by other methods.

Pollutants
Molecular Method Hyserve Method

FAR PD FCR FAR PD FCR

Phenolanilines (113) 10% 91.30% 8.63% 7% 84.30% 7.36%
Heavy metals (119) 12.40% 85.50% 7.64% 9.23% 74.26% 5.97%

An analysis of Table 4 shows that the detection rate of phenol and heavy metal
pollutants by this method is higher than that by other methods, and the misjudgment
rate and misclassification rate are lower than those by other methods.In conclusion, the
water quality detection method proposed in this study has a good detection effect on water
quality anomalies, and it can effectively detect water quality anomalies, which provides a
research basis for the subsequent classification and identification of pollutants.

4.2. Analysis of Pollutant Classification Results

It is found that the response of six parameters of water quality to different pollutants
is different, and some of them have no significant response to pollutants. Therefore, the six
parameters of water quality will be screened before the pollutant classification experiment.
Six water quality parameters were divided into seven groups, named A, B, C, D, E, F, and
G. The water quality parameters in each group are shown in Table 5. Among them, the
classification accuracy is reversed by the false score rate.

Table 5. Experimental groups and parameters.

Group Included Parameters Classification Accuracy (%)

Group A K, pH, ORP, DO, UV254, T 90.52
Group B K, pH, ORP, DO, UV254 92.36
Group C T, pH, ORP, DO, UV254 89.74
Group D K, T, ORP, DO, UV254 86.13
Group E K, T, pH, ORP, UV254 82.37
Group F K, T, pH, DO, UV254 81.63
Group G K, T, pH, ORP, DO 80.99
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Table 5 shows the classification accuracy of seven groups. The results showed that the
classification accuracy of group B was the highest (92.36%); group A included all six water
quality parameters, but its classification accuracy was only 90.52%. Combined with the
analysis in Figures 4 and 5, the response of temperature T to these two kinds of pollutants
is not obvious; at the same time, although the classification factors of group A are more
extensive, the accuracy rate of group B is lower than that of group A, which means that
there is interaction between water quality parameters. In this experiment, there is no
temperature parameter T in group B, and the classification accuracy of group B is the
highest. Therefore, temperature parameters are excluded in the follow-up experiment, and
five parameters, K, pH, ORP, DO, and UV254, are taken as water quality parameters, and
the corresponding water quality characteristic vector X = (K, pH, ORP, DO, UV254).

There are 120 seawater samples, which are divided into two parts, adding 14.0mg/L
heavy metal pollutants and phenol aniline pollutants respectively to ensure the significance
of classification.The experiment is divided into a training set and test set with the ratio
of 2:1; the training set is used to train the K-means clustering model, and then, the test
set is used to test its training effect. Figures 6 and 7 show the clustering effect of different
pollution types of water samples based on cosine distance and discrimination, respectively.
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In Figure 6, (a) represents the classification effect of heavy metal polluted water sam-
ples, and (b) represents phenol and aniline pollutants. It can be seen from Figure 6a that
the classification effect of some water samples is not obvious, and the K-means model
has the phenomenon of misclassification in the classification of heavy metal pollutants; in
Figure 6b, cosine distance is obviously better than heavy metal pollutants in the recogni-
tion and classification effect of phenol aniline pollutants, but there are still some sample
recognition errors.

Figure 7 shows the classification results of different pollutant samples, in which the
black dots represent phenol and aniline, and the red dots represent heavy metals. Figure 7a
shows the discrimination results of heavy metal samples. It can be seen from Figure 7a
that the red dots of heavy metals are mostly below two, while the black dots of phenol and
aniline are above four. Figure 7b shows the discrimination results of phenol and aniline
samples. As can be seen from Figure 7b, most of the black spots are below two, while the
red spots are obviously above three.

The clustering accuracy of different types of polluted water is shown in Table 6. As
can be seen from Table 6, compared with cosine distance, the accuracy of discrimination
is higher in the overall classification. The classification accuracy of heavy metal pollution
and phenol aniline pollution is 94.7% and 97.8%, respectively, and the total classification
accuracy is 96.3%.

Table 6. Comparison of classification accuracy and cosine distance of pollutants.

Classification Classification Accuracy of
Heavy Metal Samples

Correct Rate of Classification
of Phenol Aniline Samples

Overall Classification
Accuracy

Discrimination 94.7% 97.8% 96.3%
Cosine distance 94.9% 91.5% 93.2%

4.3. Recognition and Classification of Polluted Marine Environment by K-Means
Clustering Algorithm

All the above experiments are carried out in unpolluted background seawater, and
the effectiveness of the proposed algorithm is discussed. The test will be conducted with
real datasets, which are derived from Argo buoy profile data of the Indian Ocean from July
to September 2019 obtained by the Argo real-time data center of China, and the data are
obtained three times a day. In order to control a single variable, 276 observation data in the
same grid (−35.614, 62.896) and the same buoy (1900050) were selected for cluster analysis.
Figure 8 shows marine water pollution identification based on K-means clustering.

In Figure 8, the green triangle represents the unpolluted water sample, the blue circle
represents the heavy metal polluted water sample, and the red square represents the phenol
aniline polluted water sample; (a) and (b) are the clustering based on cosine distance and
discrimination, respectively. According to the clustering results, the blue circle and the
red square are the water samples in the fixed time series, which shows that the K-means
algorithm based on cosine distance and discrimination can better identify the pollution
events of marine water. In addition, the results in Figure 8 show that there are some
fuzzy samples in the clustering classification based on cosine distance and discrimination.
Overall, the classification accuracy based on cosine distance is 89.7%, and the classification
accuracy based on discrimination is 95.6%. Compared with the experimental results in
Table 6, it can be found that under the actual test, the accuracy of the proposed clustering
algorithm is reduced, but there is little difference with the experimental results.

Comprehensive experimental results show that the proposed method has better clas-
sification accuracy than the traditional method. When the six water quality parameters
are classified and analyzed, it is found that temperature has little effect on the classifica-
tion results of water pollutants, so the water quality parameter temperature is excluded.
Under different cosine distances, the overall classification accuracy of this method is still
maintained at a high level, reaching 96.3%. Finally, a case study is carried out to further
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verify the accuracy of the proposed method, which has a good performance in identifying
seawater pollutants.
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5. Discussion

On the whole, the study is divided into two stages: one is the detection of marine water
quality anomaly, and the other is the classification of water quality anomaly characteristics.
The two stages of the study involve the use of data mining technology, and the method
proposed in this study has certain advantages compared with other existing studies.

Samendra et al. compared the effects of three sensors with different principles on the
real-time detection of microorganisms in reclaimed water, and they found that the sensor
based on the Adenosine triphosphate (ATP) production principle had the best effect on
microbial detection [16]. The research results of Samendra et al. show that different water
quality detection targets need to select corresponding sensors. This research is aimed at
early warning of marine water body anomalies quickly and effectively. Therefore, the
research chooses conventional water quality sensors for real-time detection, and it uses the
x-control chart algorithm to cooperate with early warning, which improves the efficiency
of water quality early warning. Wang et al. studied the early warning of water quality
and proposed an LS-SVM model to quantitatively evaluate the detection effect of water
quality. The results verified the generalization ability and accuracy of the model [17]. From
their results, the model can better solve the local nonlinear problem of long-term water
quality monitoring, but in the short-term anomaly early warning, the accuracy of the model
is limited. In this study, anomaly detection is carried out for short-term data, and the
misjudgment rate is below 4.17%, which is a supplement to the research of short-term
water quality anomaly early warning direction.

The other stage of the study is the classification of water quality anomaly character-
istics. Vasilescu et al. established an efficient method for fluorescent water compound
recognition, which used artificial neural network processing technology for on-line identifi-
cation of marine oil spill, and they verified its feasibility [18]. Their research idea is to reveal
the distribution of fluorescent water components by using the channel relationship, and
the sensitivity of the recognition model depends on the training dataset and training rules.
In contrast, the research method in this paper pays more attention to the judgment of the
similarity of the research object, that is, the classification accuracy, and it does not consider
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the classification sensitivity. Based on the idea of machine learning, Xu et al. studied the
online early warning technology of water pollution, and they confirmed that the early
warning accuracy of the pcc-svm model proposed by Xu is more than 88% [19]. Júnez-
Ferreira et al. designed a groundwater monitoring network with spatiotemporal variability
by combining geostatistical methods, which visualized the characteristics of water quality
anomalies, which is a new idea for water quality anomaly positioning [20]. This study
focuses on the identification of water pollution types, and the accuracy of discrimination
classification is more than 95.6%, which is conducive to the rapid development of relevant
treatment measures when marine water pollution occurs. However, compared with other
studies, this study is obviously weak in the positioning of water quality anomalies, which
needs to be made up in future studies [21,22].

6. Conclusions

At present, more and more serious sea water pollution has become a research hotspot
of scholars all over the world. In order to detect and control the impact of marine water
pollution in time, a six-parameter water quality model was proposed to detect and early
warn the marine water anomalies. On the other hand, the K-means clustering technology
in data mining is used to quickly identify the types of water pollution, and the concept of
“discrimination” with higher classification accuracy is proposed. The results show that the
detection rates of heavy metal pollutants and phenol aniline pollutants are 94.7% and 97.8%,
respectively, and the total classification accuracy of seawater pollutants is 96.3% under the
K-means clustering analysis based on discrimination. In addition, the real datasets are
tested, and the results show that the classification accuracy based on the cosine distance
and discrimination is 89.7% and 95.6%, respectively. In addition, there are some deficiencies
in the research results. First, there is a certain correlation between water quality parameters,
but this study did not conduct an in-depth discussion on this aspect. Second, the study only
analyzed two types of marine pollutants; thus, the breadth of the study is lacking. In the
next study, on the one hand, the correlation between water quality parameters and various
pollutants will be deeply explored; on the other hand, the types of pollutants involved in
the study will be expanded to verify the universality of the research method in practical
application. In this paper, the characteristics of marine water pollution are analyzed and
judged, but the possible changes of water quality in the future are not reasonably predicted.
Therefore, in the future research, more years of historical water quality data analysis should
be considered to explore the change trend of water quality and provide a more theoretical
basis for marine water protection.
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