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Abstract: Helicopter tail rotors adopt a segmented driveline connected by flexible couplings, and dry
friction dampers to suppress resonance. Modeling for this system can provide a basic foundation
for parameter analysis. In this work, the lateral-torsional vibration equation of the shaft with
continuous internal damping is established. The static and dynamic effects caused by flexible
diaphragm couplings subject to parallel and angular misalignment is derived. A novel dual rub-
impact model between the shaft and dry friction damper with multiple stages is proposed. Finally,
a model of a helicopter tail rotor driveline incorporating all the above elements is formulated.
Numerical simulations are carried out by an improved Adams–Bashforth method following the
design flowchart. The dynamics of multiple vibration suppression, and the static and dynamic
misalignment are analyzed to illustrate the accuracy and characteristics of the model. The coeffect
of the rub impact and the misalignment on shafts and dampers are presented through the results
of simulation and experiment. It provides an accurate and comprehensive mathematical model for
the helicopter driveline. Response characteristics of multiple damping stages, static and dynamic
misalignment, and their interaction are revealed.

Keywords: segmented supercritical driveline; flexible coupling; misalignment; dry friction damper;
dual rub-impact

1. Introduction

Tail rotor drivelines with the flexible diaphragm couplings of a helicopter transmit
torque from the main gearbox to the tail rotor [1]. The driveline always adopts multiple
segments with hollow thin-walled tube structures. It is frequently imposed on supercritical
operating conditions [2,3]. When the shaft passes through the resonance region, excessive
vibration can be avoided by using a dry friction damper [4]. The parameter configuration
of the system needs a set of theoretical supports. The response characteristics of flexible
multi-shafts connected by flexible diaphragm couplings subject to the misalignment are
complicated and coupled with the unclear damping mechanism of dry friction dampers,
which leads to a lack of theoretical support and deep insights into the dynamic behaviors
of the system. The early stage of this damper design is mainly based on experience
without adequate theoretical support, which brings about a degree of subjectiveness in the
configuration of its parameters. Therefore, it is indispensable and crucial for this research
to establish an accurate analytical model for the system, which can be used as a foundation
for deep insights into dynamic behaviors.

Rotor dynamics play an important role in many engineering fields and have also
been studied in a large number of investigations [5,6]. Fault recognition associated with
complicated nonlinear vibrational behavior is a popular research topic in the literature [7–9].
With the development of artificial intelligence, machine learning and statistical framework
are also applied in rotor dynamics [10,11]. The rotor–stator system described in most
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research is based on a lumped mass model, which is inappropriate for a slender shaft.
For the case of slender systems, the finite element (FE) method is an available solution
that many researchers have employed [12,13]. Q Han et al. developed an FE model for a
shaft with a dual disk. The shaft was divided into Euler–Bernoulli beam elements with
the consideration of all transverse DOFs (degrees of freedom) and gyroscopic effects of
the discs for the rotor [14]. Hui Ma et al. established an FE model of the rotor system
characterized by the shaft being discretized by Timoshenko beam elements after omitting
the transnational and rotational DOFs [15]. M. A. addressed the FE modelling of a cracked
rotor system with a transverse open crack [16,17]. Obviously, the lumped mass model is
not suitable for multi-shafts with external components in the helicopter tail rotor driveline,
while the FE method requires that many matrix manipulations of the distribution of the
mass, flexibility, internal damping of the shaft, and movement of the ring are employed.
Therefore, this paper will explore a new approach to establish a model for the helicopter
tail rotor driveline that synthetically considers all kinds of factors.

The interaction between the shaft and the ring is similar to rub impact motion, which
is widely acknowledged as a type of failure or fault. Nevertheless, it exists as a method of
vibration reduction in dry friction dampers in this work. Even if rub impact is a classical
research field of rotor dynamics, more in-depth and targeted investigations considering
more factors in the rub-impact model combined with new research methods and ideas have
been conducted by scholars [18,19]. Chunli Hua et al. established a mathematical model of
the rotor-bearing system characterized by the nonlinear stiffness of a rubber bearing [20].
Lumiao Chen et al. developed a model between a rotating shell and stator, where the effects
of the geometrical parameters and deformation angular position are taken into account [21].
Wen-Ming Zhang et al. presented a rub-impact micro-rotor model considering nonlinear
scaling effects and friction coefficients due to adhesion forces in dry friction [22]. One can
recognize that those investigations concentrate on the characteristics or special points of
the model. However, to the best of the authors’ knowledge, no work has been reported
on the dual rub impact or dry friction damper with multiple stages. In this work, the
dual rub-impact model between the shaft and damper consisting of the first process with
variable DOFs and the second process with nonlinear stiffness is developed.

The impact stiffness directly affects the accuracy of the rub-impact model. The local
surface stiffness of the metal stator at the collision point is generally regarded as the impact
stiffness, while the remaining position is defined as the rigid body [23]. This stiffness is
directly presented with subjectivity in most of the literature, but the process of acquiring
it is critical to the accuracy of simulations. Only a few studies, for instance, by Guo Fa
Zhang et al., divide rub impact into three types to explain the calculation of the stiffness
between a metal stator and rotor [24]. Nonetheless, Chen, L et al. indicated that the
impact stiffness should take into account the flexible deformation of the rotor made of the
cylindrical shell [20]. Note that the stator flexibility should be employed in the impact
stiffness between the sleeve and the ring in this work, as shown the structure of a dry
friction damper in Figure 1. This is primarily because the stiffness of the ring made of
polymeric materials is much smaller than that of the metal sleeve, and the ring can produce
deformation once impacted with the sleeve. Efforts will be made to introduce how to
obtain this parameter from practical dry friction dampers in this work.

Coupling or universal joints are used to connect the shaft, which can compensate
for installation errors. The super harmonic nonlinear lateral vibration effect caused by
universal joints subject to misalignment was initially demonstrated by experiments [25,26].
The model and instability region of the universal joint has been presented and simulated,
showing the correlation with physical test results [27,28]. However, investigations on the
dynamic characteristics of flexible coupling are relatively limited. Some investigations
only analyze the dynamic characteristics caused by angle misalignment [29,30]. Some
have investigated the coupling effect of parallel misalignment and angular misalignment
of the connection of two rigid shafts [31,32]. In this work, the flexible coupling is used
to connect the flexible drive shaft, so in addition to the flexibility of the coupling, the
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flexible deformation of the shaft should be considered as a factor. In addition, there is no
vibration response analysis in the case of the coeffect of rub impact and misalignment in
the current literature.
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Figure 1. Structure of a dry friction damper.

This work provides a mathematical model for the parameter analysis of a segmented
supercritical driveline with flexible couplings and dry friction dampers in a helicopter.
Before the actual test of the helicopter driveline, the dynamic response obtained from
the simulation analysis of the model proposed can be used to evaluate the rationality of
parameter setting. The developed multi segment model also can be extended to segmented
driveline, such as the transmission chain of some vehicles. Dual rub impact model provides
a framework for some systems with rotor/nested stator.

This paper consists of six sections. After this introduction, the mathematical formulation
for a multi-slender shaft with viscous internal damping and flexible coupling is established
in Section 2. The damping features are introduced at the beginning of Section 3. The impact
stiffness involving the deformation of the ring and local surface stiffness is investigated in
Section 3.2.2. The rub impact model for multiple stages is developed in Section 3.2. Section 3.3
establishes equations of motion for the helicopter tail rotor driveline. Section 4 introduces the
computational algorithm and simulation results based on the improved Adams–Bashforth
method. The dynamic responses of rub impact and the misalignment effect of flexible
diaphragm coupling are presented in Sections 4.1 and 4.2. The coeffect of misalignment and
vibration suppression is investigated in Section 4.3. Experimental verification is conducted in
Section 5. Finally, conclusions are drawn in Section 6.

2. The Mathematical Formulation for Segmented Helicopter Driveline with
Flexible Coupling

Segmented helicopter driveline with flexible, intermediate, slender shafts, as given in
Figure 2. The torque N is transferred from the input side to the output side. The middle
reducer and tail inclined shaft are simplified as lumped inertia J. The shaft is rotating
about the X-axis relative to the inertia-fixed coordinate frame XYZ. XrYrZr is the rotating
coordinate frame with Xr coinciding with X, while Yr and Zr rotate about the Xr axis at the
same angular velocity as the shaft. u(x, t), v(x, t), w(x, t) are dynamic deflection in the X,
Y, and Z axial directions in the inertia-fixed coordinate system caused by the eccentricity
of the shaft and external load produces. us(x, t), vs(x, t), ws(x, t) are dynamic deflection in
the rotating coordinate system. The torque and inertia induce twist are ϕ1(x, t), ϕ2(x, t)
along X. The shafts are connected with flexible diaphragm couplings.
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Figure 2. Profile of segmented supercritical driveline with flexible diaphragm couplings and dry friction dampers.

2.1. Slender Flexible Shaft with Viscous Internal Damping

The following reasonable assumptions are made: Due to the axial displacement
limitation along the X-axis, u(x, t) = urt(x, t) = 0, u(x, t) = urt(x, t) = 0, are assumed. It
is assumed that the rotation angle at any position of the intermediate shaft and output
shaft are equal to that of the rotating coordinate since the inertia of the shaft is negligible
compared to the tail lumped inertia JL, and the speed variation caused by a misalignment
between the shafts is small, i.e., ϕ1(x, t) = ϕ2(x, t) = ϕr(t) = Ωt + φ(x, t). J and N can be
moved to both ends of two intermediate shafts. The sleeve or disc in the shaft moves with
the shaft segment, and its length is negligible relative to the shaft. According to the disk
kinetic energy presented in ref. [5], the vibration kinetic energy expression for a sleeve or
disc, or a short segment in the shaft, is

Th = 1
2 mh

[ .
v2
(x, t) +

.
w2

(x, t)
]∣∣∣

x=Lh
+ 1

2 ρ

[
Ihz

.
v′

2
(x, t) + Ihy

.
w′

2
(x, t)

]∣∣∣∣
x=Lh

+ 1
2 IhxΩ2 + 1

2 ρIhxΩ
[ .
v′(x, t)w′(x, t)− v′(x, t)

.
w′(x, t)

]∣∣∣
x=Lh

(1)

The lateral energy of the shaft can be obtained by integrating Equation (1) along with
the X-axis. In this case, Ihx = 2Ihz. Subscripts 1 and 2 are used to distinguish shaft 1 and
shaft 2 or damper 1 and damper 2. Taking shaft 1 as an example, considering the torsional
kinetic energy of shaft 1, the kinetic energy is obtained as follows

T1 =
1
2

∫ L1

0
[ρ1 A1(

.
v2
(x, t) +

.
w2

(x, t)) + ρ1 I1(
.
v′

2
(x, t) +

.
w′

2
(x, t) + 2ρ1 I1Ω(w′(x, t)

.
v′(x, t)− .

w′(x, t)v′(x, t))]dx (2)

where (·) and (′) denote differentiation concerning time and the X-axis, respectively.
Internal damping (rotating damping) and external damping (nonrotating damping) are
distinguished and introduced into this system. The dissipation energy and the strain
energy of the shaft in the rotating coordinate frame can be rewritten as:

Drt1 =
1
2

∫ L1

0

{
cviE1 I1

[
.

v′′
2
rc(x, t) +

.
w′′

2
rc(x, t)

]
+2Gφ I1

.
φ′1(x, t)

}
dx (3)

Vrt1 =
1
2

∫ L1

0

{
E1 I1

[
v′′ 2s (x, t) + w′′ 2s (x, t)

]
+ 2Gφ I1φ′1(x, t)

}
dx (4)

Deflections and velocities in rotating frame coordinates are related to those in the
inertia-fixed coordinate frame by[

vrt
wrt

]
=

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

][
v
w

][ .
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v
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Substituting Equation (5) into Equations (4) and (3), the dissipation and strain energy
of the shaft in inertia-fixed coordinate can be rewritten as

V1 =
1
2

∫ L1

0

{
E1 I1

[
v′′ 2(x, t) + w′′ 2(x, t)

]
+2Gφ I1φ′1(x, t)

}
dx (6)
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}
dx (7)
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where cvi is internal damping coming from the material of the shaft itself, and the
viscous damping model is adopted in this work. External damping refers to damping at
the bearing block, which absorbs the vibration of the shaft but does not rotate with the
shaft. The bearing block is modeled as discrete damping and spring in the Z-Y direction.
Thus, the bearing strain energy and dissipation function are written as

Vn1 =
1
2

Kn1

[
(v(Ln1, t)2 + w(Ln1, t)2

]
, Dn1 =

1
2

cn1

[ .
v(Ln1, t)2 +

.
w(Ln1, t)2

]
(8)

where Ln1, Kn1, cn1 are the axial location of the bearing block, equivalent spring stiffness,
and damping, respectively.

The eccentricity of the shaft and disc are decomposed in the Z-Y direction:

Fz(x, t) = e1(x)ρ1 A1Ω2 cos(Ωt), Fhz(Lh, t) = me1eh1Ω2 cos(Ωt)
Fy(x, t) = e1(x)ρ1 A1Ω2 sin(Ωt), Fhy(Lh, t) = me1eh1Ω2 sin(Ωt) (9)

where Lh1, me1, eh1 denote the location at the X-axis, eccentric mass, and eccentric distance
of the disc or sleeve, respectively. e1(x) is the eccentricity of the shaft along the X-axis.

2.2. Flexible Diaphragm Couplings Subject to Misalignment

Hexagon diaphragm coupling is used to connect two shafts and can compensate for
certain misalignments, as shown in Figures 3 and 4. O and O′ are the centers of half-band
coupling in shaft 1 and shaft 2, respectively. OOi is the initial parallel misalignment, and
OO′ is the parallel operating deviation. D, E and F are the fixing points of the three bolts in
the half-band coupling of shaft 1 and the diaphragm, and A, B and C are the fixing points of
the three bolts in the half-band coupling of shaft 2 and the diaphragm. Due to the parallel
deviation, A, B, C move parallel to A′, B′, C′. Rcp is the distance from the diaphragm center
to the bolt. ϕLcp is the rotation angle of bolt hole A as it spins around central point O′.
We have

q = OO′ =
√
(vcp + vst)

2 + (wc + wst)
2, β = ∠O′OX = arctan

vcp + vst

wcp + wst
(10)

where vc, wc are the dynamic parallel misalignment offsets and equal to the deflection dif-
ference of the two shafts along the Z and Y directions at couplings, i.e., vcp = v1(Lcp1, t)−
v2(Lcp2, t), wcp = w1(Lcp1, t) − w2(Lcp2, t), vst and wst are static parallel misalignment
offsets. ∠O′OA′ = π+ β− ϕ in the triangle ∆O′OA, and based on the cosine theorem,
we have

OA′ =
√

q2 + Rcp2 + 2qRc cos(β− ϕLcp) (11)
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Similarly, since ∠O′OB′ = π/3 + β− ϕ, then we have

OB′ =
√

q2 + Rcp2 − 2qRcp cos(
π

3
+ β− ϕLcp) (12)

∠O′OC′ = π/3 + ϕ− β, then one obtains

OC′ =
√

q2 + Rc2 − 2qRcp cos(
π

3
+ ϕLcp − β) (13)

The overall parallel misalignment amount along the Z and Y directions is obtained by
combining the misalignment of bolt holes A, B and C at the side of shaft 1.

ηpz = (OA′ − Rc) cos ϕLcp + (Rc −OB′) cos
(

ϕLcp +
2π
3
)
+ (Rcp −OC′) cos

(
ϕLcp +

4π
3

)
ηpy = (OA′ − Rc) sin ϕLcp + (Rc −OB′) sin

(
ϕLcp +

2π
3
)
+ (Rcp −OC′) sin

(
ϕLcp +

4π
3

) (14)

Because the parallel misalignment is small, it is considered that there is a linear
relationship between the misalignment force and the misalignment,

Fpy = Kpηpy
Fpz = Kpηpz

(15)

where Kp is the radial stiffness of the flexible coupling.
When solving the angular misalignment, the misalignment angle is projected to the

0YX plane. ϑZst is the static misalignment angle around Z, and ϑZcp is the dynamic
misalignment angle, i.e., the angle difference between the two shafts at the coupling,
ϑZcp = ϑZ1(Lcp1, t) − ϑZ2(Lcp2, t). The total angular misalignment is the sum of both,
ϑZ = ϑZst + ϑZcp. A′A is the stretched length of the diaphragm, and it changes with the
rotation of the shaft. When ∠AOA′ = ϑZ, the longest length is obtained according to the
cosine theorem,

AA′max = Rcp
√

2− 2 cos ϑz (16)

Hence, the angular misalignment is yielded by

AA′ = Rcp sin ϕLcp
√

2− 2 cos ϑz (17)
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Similarly, the misalignments of bolts B and C are acquired,

BB1 = Rc sin(ϕLcp +
2π
3 )
√

2− 2 cos ϑz
CC1 = Rc sin(ϕLcp +

4π
3 )
√

2− 2 cos ϑz
(18)

In practice, the angular deviation is small, and the relationship between the misalign-
ment force, deformation and distance is assumed to be linear,

FA = Ka AA′, FB = KaBB′, FC = KaCC′ (19)

where Ka is the angular stiffness of the flexible coupling. These forces are decomposed in
the radial direction to obtain

FZAR = DZ sin ϕLcp sin ϑZ, FZBR = DZ sin(ϕLcp +
2π
3
) sin ϑZ, FZCR = DZ sin(ϕLcp +

4π
3
) sin ϑZ (20)

where DZ = kaRcp
√

2− 2 cos ϑZ. Similarly, the angular misalignment around Y is
projected to the 0ZX plane, and ϑY = ϑYst + ϑYcp. ϑYst and ϑYcp are the static misalignment
and dynamic misalignment angle, respectively. Similarly, DY = KaRcp

√
2− 2 cos θY is

assumed, and one obtains

FYAR = DY cos ϕLcp sin ϑY, FYBR = DY cos(ϕLcp +
2π
3
) sin ϑY, FYCR = DY cos(ϕLcp +

4π
3
) sin ϑY (21)

where the radial force can be decomposed in the Y and Z directions for FZAR

FZAZ =
∣∣DZ sin(]ϕLcp) sin(ϑZ)

∣∣ cos(ϕLcp + π), FZAY =
∣∣DZ sin(ϕLcp) sin(ϑZ)

∣∣ sin(ϕLcp + π) (22)

Similarly, FZBR, FZCR, FYAR, FYBR, FYCR are decomposed in the Y and Z directions.
Combined forces are obtained after summing the forces at bolts A, B and C

FZZ = FZAZ + FZBZ + FZCZ = |DZ sin(ϕ) sin(ϑZ)| cos(ϕLcp + π)

+
∣∣DZ sin(ϕLcp +

2π
3 ) sin(ϑZ)

∣∣ cos(ϕLc + π + 2π
3 ) +

∣∣∣DZ sin(ϕLcp +
4π
3 ) sin(ϑZ)

∣∣∣ cos(ϕLcp + π+ 4π
3 )

FZY = FZAY + FZBY + FZCY = |DZ sin(ϕ) sin(ϑZ)| sin(ϕLcp + π)

+
∣∣DZ sin(ϕLcp +

2π
3 ) sin(ϑZ)

∣∣ sin(ϕLc + π + 2π
3 ) +

∣∣∣DZ sin(ϕLcp +
4π
3 ) sin(ϑZ)

∣∣∣ sin(ϕLcp + π+ 4π
3 )

FYZ = FYAZ + FYBZ + FYCZ = |DY cos(ϕ) sin(ϑY)| cos(ϕLcp + π)

+
∣∣DY cos(ϕLcp +

2π
3 ) sin(ϑY)

∣∣ cos(ϕLc + π + 2π
3 ) +

∣∣∣DY cos(ϕLcp +
4π
3 ) sin(ϑY)

∣∣∣ cos(ϕLcp + π+ 4π
3 )

FYY = FYAY + FYBY + FYCY = |DY cos(ϕ) sin(ϑY)| sin(ϕLcp + π)

+
∣∣DY cos(ϕ + 2π

3 ) sin(ϑY)
∣∣ sin(ϕLcp + π+ 2π

3 ) +
∣∣∣DY cos(ϕLcp +

4π
3 ) sin(ϑY)

∣∣∣ sin(ϕLcp + π+ 4π
3 )

(23)

3. Vibration Suppression of the Dry Friction Damper and Equations of Motion

The damping ring allows the shaft to pass through and has radial clearance with the
sleeve on the shaft. A cover plate is placed on it to confine the slide of the ring and transmit
the transverse force from the spring, as shown in Figure 1. Reasonable assumptions are
made as follows: the effect of the damper on the model of the shaft can be simplified as
the concentrated force. The magnitude and direction of the forces from the plate on two
bushings are the same. The torque around the X-axis from the tangential friction between
the sleeve and the ring is not enough to rotate the ring. All sliding friction conforms to
Coulomb’s law.

3.1. Multiple Stages

When the speed approaches resonance, the sleeve starts bouncing inside the damping
hole. For illustrative purposes, the vibration displacement of the shaft is assumed to be
upward, with the motion driving the sleeve to contact the inner surface of the damping
hole when the amplitude is greater than the gap. Then, the dry friction damper starts to
work. Cutting the damper along the datum of Figure 1, the vibration suppression process
is divided into three stages, as shown in Figure 5. The subscripts I, II and III are used to
represent the 1st, 2nd, and 3rd stage.
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Figure 5. Three damping stages of the damper (the diameters of the shaft and sleeve are exaggeratedly reduced). Detail:
The chamfer on the bushing is in contact with the fillet on the plate.

The first stage: The pre-tightening force FN0 of the spring is put on the plate to press
the ring on the base, bringing about downward static friction FIIst, which resists the upward
rub-impact force from the sleeve. The ring cannot move since the rub-impact force is less
than the maximum static friction FIIst,max.

The second stage: The ring begins to move once the rub-impact force exceeds FIIst,max,
which drives the bushing to move before the chamfer on the sleeve contacts the fillet on
the plate, i.e., |Qd| = δA. The ring is subject to sliding friction FII in this stage.

The third stage: The sleeve continues to move upwards with the ring, and the bush-
ing moves upwards against the fillet on the plate, which forces the plate outward and
compresses the springs to increase the spring force on the plate. The ring is no longer
subjected to sliding friction but the limiting force FIII from the plate. See the Appendix A
for more details.

In addition to these three stages, there are also some transition stages.

3.2. Dual Rub-Impact Model

The mutual motion between the sleeve in shaft 1 and the ring in damper 1 is shown
in Figure 6. To simplify, we define Qs = v(Ld1, t) + w(Ld1, t), Od = vd1 + wd1 for the
amplitude vector of the sleeve and ring. O, Oe, Oh, Od are the origin of the coordinates,
the eccentricity of the shaft at this point, the centroid of the sleeve after vibration, and the
centroid of the ring, respectively. Og, Ob are the centroid of the plate and bushing. In the
first stage, the normal impact force is in the direction of Qs. The rub impact between the
sleeve and the ring is similar to the traditional rotor-stator (static), as presented on the left
in Figure 6. Og coincides with Ob.

In the second and third stages, the ring is no longer static but moves from O to Od,
which brings about an increase in the DOFs of the system. The normal impact force is no
longer in the direction of Qs but in the direction of the vector difference between the sleeve
and the ring, i.e., Oj = Os −Od. The rub impact becomes a situation in which both the
shaft and the ring are moving. The bushing centre Og is moving to Ob, forming a vector Qg.
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on the sleeve impacts the fillet on the plate.

3.2.1. The First Rub-Impact with Variable DOFs

The first rub-impact refers to mutual motion between the ring and sleeve, which are
subject to the same magnitude of rub-impact force but in the opposite direction. Further-
more, the displacement of the shaft should be the superposition of each mode, while the
ring does not require this procedure since it is a single DOF. The magnitudes of the normal
impact force and tangential friction force are obtained by:

|FN | =
{

Kcn(|Qs| − δA) |FN| − FIISmax ≥ 0(1st)
Kcn(

∣∣Oj
∣∣− δA) |FN| − FIISmax < 0(2nd or 3rd)

|FT| = udh|FN|

Qs = Qsz + iQsy =
+∞
∑

r=1
Φr(x)Qv,r(t)

∣∣∣∣x=Lh + i
+∞
∑

r=1
Φr(x)Qw,r(t)|x=Lh

Qd = Qdv + iQdw
1st : |Fc| − FIISmax ≥ 0
2nd or 3rd : |Fc| − FIISmax < 0

(24)

where δA is the clearance between the sleeve and ring. The forces at each stage can be
unified as

Fcn = FN + FT = ΘIKcn(1 + iµdhsgn(vcn))
(

Oj − δA
Oj

|Qs−Qd|

)
vcn =

∣∣Oj
∣∣ωw + ΩRh

(25)

where ΘI is the Heaviside condition. vcn is the velocity of the sleeve at the contact point
of the damping ring. If the whirl direction of ωw is the same as the spin of the shaft, it
is a forward whirl; otherwise, it is a reverse whirl. Unlike the rotor-stator system, the
rub-impact force in this work cannot be directly applied to the right-hand side of the shaft
vibration equation; instead, it should be converted into the generalized force of each mode,
which is expressed as

Fcn,r =

L∫
0

Fcnγ(x− Lh)Φr(x)dx (26)

3.2.2. Radical Impact Stiffness of the First Rub Impact

The radical impact stiffness in the rub-impact model is an important criterion for de-
termining the accuracy of the mathematical simulation. The stiffness of the ring made from
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the polymerization of graphite, POB (Polybenzoate) and PTFE (Polytetrafluoroethylene) is
quite different from that of the metal stator and needs to be studied in depth.

1. Linearization of the local surface stiffness

The contact and deformation of the object surface are complicated nonlinear behaviors.
In light of ref. [22], using the equivalent linear spring force model with an appropriate
stiffness can simulate the effect of the nonlinear extrusion process. Thus, the stiffness
resisting impaction in the surface of the damping ring is like having springs on its surface,
where the linearized equivalent stiffness is treated as

Kex = ξ(
Md

Mr + Md

T0

ς6 )
1/5

(27)

where Mr, Md are the mass of the collider, i.e., the mass of the shaft and ring. T0 = Mrv2
0/2

is the initial kinetic energy of Mr. v0 is the velocity difference between the sleeve and the
ring before every impact, which fully illustrates that this stiffness changes with v0. ξ is the
conversion coefficient, ξ ≈ 1.0948. ς is related to the surface shape of two objects; in case of
an outer circle contacts the inner circle,

ς = 0.8 3

√√√√ 9
16

(
1− υ2

h
Eh

+
1− υ2

d
Ed

)2(
1

Rh
− 1

Rd

)
(28)

where Eh Ed υh υd Rh Rd are the elastic modulus, Poisson’s ratio and radius of the sleeve
and damping hole, respectively.

2. Impact stiffness of the damping ring

For the damping ring in this work, only considering the local surface elastic defor-
mation at the collision position and ignoring other positions of the ring is inconsistent
with the practical situation. The elasticity of the damping ring should also be investigated
since its deformation can also resist impact. This is the maximal difference between this
work and the traditional metal stator. The FEA method is adopted to analyze the elastic
deformation of the ring after impact. The force is applied on different points around the
hole from the sleeve. The deformation of the damping ring when the collision point is
at the top is displayed in Figure 7. The stiffness is acquired by dividing the force by the
displacement distance of the internal node away from the surface.
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Figure 7. The deformation of the dry friction damper when the collision point is at the top of the
damping ring obtained by the FEA method.

The FEA results show that the anti-deformation stiffness on the top of the ring is larger
than that on the bottom, for which the structure and supporting hole location of the ring
can be determined. The ring is divided into four parts, and the relationship of the stiffness
Kdeθ for each part based on the top part Kde with the collision angle θ is shown in Table 1.
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Table 1. Anti-deformation stiffness with collision angle θ.

θ 0 90 180 270

Kdeθ 1.9 1 1.95 4.6

The coeffect of the anti-deformation stiffness and local surface stiffness has been
assumed to be independent of each other and similar to the series connection of two
springs. Therefore, the impact stiffness in the rub impact model can be approximately
treated as

Kcn(θ) =
KdeθKex

Kdeθ + Kex
(29)

We found that the local surface stiffness is one order of magnitude larger than the
anti-deformation stiffness; hence, the anti-deformation stiffness is at the dominant position
in the form of Equation (29). Kdeθ can even denote Kcn after ignoring the existence of Kex
for engineering use, which is consistent with ref. [18], where only flexible deformation of a
cylindrical shell rotor is employed in the impact stiffness.

3.2.3. The Second Rub-Impact with Nonlinear Restricted Stiffness

If the norm of Qg is more than the vertical distance between the chamfer on the

bushing and the fillet on the plate, i.e.,
∣∣∣Qg

∣∣∣ > δB, it enters the third stage, as shown in
Figures 5 and 6. The second rub impact occurs between bushing and plate at point A, and
the red circle is centred at Og with a radius of length from A to Og.

FIII = FIII,N + FIII,T = KIII(1 + iµ3)(1−
δII∣∣∣Qg

∣∣∣ )Qg (30)

Given the previous assumption, the ring cannot rotate so FIIIT ≈ 0 and FIIIN ≈ FIIIT,
and FIII is related to the motion displacement of the ring. Since the bushing is moving with
the ring, Qg = Qd. KIII is the restricted stiffness derived from the restriction relationship of
each component in the dry friction damper, as shown in the Appendix A.

KIII =
2
[
FN0 + Ksp(|Qd| − δB) tan α

]
[(µ3 + µ4) cos α + (1− µ4µ3) sin α]

(|Qd| − δB)[(1− µ5µ3) cos α− (µ3 + µ5) sin α]
(31)

It is obvious that the stiffness which relates to the parameters of the system is nonlinear
and varies with angle α and vibration displacement Qd.

In summary, the innovative contributions of this section are described as: A novel
dual rub-impact model between the shaft and dry friction damper with multiple stages
is proposed. The first rub-impact characterized by variable DOFs and coupled impact
stiffness, as well as the second rub-impact with nonlinear stiffness are addressed.

3.3. Equations of Motion

In addition to the above forces, when the ring is impacted by the sleeve in the 1st
stage, the rub impact force is resisted by the static friction force,

FIISmax = Fpr(µ1 + µ2) (32)

where µ1, µ2 are static friction coefficients between the ring and plate and the ring and the
base, respectively. In the 2nd stage, the sliding friction force on the ring is opposite to its
moving direction and slightly less than the maximum static friction,

FII =
εFIISmaxQd
|Qd|

(33)
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To obtain the equations of motion, separated variables are constructed as follows:

Qs1(x, t) = Φ1(x)Q(t), Qs2(x, t) = Φ2(x)Q(t),
φ1(x, t) = Φφ1(x)Q(t), φ2(x, t) = Φφ2(x)Q(t),
e1(x) = Φ1(x)er1, e2(x) = Φ2(x)er2

(34)

where Qs1(x, t) = v1(x, t) + iw1(x, t) and Qs2(x, t) = v2(x, t) + iw2(x, t). The row vectors
of the modal function that satisfy the boundary conditions are as follows,

Φ1(x) =

[
sin πx

L1
sin 2πx

L1
· · · sin rπx

L1
}
r

0 0 0 · · · 0
}
r

0 0
]

Φ2(x) =

 0 0 · · · 0
}
r

0 sin π(x−L1)
L2

sin 2π(x−L1)
L2

· · · sin rπ(x−L1)
L2

}
r

0 0


Φd1(x) =

[
0 0 · · · 0

}
r

1 0 0 · · · 0
}
r

0 0
]

Φd2(x) =

[
0 0 · · · 0

}
r

0 0 0 · · · 0
}
r

1 0
]

Φφ1(x) =

[
0 0 · · · 0

}
r

0 0 0 · · · 0
}
r

0 x
L1

]

Φφ2(x) =

[
0 0 · · · 0

}
r

0 0 0 · · · 0
}
r

0 x
L2

]

(35)

where r is the number of modes. As with all vibrating systems, when the equilibrium
position is taken as the initial position, gravity can be removed from the right side of the
equation. The system dynamic equation is obtained via the Lagrange equation,

d
dt

(
∂T
∂Q

)
− ∂T

∂Q
+

∂U
∂Q

+
∂V
∂Q

= F (36)

The equation of motion of the helicopter tail rotor driveline system can be obtained by
combining the rub impact forces of the three stages and Equation (35), then the equation of
motion can be written in matrix form as follows

M
..
Q + (Cn + Cct + ΩiG)

.
Q + (K−ΩiKct)Q = meΩ2eiΩt − Fcn + FIII + FII + FP + Fa + N (37)

where

M = MS + MD

MS =
∫ L1

0

(
ρ1 A1Φ1

TΦ1 + ρ1 I1Φ
′
1

TΦ
′
1+2ρ1 I1Φ

′
φ1

TΦ
′
φ1

)
dx +

∫ L2
0

(
ρ2 A2Φ2

TΦ2 + ρ2 I2Φ
′
2

TΦ
′
2+2ρ2 I2Φ

′
φ2

TΦ
′
φ2

)
dx

+
su1
∑

i=1

[
mh1,i Φ1

TΦ1
∣∣
x=Lh1,i

+ ρh1 Ihz1,iΦ
′
1

T Φ
′
1

∣∣∣
x=Lh1,i

]
+

su2
∑

i=1

[
mh2,iΦ2

T Φ2|x=Lh2,i
+ ρh2 Ihz2,iΦ

′
2

T Φ
′
2

∣∣∣
x=Lh2,i

]
+ JLΦ

′
2

T Φ
′
2

∣∣∣
x=L2

MD = Θ1,2md1Φd1
TΦd1 + Θ2,2md2Φd2

TΦd2

G = 2ρ1 I1
∫ L1

0 Φ
′
1

TΦ
′
1dx +

n1
∑

i=1

[
2ρh1 Ihz1,i Φ

′
1

TΦ
′
1

∣∣∣
x=Lh1,i

]
+ 2ρ2 I2

∫ L2
0 Φ

′
2

TΦ
′
2dx +

n1
∑

i=1

[
2ρh2 Ihz2,i Φ

′
2

TΦ
′
2

∣∣∣
x=Lh2,i

]
K =

∫ L1
0

(
E1 I1Φ”

1
TΦ”

1+2Gφ1 I1Φ
′
φ1

TΦ
′
φ1

)
dx + kn1Φ1

TΦ1
∣∣
x=Ln1

+ E2 I2
∫ L2

L1

(
Φ”

2
TΦ”

2 + 2Gφ2 I2Φ
′
φ2

TΦ
′
φ2

)
dx + kn2Φ2

TΦ2
∣∣
x=Ln2

me =
∫ L1

0 er1ρAΦ1
TΦ1dx +

n
∑

i=1

[
meh,ieh,i Φ1

TΦ1
∣∣
x=Lh1,i

]
+
∫ L2

0 er2ρAΦ2
TΦ2dx +

n
∑

i=1

[
meh,ieh,i Φ2

TΦ2
∣∣
x=Lh2,i

]
Krt =

∫ L1
0

(
E1 I1Φ”

1
TΦ”

1
)
dx + Kn1Φ1

TΦ1
∣∣
x=Ln1

+ E2 I2
∫ L2

L1

(
Φ”

2
TΦ”

2
)
dx + Kn2Φ2

TΦ2
∣∣
x=Ln2

Crt = cviK

Cn = Cns + Crt

Cns = cn1Φ1
TΦ1

∣∣
x=Ln1

+ cn2Φ2
TΦ2

∣∣
x=Ln2

Cnd = Θ1,IIcd1Φd1
TΦd1 + Θ2,IIcd2Φd2

TΦd2

(38)

Considering that there is more than one sleeve, disc, and damper on one shaft in this or
other systems, the subscript i represents the i-th sleeve, disc, or damper. M, Cn, Crt, G, K, Krt
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denote the matrix composed of each mode of mass, nonrotating external damping, rotating
viscous internal damping, gyroscopic moment, stiffness, and additional stiffness due to
viscous internal damping in the rotating coordinate system, respectively. Md, Cd are the
matrix of the mass of the ring and energy dissipation in the slide of the ring in the 2nd and
3rd stages. Fcn, FII, FIII, Fp, Fa, me denote the matrix composed of each mode of the force in
rub impact, the force in the 2nd stage, the force in the 3rd stage, the force caused by parallel
misalignment, angular misalignment, and the force caused by eccentricity, respectively,

Fcn = Θ1,IFcn1(Φ
T
1 −Θ1,IIΦ

T
d1)+Θ2,IFcn2

(
ΦT

2 −Θ2,IIΦ
T
d2

)
FII = Θ1,II(1−Θ1,III)F1,II + Θ2,II(1−Θ2,III)F2,II

FIII = Θ1,IIΘ1,IIIF1,III + Θ2,IIΘ2,IIIF2,III

Fp = FpΦT
1c − FpΦT

2c

Fa = FaΦT
1c − FaΦT

2c

N = NΦT
1s

(39)

To distinguish, the Roman numerals representing the damping stage are placed in the
second place of the subscript. For convenience, we define

ΦT
c2 = ΦT

2

∣∣∣
x=Lcp2

, ΦT
c1 = ΦT

1

∣∣∣
x=Lcp1

, ΦT
h1 = ΦT

1

∣∣∣
x=Lh1

, ΦT
h2 = ΦT

2

∣∣∣
x=Lh2

, ΦT
1s = ΦT

2

∣∣∣
x=0

(40)

Θ1,I, Θ1,II, Θ1,III and Θ2,IΘ2,II, Θ2,III are the Heaviside conditions for the 1st, 2nd and
3rd stage of shaft 1 and shaft 2, respectively,

shaft 1 : Θ1,I =

{
1
∣∣(Φh1 −Φd1)Q

∣∣ ≥ δ1,A
0
∣∣(Φh1 −Φd1)Q

∣∣ < δ1,A
, Θ1,II =

{
1 |Fc1| − FISmax ≥ 0
0 |Fc1| − FISmax < 0

, Θ1,III =

{
1
∣∣Φd1Q

∣∣− δ1,B ≥ 0
0
∣∣Φd1Q

∣∣− δ1,B < 0

shaft 2 : Θ2,I =

{
1
∣∣(Φh2 −Φd2)Q

∣∣ ≥ δ2,A
0
∣∣(Φh2 −Φd2)Q

∣∣ < δ2,A
, Θ2,II =

{
1 |Fc2| − FIISmax ≥ 0
0 |Fc2| − FIISmax < 0

, Θ2,III =

{
1
∣∣Φd2Q

∣∣− δ2,B ≥ 0
0
∣∣Φd2Q

∣∣− δ2,B < 0

(41)

It should be noted that Θ1,II and Θ2,II determine whether the damping ring moves,
that is, whether the degree of freedom of the system increases. And they are related as
Md, Cd in Equation (38). Fc, F2, F3 all involve four independent Heaviside conditions,
but the logical relationship of the four conditions forms the condition of the existence of
Fc, F2, F3. For example, Θ1,IIΘ1,III means only if Θ1,II and Θ1,III are satisfied, F1,III will appear.
Θ1,IIΘ1,IIIF1,III + Θ2,IIΘ2,IIIF2,III means F1,III, F2,III are independent of each other, they do
not necessarily appear at the same time. These force matrices consist of the following
force vectors:

Fc1 = Kcn1(ωw1)(1+iµdhsgn(vc1))(Φh1 −Φd1)Q
(

1− δ1,A

|(Φ1−Φd1)Q|

)
Fc2 = Kcn2(ωw2)(1+iµdhsgn(vc2))(Φh2 −Φd2)Q

(
1− δ2,A

|(Φ2−Φd2)Q|

)
vcn1 =

∣∣(Φh1 −Φd1)Q
∣∣ωw1 + ΩRh, vcn2 =

∣∣(Φh2 −Φd2)Q
∣∣ωw2 + ΩRh

F1,II =
εF1,IIstmax,Φd1Q

|Φd1Q| , F1,III = K1,III(1−
δ1,B

|Φd1Q| )Φd1Q

F2,II =
εF2,IIstmaxΦd2Q

|Φd2Q| , F2,III = K2,III(1−
δ2,B

|Φd2Q| )Φd2Q

F1,IIstmax, = c f Fpr1(µ1 + µ2), F2,IIstmax = c f Fpr2(µ1 + µ2)

(42)

where FN0,1, FN0,2 are the pre-tightening forces of damper 1 and damper 2. θ1 = ωw2/
∣∣Φh1Q

∣∣
and Kcn1(ωw1) take the place of Kcn1(θ1) in Equation (29).
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Fp, Fa consist of the parallel and angular misalignment force vectors,

Fp = kp

[
(OA′ − Rcp)eiΩt + (Rcp −OB′)ei(Ωt+ 2π

3 ) + (Rcp −OC′)ei(Ωt+ 4π
3 )
]

Fa = (|DZ sin(Ωt) sin(ϑz)|+ |DY cos(Ωt) sin(ϑz)|)ei(Ωt+π) +
(∣∣DZ sin(Ωt + 2π

3 ) sin(ϑZ)
∣∣+ ∣∣+DY cos(Ωt + 2π

3 ) sin(ϑY)
∣∣)ei(Ωt+ 2π

3 +π)

+
(∣∣∣DZ sin(Ωt + 4π

3 ) sin(ϑZ)
∣∣∣+ ∣∣∣DY cos(Ωt + 4π

3 ) sin(ϑY)
∣∣∣)i(Ωt+ 4π

3 +π)

(43)

Regardless of the speed fluctuation, ϕLcp is replaced by Ωt. The other coefficients can
be found in Section 2.2 above, where

vcp = <(ΦT
c1Q−ΦT

c2Q), wcp = =(ΦT
cp1Q−ΦT

cp2Q)

θZcp = −=(Φ′T
cp1Q−Φ

′T
cp2Q), θYcp = <(Φ′T

cp1Q−Φ
′T
cp2Q)

(44)

where < and = denote the real part and the imaginary part, respectively.
The uncertainty of the model is a factor to be considered in engineering modeling. In

this work, the uncertainty comes from some unexpected parameter changes, such as the
looseness or abrasion of the installation part or the insensitivity region of the element, and
the change of parameters with time in the operation process of the helicopter tail driveline.
However, due to the frequent maintenance of the helicopter, all parts will be tested to
keep them in a reasonable and safe range, and worn parts will be replaced. Therefore,
this uncertainty has not attracted attention. However, it must be taken into account if
this model is extended to engineering application in some harsh environments with the
long-term operation.

4. Simulations and Results

The varying collision angle θ determines the impact stiffness. In the 2nd and 3rd stages,
the nonlinear restricted force acting on the ring varies with the direction of vibration. Moreover,
the expression of F3 is a varying parametric equation attributed to KIII; more precisely, α
varies with the displacement of the ring. Therefore, Equation (37) is classified strictly as a
nonconservative nonautonomous system, whose solution is usually sought by the numerical
integration method, including the Euler, Runge-Kutta, and Adams-Bashforth methods.

Runge–Kutta found that the calculation speed is low for Equation (37), especially
in the 3rd stage; in contrast, the method of Adams–Bashforth is faster since there are
fewer mathematical calculations but with lower accuracy. The Adams–Bashforth and
Runge–Kutta methods are both based on Taylor series expansion and replace the higher-
order terms in the expansion with linear terms. The Adams–Bashforth method retains the
expansion to the second order and replaces the second derivative with the difference. To
improve accuracy, this paper uses the difference method to replace the third derivative.
However, since the solution of a time step depends on the previous two steps, this method
cannot start at t = 0 but starts with the Runge–Kutta method of the same order.

The implemented procedure is listed in Figure 8. It uses k to circulate and calculate
the response of the double shaft. One hundred-time steps per rotational cycle are used to
obtain reliable results, and the former six modes are selected for this continuous system. To
guarantee that the data being used is in the steady-state, the previous two-hundred-time
series data have been neglected. The results of the next hundred-time series are reserved
for carrying out the analysis. The parameters are from a helicopter tail rotor driveline, as
described in Table 2.
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Table 2. System parameters.

Parameter Value/Unit Parameter Value/Unit

L1, L2 3653, 3514 mm Ls1, Ls2 1965, 1757 mm
Lc1, Lc2 3642, 11 mm Ln1, Ln2 76, 76 mm
E1, E2 72 GPa A1, A2 747 mm2

cs 0.0001 N s/m I1, I2 1.633 × 106 mm4

ρsh 7850 kg/M3 ρ1, ρ2 2700 kg/m3

er1, er2 0.05%, 0.04% a 7.47 × 10−4 m2

δ1,1, δ1,2 2 mm δ1,2, δ2,2 1.44 mm
Cd1, Cd2 160 N s/m Rs 0.06705 m
Kn1, Kn2 150 kN/m md1, md2 0.4925 kg

Ksp 23.17 kN/m mh1, mh2 0.3033 kg
meh1, meh1 0 eh1, eh2 0

c f 0.8 Isz1 2.055 × 10−3 m4 m2

Eh 1.7 × 1011 Pa υh 0.3
Rh 70 mm Ed 9 × 108 Pa
υd 0.4 Rd 72 mm
kp 1 × 104 kN/m ka 1.1 × 104 kN m/rad

µ1, µ2, µ3, µ4, µ5, µhd 0.19, 0.19, 0.25, 0.2, 0.2, 0.15
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4.1. Dynamics of Multiple Vibration Suppression

To demonstrate the theoretical analysis of the damping characteristics, taking the
pre-tightening force as the control variable, the dynamic responses of multiple vibration
suppression of the shaft (we use the sleeve center to represent the shaft segment center
at Lh) and ring are investigated in detail. To eliminate the interference of misalignment,
the static angular and parallel misalignment is set to 0. The natural frequencies of the two
shafts are close to each other, and the first critical speed is delayed due to the restriction
of the damping ring. The analysis in this part is at a speed that is slightly later than the
natural frequency.

A sufficiently large pre-tightening force of Fpr = 200N is set to make the damper work
in the 1st stage and make the ring stationary. The response in the dynamics of shaft 1
and shaft 2 is shown in Figure 9. Due to the different impact stiffnesses around the ring,
as shown in Table 1, its displacement orbits are similar to one closed circle with slight
deformation. Almost no amplitude fluctuations appear in the time-domain waveform. All
of them indicate that synchronous full annular rub impact has occurred.
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Figure 9. Displacement orbits and time-domain waveforms at the Z-axis of (a) shaft 1 and (b) shaft 2, Fpr = 200N, 1.08ωn1.

Reducing Fpr to 110 N, Figure 10 illustrates the response of two shafts as well as two
dampers. The orbits of the two shafts are similar to an annulus with deformation, but the
rub impact of shaft 2 is more serious, which can also be seen from the frequency spectrum.
Several points converge in the Poincaré map. The orbits of two rings are similar to polygons
whose maximum amplitudes are less than the gaps δ1,II and δ2,II, so both dampers work
in the 2nd stage. The eccentric signal component, which is harmonic with the rotating
frequency (1×) in shafts, is dominant, while the other components are not obvious. The
spectrum of the ring has superharmonic orders (2×, 3×, and 4×). Amplitude fluctuations
in the time−domain waveform of the ring are more serious than those in the shaft. All
these results demonstrate that the damper is more greatly affected by the rub impact force
than the shaft.
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Figure 10. Displacement orbits, frequency spectrum, Poincaré map and time-domain waveform at the Z-axis: (a) shaft 1, (b) shaft 2, (c)
damper 1, and (d) damper 2, Fpr = 110N, 1.08ωn1.

Further reducing the pre-tightening force will enlarge the maximum amplitude of
the shaft and the ring, which is greater than the gap δ1,B. Therefore, damper 1 works
in the 3rd stage, as displayed in Figure 11a. Due to the small eccentricity of shaft 2,
damper 2 still works in the 2nd stage, as displayed in Figure 11b. It is noteworthy that
the norm of the displacement vector, namely, the amplitude of the sleeve and ring, has
a relationship

∣∣(Φh1 −Φd1)Q
∣∣ ≈ δ1,A, which signifies that the phase difference between

them is approximately equal to 0. Compared with the irregular orbits in the 2nd stage as
shown in Figure 10, the dampers return to a circular ring, which implies that their chaotic
behavior has been reduced.
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Figure 11. Displacement orbits and frequency spectra of (a) shaft 1 and shaft 2, (b) damper 1 and damper 2,
Fpr = 20N, 1.08ωn1.

A more chaotic response appears in shaft 2 than in shaft 1. Accordingly, the chaotic
degree of damper 2 is larger than that of damper 1. Since the damping ring contains a
self-lubricating material, the low friction coefficient on the surface results in a relatively
stable periodic solution compared with the rub impact in the traditional rotor-stator. Both
damper 1 and damper 2 are approximately in full annular rub in the 1st and 3rd stages,
while they are in partial rub in the 2nd stage. In ref. [33], the intermittent contact caused
by partial rub leads to greater wear. Therefore, adjusting the pre-tightening force not only
improves the damping performance but also ameliorates the wear property.

The vibration response of the shaft is output by multi-mode superposition as Equa-
tion (34). This is one of the differences between this paper and ordinary rotor/stator
response. Ordinary rub impact model [7,8] lumps the mass in middle. While in this work,
the shaft with mass, elasticity, and internal damping distribution of shaft is considered.
In addition, the motion of the stator, that is, the damping ring, is not considered in the
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ordinary rub impact model. In this work, the motion of the shaft, as well as the damping
ring and the stiffness provided by itself are taken into account.

With increasing speed, the amplitude of the shaft is sufficient enough to contact the
ring, as depicted in Figure 12. The rub-impact occurs at p 1 with a damping effect to
restrict the upsurge of the amplitude, seen from the change in the curve slope. The damper
is motionless, namely, it is in the 1st stage and the first rub-impact. The amplitudes of
the shaft and damper increase slowly along with the impact until the spring preload is
insufficient to restrict the ring. Afterward, it starts to move with amplitude uprush since the
speed increases after breaking through static friction (>sliding friction), corresponding to p
2 (enters the 2nd stage). Then, the amplitude of damper 1 reaches δ1,B and is maintained
since the chamfer on the sleeve clings to the fillet on the plate.

∣∣(Φh1 −Φd1)Q
∣∣ > δ1,A,

and the amplitude of shaft 1 continues to increase due to the elastic deformation of the
ring. After that, bushing overcomes the spring preload from the plate, and it enters the
3rd stage (p 3) with amplitude uprush, the second rub impact interacts with the first rub
impact (r2 & r1). After exceeding the critical speed, the phase difference between eccentric
excitation and the response changes from positive to negative. The decrease in energy
leads to a jump (p 4) from the 3rd stage to the 2nd stage, followed by another jump (p 5)
from continuous rub impact to the separation of the sleeve and the ring. The shaft returns
to periodic motion. The numerical simulation results demonstrate the accuracy of the
theoretical analysis of multiple vibration suppression. The analytical model developed
in this work can reflect the practical system. The natural frequency of shaft 2 is larger
than that of shaft 1, and the rotation speed at the beginning of damping is also larger.
The vibration suppression of the two dampers is not synchronized in the same parameter
settings, resulting in different stages at the same speed. Due to the difference in eccentricity,
the maximum amplitude of shaft 2 is not as large as that of shaft 1, and damper 2 does
not enter the 3rd stage, the interaction of the first and second rub-impact won’t happen.
Therefore, the vibration reduction effect of shaft 2 is better under the same spring preload.
The amplitudes of damper 2 and shaft 1 also increase in steps and decrease in steps.
These stage changes involve the condition transformation of the two shafts mentioned in
Equation (41), accompanied by the changes of the degree of freedom and the rub impact
equation, especially in the dual rub impact, the interaction of the shaft, damping ring,
and plate have a transfer relationship. As a result, the classical method for solving rotor
dynamics is not applicable in this example, only the improved Adams–Bashforth can meet
the requirements of accuracy and speed.
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Figure 12. The amplitudes of (a) shaft 1 and damper 1 and (b) shaft 2 and damper 2, Fpr = 20 N. (s−shaft, d−damper, s0—no
contact stage, s1—the 1st stage, s2—the 2nd stage, s3—3rd stage, r1—the first rub−impact, r2—the second rub−impact).
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As mentioned above, the motion of the stator (damping ring) is involved, the rub
impact motion, which is composed of the two mutual motions, can be independent of
each other when they are separated, forming different bifurcation degrees. Increasing
the pre-tightening force can improve the damping capacity, but the bifurcation of the
system is also more serious. Setting Fpr = 110N, bifurcation diagrams of shaft 1, damper
1, shaft 2 and damper 2 in the Z-axis direction varying with rotating speeds from 100 to
300 rad/s (955–2895 rpm) are depicted in Figures 13 and 14. In the 1st stage, the shaft
still has a periodic solution. The damper has one point at one speed, and these points do
not form a line. It can be understood that the impact force is not enough to maintain the
ring’s continuous movement, so the damper works between the 1st and 2nd stages. With
increasing speed, it converts to the 2nd stage (p 2), and then the dynamic behavior of the
shaft and damper bifurcate into chaotic motion. Even if the damper is more greatly affected
by rub impact than the shaft, it does not enter chaos through a period-doubling bifurcation
cascade as the common rotor-stator, due to the low friction coefficient on the surface of the
damping ring. At the end of the rub impact, the trajectory of the damper exhibits scattered
points again.
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Figure 13. Bifurcation diagrams of (a) shaft 1 and (b) damper 1 in the Z-axis direction, Fpr = 110N.
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Figure 14. Bifurcation diagrams of (a) shaft 2 and (b) damper 2 in the Z-axis direction, Fpr = 110N.

4.2. Misalignment Effect of Flexible Diaphragm Coupling
4.2.1. Angular and Parallel Misalignment

It is found that eccentricity is the dominant component of the response signal at the
critical speed. The misalignment has a greater impact on the system response far away
from the critical speed, where the amplitude is less than the clearance δ1,I, δ2,II; then, the
influence of rub impact can also be eliminated. The vibration responses of two shafts with
flexible diaphragm couplings subject to static and dynamic misalignment at speeds close
to 5ωn1/6 are depicted in Figures 15–17.
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Figure 17. Vibration with angular and parallel misalignment vi = 0.1 mm, wi = 0.2 mm and ϑZi= 0.005 rad,ϑYi= 0.01 rad
of shaft 1 at 5ωn1/6.

Figure 15 shows triangle displacement orbits and superposition of the trigonometric
functions in the time-domain waveform. Its frequency spectrum illustrates that only the
1st and 2nd harmonic frequencies appear when there is only parallel misalignment, and
the magnitude of the second harmonic component in both directions is the same even if
the parallel misalignment in the Z-axis is larger. Angular misalignment resulted in the
3rd harmonic frequency, as shown in Figure 16. The angle around the Z-axis is twice that
around the Y-axis, which brings about twice harmonic component. Angular misalignment
and parallel misalignment usually coexist in practice. This effect is shown in Figure 17.
The displacement orbits present an ‘8’ shape. The frequency spectrum is the superposition
of those in Figures 15 and 16. This indicates that the two effects are not intercoupling with
each other. The misalignment effect is more severe in shaft 2 since its eccentricity is smaller
than that of shaft 1, but its response characteristics are similar to those of shaft 1. The above
characteristics caused by misalignment can also be inferred from Equations (14) and (23).

Figure 18 shows subcritical harmonic resonance. When the rotating speed of the shafts
reaches ωn/3, the vibration of the two shafts is excited by an angular misalignment force
whose frequency is exactly equal to ωn, as shown in Equation (23). Therefore, the 3×
component is much larger than the 1× and 2× components. Its displacement orbits are
similar to three elliptic loops. Similarly, if the speed reaches ωn1/2, resonance is excited by
a 2× parallel misalignment force, as shown in Figure 18b.
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Figure 18. Resonance of shaft 1 at (a) ωn1/3 and (b) ωn1/2 due to parallel and angular misalignment with
vi = 0.2 mm, wi = 0.4 mm and ϑZi= 0.007 rad,ϑYi= 0.014 rad.

4.2.2. Static Misalignment

Assuming that two shafts connected by coupling are rigid and do not produce dy-
namic deflection, there is only static misalignment. The response conducted by static
misalignment is displayed in Figure 19.
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Figure 19. Vibration with static angular and parallel misalignment for shaft 1 at 5ωn1/6.

It is found that there is no wide difference between static misalignment and dynamic
misalignment by comparing Figures 17 and 19 in this system. This is due to the mode
of the shaft near the first critical speed, resulting in a small dynamic offset at both ends
of the shaft. The amplitude in Figure 17 is smaller than that in Figure 19. The vibration
energy is relatively small when there is only static misalignment. The characteristics of
static misalignment are also described in ref. [31]. If the dynamic misalignment is set to 0
in Equations (10) and (16), a flexible coupling model suitable for static misalignment can
be obtained.

Compared with the proposed model with only static misalignment [31,32] or angular
misalignment [29,30], this model takes dynamic misalignment caused by the offset of the
flexible shaft during rotation and static misalignment into account, covers the cases of
parallel and angular misalignment. Therefore, it provides a more accurate, comprehensive
and universal framework.

4.3. Coeffect of Misalignment and Vibration Suppression

The system will produce a complex vibration response under forces from rub impact,
eccentricity, restriction on the damping ring, and angular and parallel misalignment when
misalignment and vibration suppression coexist. This coeffect is analyzed and shown
in Figure 20.
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Figure 20. Displacement orbits, Poincaré map and time-domain waveform, power spectrum or frequency spectrum at
the Z-axis for (a) shaft 1 (b) shaft 2 (c) damper 1 and (d) damper 2, where Fpr = 200N, vi = 0.1 mm, wi = 0.2 mm,
ϑZi= 0.007 rad,ϑYi= 0.014 rad at 1.08ωn1.

The rub-impact situations with and without misalignment are compared, i.e.,
Figures 9 and 20. The former is in the 1st stage, and the latter is in the 2nd stage. This illus-
trates that misalignment enhances the vibration energy of the system at resonance, and the
same pre-tightening force can no longer limit the static state of the damping ring. Misalign-
ment also aggravates rubbing between the sleeve and damping ring, whose displacement
orbits change from a single loop to annuluses, and the Poincaré map reveals more scattered
points. The power spectrum demonstrates the rub-impact and misalignment motion of
the shaft, as marked by clear peaks. In the damper, this coeffect results in an irregular
time-domain waveform and abundant components of frequency not only in 2×− and 3×−
order but also in other orders. The general research always regards the stiffness around
the stator as the same, because they only care about the local surface stiffness. Another
contribution of this paper is that deformation properties of the stator (the damping ring)
are involved in the rub impact stiffness to provide practical situation. The difference in the
anti-deformation stiffness along the damping ring can be clearly shown in Figure 20d. The
bottom stiffness is large, and the curve in the bottom is close to the circle, which is also
reflected in Section 3.2.2.

The misalignment, coexistence of rub impact and misalignment, and misalignment
occur in order in the process from start-up to spanning the first critical speed. The waterfall
diagram of the process is analyzed in detail. The case of shaft 2 is similar to that of shaft 1,
which will not be repeated.
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The response in the case of only rub impact from vibration suppression is shown in
Figure 21. Shaft 1 presents a relatively stable periodic solution under eccentric dominance.
There are obvious integer order and non-integer order frequencies in damper 1 in all
rub-impact processes. The restraining force on the damping ring is always counteracted by
the rub-impact force in the 2nd stage, which indicates that these frequency components are
exactly caused by rub impact.
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Figure 21. Waterfall plot of the vibration suppression of (a) shaft 1 and (b) damper 1 for FN0 = 200N.

In the case of the only misalignment, 1×, 2×, and 3× frequencies are predominant, as
displayed in Figure 21. Especially at low speed, the proportion of misalignment is larger
because the eccentricity at this speed is insignificant. Resonances also appear at speeds of
ωn1/3, ωn1/2 due to misalignment and eccentricity, as marked with red rings in Figure 22.
This can be mutually verified with Figure 18.

The response in the case of coexistence of rub impact and misalignment is depicted
in Figure 23. Compared with the only misalignment in Figure 22, the vibration peak of
the shaft is delayed by the restriction of the damper. Compared with only rub impact in
Figure 21a, the proportion of misaligned signal components (relative to 1×) of the shaft
increases, and 2× is obviously amplified. At the same time, the degree of rub impact
is more significant, especially in the damper, compared with Figures 21b and 23b. The
remarkable feature is displayed in Figure 23b. Abundant non-integer orders appear in
the damper at the beginning and end of the vibration reduction process. In view of the
findings above, rub impact and misalignment can stimulate each other and increase their
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components. This leads to more serious rub impact and lower system stability, resulting in
more irregular orbits of the shaft and damper.
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5. Experimental Verification

There are two purposes for conducting the experiments in this work: the first purpose
is to demonstrate the theoretical analysis of the dynamic model of the system, and the
second is to verify the response characteristics. A test rig composed of two major shafts,
two minor shafts, two dry friction dampers, some discs, a foundation, a motor, brakes,
couplings, bearing blocks, sensors, acquisition devices and a computer, is designed to
approach the helicopter tail rotor driveline in accordance with the principle of similarity,
as shown in Figure 24 and Table 3. Eccentricity is added on the discs, whose weight is
relatively small compared with the common rotor test rig to make the modes of the major
shaft close to those in practice. The gasket is placed on the bottom of the bearing housing to
achieve misalignment of the two major shafts. The dry friction damper is equivalent to the
mini version of the original damper with the same material composition and processing
technology ring to ensure the same function and key structure to the greatest extent.
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Table 3. Parameters of the components.

Components Material Composition Value

Shaft 1 and shaft 2 steel Φ10 × 700 mm, Φ10 × 1000 mm, elastic modulus 211 GPa,
Poisson’s ratio 0.31, and internal damping 0.001 N s/m

Disc and sleeve steel Φ78 × 34 mm, Φ16 × 20 mm,
Hexagon diaphragm coupling steel 8 × 104 N/m 6 × 104 N m/rad

damping ring graphite, POB and PTFE R 16.2 × T 3.6 ×W 5.2 mm
Bearing Left and right: stiffness 40 kN/m, damping 25 N s/m

Unbalance in the disc Left and right: 2.5 g, eccentricity distance 35 mm
motor and control constant acceleration from 10 to 2000 rpm in 20 s

Experimental tests were conducted on the test rig with a 1 × 104 Hz sampling fre-
quency, and the results of the data analysis are shown in Figure 24.

After setting the angular and parallel misalignment and dismantling the dampers,
2×− and 3×− order frequency components appear in the waterfall display, as shown in
Figure 25a. Before the first critical speed, resonance occurs at ωn/3, ωn/2. After installing
dampers and removing the misalignment gaskets, vibration is reduced to a smaller range,
slightly greater than the clearance value (0.1 mm), as shown in Figure 25b. A small number
of super harmonic orders (2×, 3×, and 4×) are caused by rub impact, presenting only
during the first critical speed. Finally, the response under misalignment and damping is
depicted in Figure 25c. Compared with Figure 25a, its 2×− and 3×− order components
are significantly larger, especially in the first critical speed stage, as marked by the red
areas. Compared with Figure 25b, more abundant components appear in the 4× and
5× orders. Non-integer order signal components appear at the beginning and end of
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the vibration reduction process. The characteristics of these experimental responses are
similar to the simulation results, which demonstrate the accuracy of the dynamic model
and simulation above.
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6. Conclusions

This work aims to provide a model foundation and theoretical support for the analysis
of the parameter configuration of the helicopter tail drivelines. To this end, a dynamic
model of the system consisting of the shaft with continuous internal damping, elasticity
and mass distribution, the flexible diaphragm coupling subject to parallel and angular
misalignment, and the dry friction damper characterized by multiple stages with transfer
conditions and variable DOFs is established. Numerical simulations are carried out by
the improved Adams–Bashforth method, in which the calculation accuracy and speed are
comprehensively considered. The experimental results demonstrate the accuracy of the
dynamic model and simulation. The following valuable phenomena have been revealed:

(1) The vibration response in every vibration suppression stage is analyzed. The vibra-
tion suppression of the two dampers is not synchronized for the same parameter
settings. Single rub impact occurs in the 1st and 2nd stage, dual rub-impact with
interaction occurs in the 3rd stage. The amplitudes of shaft 1, shaft 2, damper 1, and
damper 2 have step increases and step decreases. Full annual rub between the sleeve
and damping ring occurs in the 1st and 3rd stages, while partial rub occurs in the
2nd stage. The amplitude bifurcation spanning the critical speed indicates that the
transformation conditions are consistent with the theoretical analysis. The analytical
model developed in this work can reflect the practical system. Even if the damper is
more greatly affected by rub impact than the shaft, the degree of chaos is mild due to
the low friction coefficient on its surface.

(2) Parallel misalignment and angular misalignment result in 2nd and 3rd harmonic
frequencies, respectively. In addition, they are not intercoupled with each other.
Resonances also appear at the 1/3, 1/2 first critical speed due to misalignment. The
vibration energy in the case of only static misalignment is smaller than that coexisting
of static and dynamic misalignment, but the characteristics are similar.

(3) In the case of the coexistence of rub impact and misalignment, both of them can
stimulate each other and increase their components relative to the eccentricity. How-
ever, misalignment still accounts for most of the frequency spectrum of the shaft. In
addition, more severe instability and more serious rub impact can be demonstrated
from more high-frequency components appearing in the damper.
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Nomenclature

Nomenclature

ρ, E density, elastic modulus

δ clearance

I cross-sectional transverse moment of inertia

T, D, V kinetic, dissipation, and strain energy

K stiffness

J lumped inertia

L length

γ unit pulse function

u, v, w vibration displacement in X Y Z

F force, vector

F force, scalar

Q amplitude vector of deflection

N torque

υ poisson’s ratio

c damping coefficient

ϑ angular misalignment

Ω , φ rotating speed and rotation angle of the shaft

α the angle between the tangent of contact point A in the fillet on the plate and the vertical line

ϕ the rotation angle of rotating coordinate

ε the ratio of static friction to dynamic friction coefficient on the surface of the ring

O center

Φ modal function

R radius

θ the angle around Z-axis

e eccentricity

Θ Heaviside function,

m quality

ωw whirling angular velocity of the shaft

µdh the friction coefficient between the damping hole and sleeve

d, rm the distance from pipe to contact point A and arc radius of the fillet on the plate.

µ1, µ2 static friction coefficients between the ring and plate, the ring and base

µ3, µ4, µ5 friction coefficients between bushing and plate, bushing and base, pipe and plate, respectively.

Subscript

1 or 2 shaft 1 or shaft 2

I, II, III the 1st, 2nd, 3rd stage

st static misalignment

cp coupling

X Z Y in X, Z, Y direction

r modal number of the shaft

vi viscous internal damping

n bearing block

h sleeve

rt in the rotating coordinate frame

s shaft

d damper

N0 pre-tightening

sp spring

φ torsion around X-axis

cn contact

N normal direction

T tangential direction

a angular misalignment

p parallel misalignment
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Appendix A

The ring is assumed to move upward, and the components are represented by solid
lines and dotted lines before and after moving, respectively. Enlarging the detailed view
of Figure 5, the relationship between the position of each component in the dry friction
damper as well as the generated forces in the 3rd stage, as shown in Figure A1.
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where , md r  are the vertical distance from pipe to contact point B and arc radius of the 
fillet on the plate at B. 
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Firstly, the plate is analyzed separately to meet the equation of
fc = µ3 fe

fb = µ5( fe sin α + fc cos α)
fb + 2× FN + fc sin α = fe cos α

(A1)

The expression of the total spring force FN after compression is as follows:

Fp = Fpr + Ksp(|Qd| − δB) tan α (A2)

Then the force on the bushing in the 3rd stage is expressed as the product of stiffness
and displacement in the vertical direction,

K3(|Qd| − δ2) = ( f f + fe sinα) (A3)

where
f f = fa + fc cosα = µ4( fe cosα− µ3 fe sinα) + µ3 fe cosα (A4)

Combing Equations (A1)–(A4), it gets,

KIII =
2
[
FN0 + Ksp(|Qd| − δB) tan α

]
[(µ3 + µ4) cos α + (1− µ4µ3) sin α]

(|Qd| − δ2)[(1− µ5µ3) cos α− (µ3 + µ5) sin α]
(A5)

where µ3, µ4, µ5 are the friction coefficients between the bushing ring and the plate, the
bushing ring and the base, the pipe and the plate, respectively. Furthermore,

α = sin−1
(

d− (|Qd| − δB)

rm

)
(A6)

where d, rm are the vertical distance from pipe to contact point B and arc radius of the fillet
on the plate at B.
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