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Abstract: A model-building framework is proposed that combines two data mining techniques,
TreeNet and association rules analysis (ASA) with multinomial logit model building. TreeNet
provides plots that play a key role in transforming quantitative variables into better forms for the
model fit, whereas ASA is important in finding interactions (low- and high-order) among variables.
With the implementation of TreeNet and ASA, new variables and interactions are generated, which
serve as candidate predictors in building an optimal multinomial logit model. A real-life example in
the context of health care is used to illustrate the major role of these newly generated variables and
interactions in advancing multinomial logit modeling to a new level of performance. This method
has an explanatory and predictive ability that cannot be achieved using existing methods.

Keywords: association rules analysis; interaction effect; model building; multinomial logit model;
TreeNet

1. Introduction

The multinomial logit model is the fundamental method used to predict and explain
a multi-category response. In related studies, researchers have developed a number of
ways to select and screen variables with the goal of advancing the multinomial logit
model. These include the likelihood-based boosting technique used with one step of Fisher
scoring to select the variables [1] and a five-step technique drawing on analysis of variance
(ANOVA) and bootstrapping aggregation used to screen the variables [2]. However, neither
of these approaches accounts for the interactions between variables in the selection process.
Camminatiello and Lucadamo [3] advanced the model by applying principal component
analysis (PCA) and thereby removing the problem of multicollinearity data. Kim and
Kim [4] also focused on interactions in developing a two-stage methodology that relies on
combining a decision tree with the multinomial logit model: the decision tree provides
the basis for selecting influential interaction effects that serve as the explanatory variables
for fitting the multinomial logit model. However, the decision tree has the drawback of a
hierarchical structure.

In our previous work, Changpetch and Lin [5], we used ASA, specifically classification
rule mining (CRM), to search for potential rules, which are then converted into potential
interactions (low- and high-order) to serve as candidate predictors for the multinomial
logit model. We used ASA, because unlike the decision tree it allows for a global search
through which more potential interactions can be located and thus considered. In that
procedure, however, the use of quantitative predictors is limited, as ASA can generate rules
for categorical predictors only.

In this paper, we develop a model-building framework that improves on other ap-
proaches to multinomial logit model building by combining methods for variable dis-
cretization, variable transformation, interaction generation, and variable selection in one
framework. In conjunction with the multinomial logit model, two data mining techniques
are used in this framework: TreeNet, for variable discretization and variable transformation,
and ASA, for generating and selecting the interactions.
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A data mining technique built on classification and a decision tree [6], TreeNet has
the special feature of providing dependency plots that can be used to help discretize
quantitative predictors into categories and then transform the predictors into various forms
that have the potential to improve the model fit. These newly generated variables are
then used to find the interactions and also to serve as candidate predictors for the optimal
multinomial logit model. Note that the present study constitutes the first account in which
TreeNet is used as the discretization method.

We use ASA to find relationships between the response and the categorical variables
in terms of rules. However, ASA works only with categorical variables, which means that
quantitative predictors have limited use in this method [5,6]. It is possible, though, to
overcome this limitation. The inclusion of TreeNet in the proposed model means that the
new categorical variables, which are generated by discretizing the original quantitative
predictors, work with ASA, such that the limitation does not apply in this context.

With the combined use of TreeNet and ASA, new variables and interactions, both low-
and high-order, are generated. These new generated variables and interactions, combined
with the original variables, are all considered in determining the optimal multinomial logit
model, which is the last step in the framework proposed herein. We illustrate the proposed
model-building framework through a thyroid dataset, and on this basis, we prove that
our method significantly outperforms the existing options by improving the model fit.
On this basis, we demonstrate that multinomial logit modeling achieves a new level of
performance in terms of predictive accuracy.

This paper is organized as follows: Section 2 presents a review of the techniques.
Section 3 comprises a detailed description of the framework and the proposed method.
Section 4 presents an application of our framework to a real dataset. Section 5 offers a
discussion and concluding remarks.

2. Generating Variables and Interactions with TreeNet and Association Rules Analysis
for the Multinomial Logit Model

The multinomial logit model is a fundamental statistical model used to explore re-
lationships between and among variables and to predict the classes of multiple-level re-
sponses. In this study, we focus on the multi-category response without orders or nominal
data. For this type of response, we use the baseline-category logit model, which combines
the separate binary logit model for each pair of response categories [7,8]. Response (Y) has
J categories, and J, the last level, is the base level. Therefore, let pj = P(Y = j|x) denote
the probability in class j for response Y at a fixed setting of x and let the summation for
all categories of the response equal 1, i.e., ∑j pj = 1. Thus, the logit model pairs each
response with a baseline category, which is often the last or the most common category.
The following model describes the effects of x on these J − 1 logits:

log
pj

pJ
= αj + β′jx, j = 1, . . . J − 1,

where αj is an intercept and β j are coefficients of the predictors x.
The multinomial logit model is based on the assumption of a linear relationship

between the logit (left-hand side of the equation) and each of the quantitative variables
(right-hand side of the equation). However, it is usual for some of the quantitative variables
to have a non-linear relationship with the logit across the entire range of their values. That
is, any given quantitative variable may include a combination of linear functions and
step functions. Accordingly, partitioning the variable into categories with the appropriate
function for each category should be helpful in fitting the model. With this in mind,
we have found TreeNet to be a very effective method for partitioning and transforming
variables, as we will demonstrate.
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2.1. TreeNet

A data mining method developed from the classification tree and the regression
tree (CART), TreeNet can be used with either a quantitative or a categorical response [6].
TreeNet begins with a small tree, and then a second tree is grown to predict the residuals
from the first tree. Next, a third tree is grown to predict the residuals from the combination
of the first two trees. Additional trees are then grown to predict the residuals from the
combination of the previous trees. This process is repeated until a given number of trees
have been developed.

A TreeNet model can consist of hundreds or thousands of trees. However, the sum-
mary of TreeNet is shown directly via two plots—the variable importance plot and the
partial dependency plot—both of which greatly facilitate the procedure we propose. The
variable importance plot provides the score that each variable contributes to predicting the
response. This is the relative importance score, which rescales the raw variable importance
score so that the most important variable always receives a score of 100 [6]. The raw
variable importance score is computed as the cumulative sum of the improvements of all
the splits associated with a given variable across all trees up to a specific model size. This
plot is useful for analysis because it shows which variables have scores above zero, i.e., the
variables we need to focus on in the model.

The partial dependency plot shows the relationship between each variable, and the
logit after the effects of the other variables is accounted for. This plot is constructed by
fixing the values of the other variables at the joint set while finding the dependency curve
of the variable of interest over its range with the logit. The process is then repeated with
different joint sets of values for each of the other variables in order to find the other curves.
The values of all these curves are averaged and centered to obtain the partial dependency
plot for the given variable of interest [6]. Note that a partial dependency plot will be cre-
ated only for variables with scores higher than zero. With these dependency plots, we
can partition each quantitative variable into categories based on the respective function of
the relationship of each variable with the logit. For this study, we applied TreeNet models
(https://www.minitab.com/en-us/products/spm/tree-net/, accessed on 18 February 2020).

A number of discretization methods are used in data mining [9], including (i) equal
width discretization (EWD) [10,11], which divides the range of the quantitative variable into
intervals with equal width for each interval; (ii) equal frequency discretization (EFD) [10,11],
which divides the range of the quantitative variable into intervals with an equal or approxi-
mately equal number of observations; (iii) fuzzy discretization (FD) [12,13], which is based
on the idea that the impact of the value to the probabilities depends on its variation; (iv)
entropy minimization discretization (EMD) [14], which uses entropy as the criterion to find
the splitting values; (v) iterative discretization (ID) [15], which forms a set of intervals using
a basic discretization method such as EWD and then adjusts the intervals to maximize
classification accuracy; (vi) proportional k-interval discretization (PKID) [16], which is
developed from the idea that discretization bias and variance depend on interval size and
interval number; (vii) lazy discretization (LD) [9,17], which determines the splitting value
when the test instance is presented; (viii) non-disjoint discretization (NDD) [18], which is
based on the idea that intervals with quantitative variable values closer to the midpoint
will give better probability estimation than will intervals with quantitative variable values
closer to the boundary; (ix) weighted proportional k-interval discretization (WPKID) [19],
which is similar to PHID but assigns more weight to discretization variance reduction than
to bias reduction.

However, we selected TreeNet as the discretization method because it is the only
technique that provides the function of each interval of the predictors in relation to the
logit via the partial dependency plot. Using this plot, we can attach the function, e.g., the
linear function, appropriately to each interval.

https://www.minitab.com/en-us/products/spm/tree-net/
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2.2. Association Rules Analysis (ASA)

In model building, accounting for interactions is always important in improving the
quality of a model. Yet, in the multiple logit model, interactions have been put to only
limited use in building models. In particular, interactions between categorical variables
are typically excluded from classical multinomial logit models [5,8,20]. However, in the
present study, we find that interaction effects are the key to improving the model fit for the
multinomial logit model. Furthermore, using ASA, we find an effective way to identify
potential interactions (both low- and high-order) for this kind of model.

ASA is a well-known methodology used to analyze the relationships among items in
terms of rules. Similarly, it can be applied to find relationships among variables, and CRM,
a specific kind of ASA technique, can be used for classification purposes. For example,
assume that we have k binary predictors, X1, X2, X3, . . . , Xk, and a binary response, Y.
Each variable has two levels denoted by 0 and 1. Many rules can be generated. As an
example, the first rule could be “If X1 = 1, X2 = 0, then Y = 1” and the second rule could be
“If X1 = 0, X2 = 1, X3 = 1, then Y = 1”.

From the many rules generated, two measurements are used to select a set of rules to
serve as a classifier for the dataset. These two measurements are support (s) and confidence
(c) [5,7,21]. Support (s) is the probability of the left-hand side item(s) and the right-hand
side item. From the given example, support (s) for the first rule is equal to P (X1 = 1, X2 = 0
and Y = 1), and support (s) for the second rule is equal to P (X1 = 0, X2 = 1, X3 = 1 and
Y = 1). The second measurement is confidence (c), which is the probability of the left-hand
side item(s) and the right-hand side item(s) divided by the probability of the left-hand side
item(s). From the example, confidence (c) for the first rule is equal to P (X1 = 1, X2 = 0, and
Y = 1)/P (X1 = 1 and X2 = 0) and confidence (c) for the second rule is equal to P (X1 = 0,
X2 = 1, X3 = 1, and Y = 1)/P (X1 = 0, X2 = 1, X3 = 1). Similar to ASA, CRM finds all the rules
that meet two key thresholds: minimum support and minimum confidence [22]. These
selected rules will be used to form a classifier [23,24].

3. Proposed Method

The proposed framework for building a multinomial logit model consists of five
key steps:

Step 1: Utilize TreeNet to discretize each quantitative explanatory variable into cate-
gories and transform these categories into new variables.

Step 2: Utilize CRM, a subset of ASA, to generate rules from all the categorical
variables, i.e., the new categorical variables generated in step 1 and the original categori-
cal variables.

Step 3: Select the rules based on the rules selection criterion.
Step 4: Generate the interactions for each rule selected in step 3.
Step 5: Search for the optimal multinomial logit model based on the variables gener-

ated in step 1, the interactions generated in step 4, and the original variables.

Step 1: Discretization
In step 1, we discretize the quantitative variables into categories using TreeNet for

two purposes: (i) to create new variables with the potential to provide a better fit than the
original variables do and (ii) to use the new variables to develop interactions using CRM,
as this method works only with categorical variables. TreeNet is used to provide partial
dependency plots, which we then use to assign the quantitative variables to categories.

For a response with J classes, referred to as 1, 2, . . . , J, where J is the base class, we
fit J − 1 TreeNet classification models. We fit each model for the response with only two
classes: class j, where j = 1, 2, J − 1, and class J, which is the base class. Therefore, we
extract the data from each of the two classes from the original dataset to fit each model.
After fitting each model, we observe the dependency plot of each quantitative variable.
For each plot, we take the original variables and categorize their parts according to their
respective functions with the logit. Next, we convert these categories into binary variables.
If a part of a quantitative variable has a linear relationship with the logit, an additional
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variable is generated by attaching the linear function to that part. We provide an example
via an application in the next section.

Step 2: Rules Generation
In step 2, we use CRM to create rules from datasets. The candidate variables for

generating the rules are (i) all the original categorical variables and (ii) all the newly
generated binary variables from step 1. In this step, we use the CBA program developed by
the Department of Information Systems and Computer Sciences at the National University
of Singapore [23] to perform CRM. We generally set the minimum support to 10% and
the minimum confidence to 80% [7]. However, the values can be modified based on the
characteristics of the dataset, as we will demonstrate via the application in the next section.
All the rules with support (s) and confidence (c) that satisfy the minimum support and
minimum confidence are referred to as active rules and constitute the input for step 3.
Note that all the rules are in the form of “If Xi’s = xi’s, then Y = y,” where xi is the level of
predictor Xi and y the level of response Y.

Step 3: Rules Selection
In step 3, we select the rules to convert into interaction variables for use in step 4. In our

previous work [5,7,25], we recommend selecting the rules with the highest confidence from
among all the rules obtained in step 2. Between 30 and 50 rules are selected. The number
of rules can be higher for a dataset with a very high number of predictors. However, our
empirical studies show that rules selected as classifier rules via CBA [23] can be used. Note
that classifier rules are selected rules that form a classifier for the dataset. Furthermore,
these rules from CBA yield a result that is comparable to the result for the rule selection
criterion we recommend selecting. The number of classifier rules is always less than 50;
therefore, we can simplify the rule-selection process by selecting all the classifier rules.
Note that classifier rules can always be found even when software other than CBA is used.
We refer to the rules selected at this stage as potential rules.

Step 4: Variable Generation
In this step, the interactions are generated from the potential rules in step 3. Assume

that one of the potential rules is in this form: “If Xi = xi, Xj = xj, and Xk = xk, then Y = y”.
The interaction between the predictors Xi, Xj, and Xk from this rule is generated by setting
this interaction as 1 if Xi = xi, Xj = xj, and Xk = xk, and as 0 otherwise. This interaction is
denoted by Xi(xi)Xj(xj)Xk(xk). For example, for the rule “If X1 = 1, X2 = 1, and X3 = 1, then
Y = 1”, we create an interaction between X1, X2, and X3 denoted by X1(1)X2(1)X3(1). In
this case, X1(1)X2(1)X3(1) = 1, if X1 = 1, X2 = 1, and X3 = 1, and 0 otherwise. Note that the
level of Y in each rule does not have any role in generating the interactions.

Step 5: Model Selection
In step 5, any model selection criterion and any model-building method can be used.

Here, the stepwise regression and Bayesian information criterion (BIC) are used for the
purpose of illustration [26].

4. Illustrated Example: Thyroid Dataset

We will use the thyroid dataset retrieved from UCI machine learning (https://archive.
ics.uci.edu/ml/datasets/Thyroid+Disease, accessed on 28 May 2020) to demonstrate our
method. We selected this dataset because it is large and practical [27] and because of these
qualities it has been used to demonstrate numerous classification methods [27–29]. The
dataset provides information on the thyroid function of 3488 patients: 3204 (92.47%) with
normal function, 93 (2.47%) with hypo-function, and 191 (5.06%) with hyper-function [30].
There are 21 predictors in the dataset. The objective of this analysis is to classify the patients
as normal (class 0), hypo-function (class 1), or hyper-function (class 2), and to explain the
relationships between the predictor and the probability of a patient belonging to each of
the three classes. As the normal class accounts for more than 92% of the patients, for a
classifier to be useful it must classify the patients into the correct class at a rate significantly

https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease
https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease
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above this percentage [27]. The 21 predictors are listed together with some descriptive
details in Table 1.

Table 1. Predictors for the thyroid dataset.

Attribute Description Variable

Age Age in years X1
Sex Gender X2 = 1 if male and X2 = 0 if female

On Thyroxine Patient on Thyroxine X3 = 1 if yes and X3 = 0 if no
Query Thyroxine Maybe on Thyroxine X4 = 1 if yes and X4 = 0 if no

On antithyroid On antithyroid medication X5 = 1 if yes and X5 = 0 if no
Sick Patient reports malaise X6 = 1 if yes and X6 = 0 if no

Pregnant Patient pregnant X7 = 1 if yes and X7 = 0 if no
Thyroid surgery History of thyroid surgery X8 = 1 if yes and X8 = 0 if no
I131 treatment Patient on I131 treatment X9 = 1 if yes and X9 = 0 if no

Query hypothyroid Maybe hypothyroid X10 = 1 if yes and X10 = 0 if no
Query hyperthyroid Maybe hyperthyroid X11 = 1 if yes and X11 = 0 if no

Lithium Patient on lithium X12 = 1 if yes and X12 = 0 if no
Goiter Patient has goiter X13 = 1 if yes and X13 = 0 if no
Tumor Patient has tumor X14 = 1 if yes and X14 = 0 if no

Hypopituitary Patient hypopituitary X15 = 1 if yes and X15 = 0 if no
Psych Psychological symptoms X16 = 1 if yes and X16 = 0 if no

Thyroid Stimulating Hormone (TSH) TSH value, if measured X17
Triiodothyronine (T3) T3 value, if measured X18
Total Thyroxine (TT4) TT4 value, if measured X19

Thyroxine Uptake (T4U) T4U value, if measured X20
Free Thyroxine Index (FTI) FTI—calculated from TT4 and T4U X21

For this dataset, there are 15 categorical predictors (X2–X16) and six quantitative
predictors (X1, X17–X21).

Step 1: Discretize the quantitative variables into categories using TreeNet. As there are
three classes, we fit two TreeNet models. For Model 1, the response comprises two classes:
class 0 (base level) and class 1. For Model 2, the response comprises two classes: class 0
(base level) and class 2. For each model, we fit the response by all 21 original variables
(X1–X21). The variable importance plot of Model 1 is shown in Table 2.

Table 2. Variable importance plot for Model 1.

Variable Score
X17 100.00 ||||||||||||||||||||||||||||||||||||||||||
X21 63.88 ||||||||||||||||||||||||||
X8 25.08 ||||||||||
X3 17.38 ||||||

X19 12.16 ||||
X18 6.67 ||
X20 6.56 ||
X2 6.42 ||
X1 3.11

X10 2.71
X9 2.00

X11 1.93

4.1. Results from Model 1

From Table 2, the most important predictor contributing to predicting the response is
TSH (X17), with a score of 100. The second most important predictor is FTI (X21), with a
score of 63.88. We can observe that all six quantitative variables contribute to predicting
the response, as each quantitative variable has a score higher than zero. The dependency
plots of all the quantitative variables are shown in Figures 1–6: the vertical axis represents
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a 0.5[log(p1/p0)], where p1 is the probability that the variable is in class 1 and where p0 is
the probability that the variable is in class 0. For simplicity, we refer to 0.5[log(p1/p0)] as
the logit or log-odds. The interpretation from TreeNet is based on comparing the relative
values of the log-odds; i.e., the higher the value of the log odds, the higher the probability
that a variable is in class 1.
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Figure 5. Partial dependence plot of T4U (X20).
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Figure 6. Partial dependence plot of age (X1).

From the partial dependency plot, we take each quantitative variable and assign each
of its parts to categories according to their respective functions to the logit. After the
original variables are divided into parts, new variables are generated as binary variables
(Table 3). Please note that TreeNet by Salford Systems includes a feature that shows which
values of the predictors constitute the separating points.
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Figure 1 shows the partial dependency plot, which indicates the relationship between
TSH (X17) and the log-odds from Model 1. From this plot, we can separate X17 into two
levels given that the log-odds value shifts to a different level when X17 = 0.025, i.e., the
splitting value is 0.025. The two binary variables, X17L1 and X17L2, are generated as
shown in Table 3.

Figure 2 shows the partial dependency plot, which indicates the relationship between
FTI (X21) and the log-odds from Model 1. From this plot, we can separate X21 into three
levels given that the log-odds value stays constant and then shows a downward slope
when X21 = 0.055. The downward slope stops when X21 = 0.07, and there is no change in
the log-odds after this value. Therefore, this predictor is separated into three levels with
two splitting values, 0.055 and 0.07. The three binary variables, X21L1, X21L2, and X21L3,
are generated as shown in Table 3.

Figure 3 shows the partial dependency plot, which indicates the relationship between
TT4 (X19) and the log-odds from Model 1. From this plot, we can separate X19 into three
levels given that the log-odds value stays constant and then shows a downward slope
when X19 = 0.042. The downward slope stops when X19 = 0.065, and there is no change in
the log-odds after this value. Therefore, this predictor is separated into three levels with
two splitting values, 0.042 and 0.065. The three binary variables, X19L1, X19L2, and X19L3,
are generated as shown in Table 3.

Figure 4 shows the partial dependency plot, which indicates the relationship between
T3 (X18) and the log-odds from Model 1. From this plot, we can separate X18 into two
levels given that the log-odds value drops to a different level when X18 = 0.006, i.e., the
splitting value is 0.006. The two binary variables, X18L1 and X18L2, are generated as
shown in Table 3.

Figure 5 shows the partial dependency plot, which indicates the relationship between
T4U (X20) and the log-odds from Model 1. From this plot, we can separate X20 into two
levels given that the log-odds value drops to a different level when X20 = 0.097, i.e., the
splitting value is 0.097. The two binary variables, X20L1 and X20L2, are generated as
shown in Table 3.

Figure 6 shows the partial dependency plot, which indicates the relationship between
age (X1) and the log-odds from Model 1. From this plot, we can separate X1 into two levels
given that the log-odds value drops to a different level when X1 = 0.15, i.e., the splitting
value is 0.15. The two binary variables, X1L1 and X1L2, are generated as shown in Table 3.

Table 3. Generated binary variables.

Original Variables Generated Binary Variables

TSH (X17)
X17L1 = 1 if X17 < 0.025 and X17L1 = 0 otherwise
X17L2 = 1 if 0.025 ≤ X17 and X17L2 = 0 otherwise

FTI (X21)
X21L1 = 1 if X21 < 0.055 and X21L1 = 0 otherwise

X21L2 = 1 if 0.055 ≤ X21 < 0.07 and X21L2 = 0 otherwise
X21L3 = 1 if 0.07 ≤ X21 and X21L3 = 0 otherwise

TT4 (X19)
X19L1 = 1 if X19 < 0.042 and X19L1 = 0 otherwise

X19L2 = 1 if 0.042 ≤ X19 < 0.065 and X19L2 = 0 otherwise
X19L3 = 1 if 0.065 ≤ X19 and X19L3 = 0 otherwise

T3 (X18)
X18L1 = 1 if X18 < 0.006 and X18L1 = 0 otherwise
X18L2 = 1 if 0.006 ≤ X18 and X18L2 = 0 otherwise

T4U (X20)
X20L1 = 1 if X20 < 0.097 and X20L1 = 0 otherwise
X20L2 = 1 if 0.097 ≤ X20 and X20L2 = 0 otherwise

Age (X1) X1L1 = 1 if X1 < 0.15 and X1L1 = 0 otherwise
X1L2 = 1 if 0.15 ≤ X1 and X1L2 = 0 otherwise

The second categories of X21 and X19 show a linear trend. Therefore, there are two
more variables to generate for these two categories (Table 4).
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Table 4. Generated variables with linear trend.

Original Variables Generated Variables with Linear Trend

FT1 (X21) X21Q2 = X21 if 0.055 ≤ X21 < 0.07 and X21Q2 = 0 otherwise
TT4 (X19) X19Q2 = X19 if 0.042 ≤ X19 < 0.065 and X19Q2 = 0 otherwise

4.2. Results from Model 2

The variable importance plot for Model 2 is shown in Table 5.

Table 5. Variable importance plot for Model 2.

Variable Score
X17 100.00 ||||||||||||||||||||||||||||||||||||||||||
X3 44.88 ||||||||||||||||||
X8 25.20 ||||||||||
X19 22.47 |||||||||
X18 17.51 |||||||
X21 10.87 ||||
X20 8.04 ||
X1 6.68 ||
X10 5.15 |
X5 4.21 |
X12 4.02 |
X11 3.20
X2 0.84

From Table 5, the most important predictor that contributes to predicting the response
is TSH (X17), with a score of 100. The second most important predictor is thyroxine (X3),
with a score of 44.88. We can observe that all six quantitative variables contribute to
predicting the response, as each quantitative variable has a score higher than zero. The
dependency plots of all the quantitative variables are shown in Figures 7–12: the vertical
axis represents a 0.5[log(p2/p0)], where p2 is the probability that a variable is in class 2 and
where p0 is the probability that a variable is in class 0. The higher the value of the log-odds,
the higher the probability that a variable belongs in class 2.
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Figure 8. Partial dependence plot of TT4 (X19).
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Figure 9. Partial dependence plot of T3 (X18).
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Figure 10. Partial dependence plot of FTI (X21).



Symmetry 2021, 13, 287 12 of 18
Symmetry 2021, 13, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 11. Partial dependence plot of T4U (X20). 

 
Figure 12. Partial dependence plot of age (X1). 

From Figures 7–12, we take each quantitative variable and assign their parts to cate-
gories according to the respective function of each to the logit. Next, the new variables are 
generated as binary variables (Table 6). Please note that TreeNet by Salford Systems in-
cludes a feature that shows which values of the predictors constitute the separating points.  

Figure 7 shows the partial dependency plot, which indicates the relationship between 
TSH (X17) and the log-odds from Model 2. From this plot, we can separate X17 into two 
levels given that the log-odds value shifts to a different level when X17 = 0.006, i.e., the 
splitting value is 0.006. The two binary variables, X17LL1 and X17LL2, are generated as 
shown in Table 6.  

Figure 8 shows the partial dependency plot, which indicates the relationship between 
TT4 (X19) and the log-odds from Model 2. From this plot, we can separate X19 into four 
levels given that the log-odds value shifts to the different level when X19 = 0.065. Then, 
the value shows a downward slope when X21 = 0.145. The downward slope stops when 
X19 = 0.161, and there is no change in the log-odds after this value. Therefore, this predic-
tor is separated into four levels with three splitting values: 0.065, 0.145, and 0.161. The 
four binary variables, X19LL1, X19LL2, X19LL3, and X19LL4, are generated as shown in 
Table 6.  

Figure 9 shows the partial dependency plot, which indicates the relationship between 
T3 (X18) and the log-odds from Model 2. From this plot, we can separate X18 into three 

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

O
ut

pu
t

X20

One Predictor Dependence For Y

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ut

pu
t

X1

One Predictor Dependence For Y

Figure 11. Partial dependence plot of T4U (X20).
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Figure 12. Partial dependence plot of age (X1).

From Figures 7–12, we take each quantitative variable and assign their parts to cat-
egories according to the respective function of each to the logit. Next, the new variables
are generated as binary variables (Table 6). Please note that TreeNet by Salford Systems in-
cludes a feature that shows which values of the predictors constitute the separating points.

Figure 7 shows the partial dependency plot, which indicates the relationship between
TSH (X17) and the log-odds from Model 2. From this plot, we can separate X17 into two
levels given that the log-odds value shifts to a different level when X17 = 0.006, i.e., the
splitting value is 0.006. The two binary variables, X17LL1 and X17LL2, are generated as
shown in Table 6.

Figure 8 shows the partial dependency plot, which indicates the relationship between
TT4 (X19) and the log-odds from Model 2. From this plot, we can separate X19 into four
levels given that the log-odds value shifts to the different level when X19 = 0.065. Then,
the value shows a downward slope when X21 = 0.145. The downward slope stops when
X19 = 0.161, and there is no change in the log-odds after this value. Therefore, this predictor
is separated into four levels with three splitting values: 0.065, 0.145, and 0.161. The four
binary variables, X19LL1, X19LL2, X19LL3, and X19LL4, are generated as shown in Table 6.

Figure 9 shows the partial dependency plot, which indicates the relationship between
T3 (X18) and the log-odds from Model 2. From this plot, we can separate X18 into three
levels given that it shows a downward slope when X18 = 0.02. The downward slope stops
when X18 = 0.045, and there is no change in the log-odds after this value. Therefore, this
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predictor is separated into three levels with two splitting values, 0.02 and 0.045. The three
binary variables, X18LL1, X18LL2, and X18LL3, are generated as shown in Table 6.

Figure 10 shows the partial dependency plot, which indicates the relationship between
FTI (X21) and the log-odds from Model 2. From this plot, we can separate X21 into five
levels given that it shows an upward slope when X21 = 0.057. The upward slope stops
when X21 = 0.071, and the log-odds value stays constant until X21 = 0.115. Then, the plot
shows a downward slope until X21 = 0.217. There is no change in the log-odds after this
value. Therefore, this predictor is separated into five levels with four splitting values: 0.057,
0.071, 0.115, and 0.217. The five binary variables, X21LL1, X21LL2, X21LL3, X21LL4, and
X21LL5, are generated as shown in Table 6.

Figure 11 shows the partial dependency plot, which indicates the relationship between
T4U (X20) and the log-odds from Model 2. From this plot, we can separate X20 into three
levels given that the log-odds value shifts to a different level twice when X20 = 0.07 and
when X20 = 0.15, i.e., the splitting values are 0.07 and 0.15. The three binary variables,
X20LL1, X20LL2, and X20LL3, are generated as shown in Table 6.

Figure 12 shows the partial dependency plot, which indicates the relationship between
age (X1) and log-odds from Model 2. From this plot, there is a downward slope when
X1 = 0.75. The downward slope stops when X1 = 0.85, and there is no change in the
log-odds after this value. Therefore, this predictor is separated into three levels with two
splitting values: 0.75 and 0.85. The three binary variables, X1LL1, X1LL2, and X1LL3, are
generated as shown in Table 6.

Table 6. Generated binary variables.

Original Variables Generated Binary Variables

TSH (X17)
X17LL1 = 1 if X17 < 0.006 and X17LL1 = 0 otherwise
X17LL2 = 1 if 0.006 ≤ X17 and X17LL2 = 0 otherwise

FTI (X21)

X21LL1 = 1 if X21 < 0.057 and X21LL1 = 0 otherwise
X21LL2 = 1 if 0.057 ≤ X21 < 0.071 and X21LL2 = 0 otherwise
X21LL3 = 1 if 0.071 ≤ X21 < 0.115 and X21LL3 = 0 otherwise
X21LL4 = 1 if 0.115 ≤ X21 < 0.217 and X21LL4 = 0 otherwise

X21LL5 = 1 if 0.217 ≤ X21 and X21LL5 = 0 otherwise

TT4 (X19)

X19LL1 = 1 if X19 < 0.065 and X19LL1 = 0 otherwise
X19LL2 = 1 if 0.065 ≤ X19 < 0.145 and X19LL2 = 0 otherwise
X19LL3 = 1 if 0.145 ≤ X19 < 0.161 and X19LL3 = 0 otherwise

X19LL4 = 1 if 0.161 ≤ X19 and X19LL4 = 0 otherwise

T3 (X18)
X18LL1 = 1 if X18 < 0.02 and X18LL1 = 0 otherwise

X18LL2 = 1 if 0.02 ≤ X18 < 0.045 and X18LL2 = 0 otherwise
X18LL3 = 1 if 0.045 ≤ X18 and X18LL3 = 0 otherwise

T4U (X20)
X20LL1 = 1 if X20 < 0.07 and X20LL1 = 0 otherwise

X20LL2 = 1 if 0.07 ≤ X20 < 0.15 and X20LL2 = 0 otherwise
X20LL3 = 1 if 0.15 ≤ X20 and X20LL3 = 0 otherwise

Age (X1)
X1LL1 = 1 if X1 < 0.75 and X1LL1 = 0 otherwise

X1LL2 = 1 if 0.75 ≤ X1< 0.85 and X1LL2 = 0 otherwise
X1LL3 = 1 if 0.85 ≤ X1 and X1LL3 = 0 otherwise

Note that the second and fourth categories of X4, the third category of X19, the second
category of X18, and the second category of X1 all show a linear trend. Therefore, there are
five more variables to generate for these five categories (Table 7).
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Table 7. Generated variables with linear trend.

Original Variables Generated Variables with Linear Trend

FT1 (X21)
X21QQ2 = X21 if 0.057 ≤ X21 < 0.071 and X21QQ2 = 0 otherwise
X21QQ4 = X21 if 0.115 ≤ X21 < 0.217 and X21QQ4 = 0 otherwise

TT4 (X19) X19QQ3 = X19 if 0.145 ≤ X19 < 0.161 and X19QQ3 = 0 otherwise

T3 (X18) X18QQ2 = X18 if 0.02 ≤ X18 < 0.045 and X18QQ2 = 0 otherwise

Age (X1) X1QQ2 = X1 if 0.75 ≤ X1< 0.85 and X1QQ2 = 0 otherwise

All the variables generated in this step, as shown in Tables 3, 4, 6 and 7, serve as the
input for building the multinomial model in the final step (step 5). However, only the
generated binary variables from Tables 3 and 6 are included in the input used to search for
interactions via ASA in step 2 since ASA can find rules from categorical variables only.

Step 2: Use CBA to obtain the active rules. In this step, the variables input into the
process are (i) the original categorical predictors (X2–X16) and (ii) the generated binary
variables from Tables 3 and 6. For this dataset, as the first class (hypo-function) accounts
for 2.47% of the dataset, it is necessary to lower the level of support to below 1% in order
to capture the rules for this class and set the minimum confidence at 80% to generate the
active rules. In total, 5808 rules are generated in this step.

Step 3: Select all the classifier rules from CBA. As a large number of rules are generated
in step 2, we take this approach to decrease the number of rules and thereby simplify the
process. In total, 26 classifier rules are generated, some examples of which are as follows:

• Rule 6: If X20L1 = 1, X18LL1 = 0, and X21LL4 = 1, then Y = 0 with s = 8.537%, c = 100%.
• Rule 8: If X11 = 0, X19LL3 = 1, and X18LL1 = 0, then Y = 0 with s = 3.075%, c = 100%.
• Rule 22: If X8 = 0, X17L1 = 0, and X19L3 = 0, then Y = 1 with s = 1.935%, c = 97.26%.
• Rule 26: If X3 = 0, X17LL1 = 0, and X19LL2 = 1, then Y = 2 with s = 5.276%, c = 88.945%.

Step 4: Convert the 26 classifier rules into variables. For example, Rule 6 is converted
into the new variable referred to as X20L1(1)X18LL1(0)X21LL4(1) and Rule 22 is converted
into the new variable referred to as X8(0)X17L1(0)X19L3(0). From 26 classifier rules, we
generate 26 interactions. However, two extra variables are generated from Rule 6 and Rule
8. From Model 2, the fourth category of X21 and the third category of X19 each generate
a variable, X21QQ4 and X19QQ3, respectively. For Rule 6, as X21LL4 = 1, we generate
another interaction, which involves X21QQ4, referred to as X20L1(1)X18LL1(0)X21QQ4. To
generate this new variable, we multiply the generated variable X21QQ4 with the dummy
variable:

X20L1(1)X18LL1(0) =
{

1 i f X20L1 = 1, X18LL1 = 0
0 otherwise

.

The extra variable from Rule 8 is generated similarly. In total, 28 interactions are
generated from the 26 classifier rules.

Step 5: In this illustration, we apply the backward stepwise method and use BIC to
select the multinomial logit model. The candidate variables comprise the original variables
(X1–X21), all the variables generated from TreeNet, and all 28 potential interactions from
step 4.

From the backward stepwise method, we obtain the following model, which yields
the best BIC at 233.41. We select this model to represent this dataset, which will be used
for classification. To be specific, we will use this model to compute the probability of each
patient being in a given class based on the values of the predictors applied. Then, we can
assign the most likely class to each patient.

ln(p1/p0) = 0.762− 5.403X3− 8.282X8− 543.554X21L3
−1324.328X17LL1 + 6.917X19LL2 + 6.813X18LL1
−101.362X21QQ2 + 4.490X8(0)X17L1(0)X19L3(0)
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ln(p2/p0) = −172.165− 943.270X3− 32.307X8 + 170.732X21L3
−2300.475X17LL1 + 3.687X19LL2 + 3.161X18LL1
+2685.092X21QQ2 + 0.142X8(0)X17L1(0)X19L3(0)

We can further establish the following facts based on the signs and values of the
coefficients. The interpretation for the variables generated in Step 2 will be compared to
the dependency plots from the TreeNet model, and the interaction generated from step 4
will be compared with the result from ASA:

(i) A patient who is on thyroxine and/or has had thyroid surgery has a higher proba-
bility of being in the normal class (Y = 0) than in any of the other classes.

(ii) A patient with an FTI value of 0.07 or higher has a greater probability of being in
the normal class (Y = 0) than in the hypo-function class (Y = 1). This result is consistent
with the result shown in Figure 2.

(iii) A patient with a TSH value below 0.006 has a greater probability of being in the
normal class (Y = 0) than in the hyper-function class (Y = 2). This result is consistent with
the result shown in Figure 7.

(iv) A patient with a TT4 value of between 0.065 and 0.145 or a T3 value below 0.02
has a greater probability of being in the hyper-function class (Y = 2) than in the normal
class (Y = 0). This result is consistent with the results shown in Figures 8 and 9.

(v) The higher the value of FTI in the range 0.057 to 0.071, the greater the probability
of a patient being in the hyper-function class (Y = 2) than in the normal class (Y = 0). This
result is consistent with the result shown in Figure 10.

(vi) A patient who has never had thyroid surgery and has a TT4 value below 0.065
and a TSH value of 0.025 or higher has a greater probability of being in the hypo-function
class (Y = 1) than in any of the other two classes. This result is consistent with Rule 22.

Our proposed model (Model 3) provides a useful interpretation. However, we will
also compare the performance of our model with that of the multinomial logit model
developed from different sets of input. As shown in Table 8 Model 1 is the selected multi-
nomial logit model when the candidate predictors comprise only the main effects (X1–X21),
whereas Model 2 is the selected multinomial logit model when the candidate predic-
tors comprise the main effects (X1–X21) and all the two-way interactions (X1X2–X20X21,
where XiXj = Xi. Xj). Note that all the models are found from stepwise regression using
BIC criterion.

Table 8. Model comparison.

Model Candidate Predictors BIC AIC
R2

(McFadden) Accuracy

Model 1 Main effects (X1–X21) 916.05 841.23 65.58% 97.03%

Model 2 Main effects (X1–X21)
All two-way interactions 561.56 449.32 82.59% 98.36%

Model 3
Main effects (X1–X21)

Generated variables from step 2
Generated interactions from step 4

233.41 121.17 96.41% 99.68%

4.3. Performance Comparison Using the Training Set

The comparison of the models is based on four criteria: BIC (Bayesian Information
Criterion), AIC (Akaike Information Criterion), R2 (McFadden), and accuracy. There are
21 candidate predictors for Model 1, 231 for Model 2, and 90 for Model 3. The comparison
shows that for all four criteria, the proposed model (Model 3) outperformed each of the
other two models. The misclassification error from our proposed model is only 0.32%, as
shown in Table 9.
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Table 9. Misclassification from Model 3.

Actual Class

0 1 2

Predict class
0 3479 2 1
1 3 91 0
2 6 0 190

4.4. Performance Comparison Using the Test Set

For the thyroid dataset, there is a test set comprising 3248 observations of 3178 patients
(92.71%) with normal thyroid function, 73 patients (2.13%) with hypo-function, and 177 pa-
tients (5.16%) with hyper-function. We applied the eight-variable model (Model 3) obtained
from the training set to find the misclassification error from the test set. The misclassification
error is only 27 cases out of 3428 cases or 0.79% and the accuracy level is 99.21%, as shown in
Table 10.

Table 10. Misclassification from Model 3 applied to the test set.

Actual Class

0 1 2

Predict class
0 3165 6 8
1 4 67 0
2 9 0 169

From Tables 9 and 10, the proposed method provides very strong predictive ability
for both the training set and the test set. We also applied Model 1 and Model 2 with the
test set, and the accuracy was 87.51% and 87.95%, respectively.

With this illustration, following our stated approach, we found the model comprising
the newly generated variables and the interaction using TreeNet and ASA, i.e., Model 3.
This model provides the best fit, very strong predictive ability, and a meaningful interpreta-
tion of thyroid disease. Without TreeNet and ASA, this model could not be found.

4.5. Performance Comparison with Other Methodologies

The thyroid dataset has been used for several classification methods, including back-
propagation speedup techniques [27], subspace search techniques [28], the local outlier
factor and k-nearest neighbors [29].

Schiffmann, Joost, and Werner [27] compared the performance outcomes of 15 back-
propagation algorithms for both the training set and test set of the thyroid dataset. Our
approach outperforms 14 of these 15 algorithms for both the training and the test sets. The
one exception, cascade correlation, has a better classification rate than our approach for the
training set but does not perform as well as our approach for the test set. Keller, Müller,
and Böhm [28] used the thyroid dataset to compare the performance of five classification
methods: the local outlier factor [30], high-contrast subspaces [29], entropy-based subspace
clustering [31], ranking interesting subspaces [32], and random subspaces [33]. Our ap-
proach outperforms each of these methods and also outperforms the k-nearest neighbors
method using average distance as provided by Aggarwal and Sathe [29].

5. Discussion and Conclusions

Our model-building framework advances the multinomial logit model by generating
variables and interactions as candidate predictors. We demonstrate that the integration of
three techniques—TreeNet, ASA, and the multinomial logit model—constitutes a powerful
and practical innovation for data analysis and also paves the way for additional innovative
strategies. We have shown via our application example that these newly generated vari-
ables and interactions make a significant contribution to improving the multinomial logit
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model. Our selected model from the thyroid dataset outperforms all of the 21 methods
previously applied to the test data.

As illustrated, the approach we propose not only provides superior classification, but
also provides a meaningful interpretation of the factors and combinations of factors for
thyroid disease. TreeNet eliminates the limitation of the quantitative variables in terms of
providing a good fit and generating interactions from ASA. Using the approach described
herein, we found that the newly generated variables and the interactions, which are the
key to improving the performance of the multinomial logit model, can be found only by
using our model-building framework.

Our framework can be applied to many fields to classify multi-level response. How-
ever, our focus is on the healthcare field and medical data. Given the consequences of
COVID-19, many research studies have been published based on different kinds of mod-
elling with a goal of predicting the prevalence and spread of the disease [34–38]. Our plan
in future work is to use our model framework to classify patients with COVID-19 according
to levels of severity as a basis for determining the kind of facility at which they should be
treated in order to optimize the use of scarce medical resources overall.
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