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1. Introduction

The theory of fractional differential equations has recently acquired plentiful circu-
lation and great significance because of its rife applications in the fields of science and
engineering as a mathematical model. For instance, see the books [1–7].

Within the past years, there have propounded various notions about fractional deriva-
tives. Here, we point out to the most famous kinds, including Liouville, Caputo, Hadamard,
Caputo-Fabrizio derivatives and etc. In consequence, this has led to different structures
of arbitrary order differential equations formulated by several fractional operators. How-
ever, it has been understood that the most efficient procedure to discuss such a variety of
fractional operators is to accommodate generalized structures of fractional operators that
involve many other operators (see [8–12]).

In [13], Khalil et al. introduced a new interesting fractional derivative definition called
conformable derivative. This new fractional derivative is not a fractional derivative, but
it is simply a first derivative multiplied by an additional simple factor. Therefore, this
new definition seems to be a natural extension of the classical derivative. More properties
and a modified type of this derivative were explored in [14]. Anderson and Ulness [15]
proposed a modified conformable derivative by utilizing proportional derivatives. In fact,
they proposed the modified conformable (proportional) differential operator of order $ as

PD
$
t φ(t) = κ1($, t)φ(t) + κ0($, t)φ

′
(t),
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where the function φ is differentiable at t, φ
′
= dφ

dt and κ0, κ1 : [0, 1] × R → [0, ∞) are
continuous functions of the variable t and the parameter $ ∈ [0, 1] which satisfy the
following conditions for all t ∈ R:

lim
$→0+

κ0($, t) = 0, lim
$→1−

κ0($, t) = 1, κ0($, t) 6= 0, $ ∈ (0, 1], (1)

lim
$→0+

κ1($, t) = 1, lim
$→1−

κ1($, t) = 0, κ1(κ, t) 6= 0, $ ∈ [0, 1). (2)

This newly defined local derivative tends to the original function as the order $ tends
to zero. Thus, they were able to improve the conformable derivatives.

In [16], Jarad et al. exhibited a new type of fractional operators produced from the
modified conformable derivatives. Later, Jarad et al. [17,18] proposed a new more general
form of the proportional derivative of a function φ with respect to a certain continuously
differentiable and increasing function ϑ. The kernel obtained in their investigation con-
tains an exponential function and is function dependent (more details about the newly
proportional derivative can be seen in Section 2). For the interest of readers, we attract their
attention to some recent papers [19–21].

Recently, a new class of mathematical modelings based on hybrid fractional differential
equations with hybrid or non-hybrid boundary value conditions have accomplished a large
inquisitiveness of many researchers using different techniques (see, for example, [22–25]).
Fractional hybrid differential equations can be employed in modeling and describing
non-homogeneous physical phenomena that take place in their form. The importance of
hybrid differential equations lies in the fact that they include various dynamical systems as
particular cases. This class of differential equations includes the derivative of unknown
function hybrid with the nonlinearity depending on it.

Furthermore, hybrid differential equations arise from a variety of different areas of
applied mathematics and physics, e.g., in the deflection of a curved beam having a constant
or varying cross section, a three-layer beam, electromagnetic waves or gravity driven flows
and so on (see [26–29]).

Dhage and Lakshmikantham [30] had precedence in dealing with first-order hybrid
differential equations, namely{

d
dt

(
x(t)

f (t,x(t))

)
= g(t, x(t)), a.e. t ∈ J0,

x(t0) = x0 ∈ R,

where f : J0 ×R → R\{0}, g : J0 ×R → R are continuous functions and J0 = [t0, t0 + a]
is a bounded interval in R for some t0 and a ∈ R with a > 0. Under mixed Lipschitz
and Carathèodory conditions, they established some fundamental hybrid differential
inequalities that are useful for the existence of extremal solutions.

Soon after that, Zhao et al. [31] studied the fractional hybrid differential equations
with Riemann–Liouville differential operator{

D
q
0+

(
x(t)

f (t,x(t))

)
= g(t, x(t)), t ∈ [0, T],

x(0) = 0,

where D
q
0+ is the Riemann-Liouville fractional derivative of order 0 < q < 1, f : [0, T]×

R→ R\{0} and g : [0, T]×R→ R are continuous functions.
Many articles have been devoted to the hybrid fractional differential equations and

inclusions. Before we proceed, we assemble some works in this regard. Baleanu et al. [32]
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investigated the results on the existence of solutions for the fractional hybrid differential
equations and inclusions:

CDr
0

(
z(τ)

ρ(τ,z(τ))

)
= κ(τ, z(τ)), τ ∈ [0, 1],

CDr
0

(
z(τ)

ρ(τ,z(τ))

)
∈ H(τ, z(τ)), τ ∈ [0, 1],

supplemented by the three-point integral boundary conditions
z(0) = 0,(

z(τ)
ρ(τ,z(τ))

)
τ=0

+ Id
0

(
z(τ)

ρ(τ,z(τ))

)
τ=η

= 0, η ∈ (0, 1),(
z(τ)

ρ(τ,z(τ))

)
τ=0

+ Id
0

(
z(τ)

ρ(τ,z(τ))

)
τ=1

= 0,

where CDr
0 is the Caputo derivative operator of the fractional order r ∈ (2, 3], Id

0 is the
Riemann–Liouville integral operator of the fractional order d > 0, ρ : [0, 1]×R→ R\{0},
κ : [0, 1]×R→ R are continuous functions andH : [0, 1]×R→ P(R) is a multivalued map
(P(R) is the family of all nonempty subsets of R). Authors established the existence results
for above hybrid problems by means of Dhage’s nonlinear alternative of Schaefer type.

In [33], Sitho et al. studied the initial value problems for hybrid fractional integro-
differential equations:Dα

0+

(
x(t)−∑m

i=1 I
βi hi(t,x(t))

f (t,x(t))

)
= g(t, x(t)), τ ∈ [0, T],

x(0) = 0,

where Dα
0+ denotes the Riemann–Liouville fractional derivative of order 0 < α ≤ 1, and

Iβi is the Riemann–Liouville fractional integral of order βi > 0, f : J ×R → R\{0} and
g : J ×R→ R are continuous functions. Based on hybrid fixed point theorems for the sum
of three operators, the authors proved the main results.

Stimulated by the above papers, we study a new class of hybrid fractional differential
equation with fractional proportional derivatives of a function with respect to a certain
continuously differentiable and increasing function. Indeed, we consider the following
hybrid fractional problem:

aD
δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
= Φ(t, u(t)), t ∈ J := [a, b],

aI
1−δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
t=a

= λ ∈ R,
(3)

where 0 < δ ≤ 1, $ ∈ (0, 1], aD
δ,$,ϑ is the proportional fractional derivative of order δ with

respect to a certain continuously differentiable and increasing function ϑ with ϑ
′
(t) > 0

for all t ∈ J, aI
1−δ,$,ϑ is the left proportional fractional integral of order (1 − δ) with

respect to a continuously differentiable and increasing function ϑ, Ψ : J ×R→ R\{0} and
Φ : J ×R→ R are continuous functions.

Furthermore, the study of fractional differential equations in terms of their inputs
(fractional orders, associated parameters, and appropriate function) has attracted interested
researchers due to its significance in experimental process (see [34,35]). Based on this, the
topic of continuity of solution of the hybrid fractional problem (3) with respect to inputs is
important and worth considering.

The rest of the paper is organized as follows: In Section 2, we recall some useful
preliminaries. In Section 3, we give equivalent fractional integral equation to the linear
issue of the hybrid fractional differential Equation (3), while in Section 4, we prove the
main existence result in this paper. In Section 5, we establish the sufficient conditions under
which solutions of the hybrid fractional differential Equation (3) depend continuously on
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initial conditions and other parameters. In order to confirm the validity of the theoretical
findings, a simulative numerical example is given in Section 6.

2. Preliminaries

In this section, we recall some basic definitions, lemmas, and properties of the frac-
tional proportional derivative and integral of a function with respect to a certain function.
The terms and notations are taken from [17,18].

Definition 1. (The proportional derivative of a function with respect to a certain function) Take
$ ∈ [0, 1] and let the functions κ0, κ1 : [0, 1]×R→ [0, ∞) be continuous such that for all t ∈ R
we have

lim
$→0+

κ1($, t) = 1, lim
$→0+

κ0($, t) = 0, lim
$→1−

κ1($, t) = 0, lim
$→1−

κ0($, t) = 1,

and κ1($, t) 6= 0, $ ∈ [0, 1), κ0($, t) 6= 0, $ ∈ (0, 1]. Let ϑ(t) be a continuously differentiable and
increasing function. Then, the proportional differential operator of order $ of φ with respect to ϑ is
defined by

D$,ϑφ(t) = κ1($, t)φ(t) + κ0($, t)
φ
′
(t)

ϑ
′(t)

. (4)

For the restricted case when κ1($, t) = 1− $ and κ0($, t) = $, (4) becomes

D$,ϑφ(t) = (1− $)φ(t) + $
φ
′
(t)

ϑ
′(t)

. (5)

Remark 1. It is useful to mention that the derivative of the function φ in Equation (4) is with
respect to another function ϑ. So, one can be sure that

dφ

dϑ
=

dφ/dt
dϑ/dt

=
φ
′

ϑ
′ .

The corresponding integral of (5) is

aI
1,$,ϑφ(t) =

1
$

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

φ(s)ϑ
′
(s)ds. (6)

where we confess that aI
0,$φ(t) = φ(t). For more details, see [17].

Definition 2. (The proportional integral of a function with respect to a certain function)
Take $ ∈ (0, 1], δ ∈ C, <(δ) > 0, ϑ ∈ C1[a, b], ϑ

′
(t) > 0. The left and right fractional integrals

of the function φ ∈ L1[a, b] with respect to another function ϑ are defined by

aI
δ,$,ϑφ(t) =

1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1φ(s)ϑ
′
(s)ds, (7)

I
δ,$,ϑ
b φ(t) =

1
$δΓ(δ)

∫ b

t
e

$−1
$ (ϑ(s)−ϑ(t))

(ϑ(s)− ϑ(t))δ−1φ(s)ϑ
′
(s)ds, (8)

respectively.

Definition 3. Take $ ∈ (0, 1], δ ∈ C, <(δ) > 0, ϑ ∈ C[a, b], ϑ
′
(t) > 0. The left fractional

derivative of the function φ ∈ Cn[a, b] with respect to another function ϑ is defined by

aD
δ,$,ϑφ(t) = Dn,$,ϑ

aI
n−δ,$,ϑφ(t)

=
D

n,$,ϑ
t

$n−δΓ(n− δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))n−δ−1φ(s)ϑ
′
(s)ds, (9)
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and the right fractional derivative of φ with respect to ϑ as

D
δ,$,ϑ
b φ(t) = 	D

n,$,ϑI
n−δ,$,ϑ
b φ(t)

=
	Dn,$,ϑ

$n−δΓ(n− δ)

∫ b

t
e

$−1
$ (ϑ(s)−ϑ(t))

(ϑ(s)− ϑ(t))n−δ−1φ(s)ϑ
′
(s)ds, (10)

where n = [<(δ)] + 1, Dn,$,ϑ = D$,ϑD$,ϑ · · ·D$,ϑ︸ ︷︷ ︸
n times

and

	D
$,ϑφ(t) := (1− $)φ(t)− $

φ
′
(t)

ϑ
′(t)

, 	D
n,$,ϑ = 	D

$,ϑ
	D

$,ϑ · · · 	D$,ϑ︸ ︷︷ ︸
n times

.

Lemma 1. [17] If $ ∈ (0, 1], <(δ) > 0 and <(ν) > 0. Then, for φ is continuous and defined for
t ≥ a, we have

aI
δ,$,ϑ

(
aI

ν,$,ϑφ
)
(t) = aI

ν,$,ϑ
(

aI
δ,$,ϑφ

)
(t) =

(
aI

δ+ν,$,ϑφ
)
(t), (11)

I
δ,$,ϑ
b

(
I

ν,$,ϑ
b φ

)
(t) = I

ν,$,ϑ
b

(
I

δ,$,ϑ
b φ

)
(t) =

(
I

δ+ν,$,ϑ
b φ

)
(t). (12)

Lemma 2. [17] If $ ∈ (0, 1], <(δ) > 0 and n = [<(δ)] + 1. Then, for φ is integrable on t ≥ a
or t ≤ b, we have

aD
δ,$,ϑ

aI
δ,$,ϑφ(t) = φ(t), (13)

D
δ,$,ϑ
b I

δ,$,ϑ
b φ(t) = φ(t). (14)

Lemma 3. [18] Let <[δ] > 0, n = −[−<(δ)], φ ∈ L1[a, b] and (aI
δ,$,ϑφ)(t) ∈ ACn[a, b].

Then

aI
δ,$,ϑ

aD
δ,$,ϑφ(t) = φ(t)− e

$−1
$ (ϑ(t)−ϑ(a))

n

∑
j=1

(aI
j−δ,$,ϑφ)(a+)

(ϑ(t)− ϑ(a))δ−j

$δ−jΓ(δ + 1− j)
. (15)

For 0 < δ ≤ 1, we have

aI
δ,$,ϑ

aD
δ,$,ϑφ(t) = φ(t)− e

$−1
$ (ϑ(t)−ϑ(a))

(aI
1−δ,$,ϑφ)(a+)

(ϑ(t)− ϑ(a))δ−1

$δ−1Γ(δ)
. (16)

Lemma 4. [18] Let δ, ν ∈ C be such that <(δ) ≥ 0, <(ν) > 0 and n = [<(δ)] + 1. Then, for
any $ > 0, we have

1.
(

aI
δ,$,ϑe

$−1
$ ϑ(x)

(ϑ(x)− ϑ(a))ν−1
)
(t) = Γ(ν) e

$−1
$ ϑ(t)

$δΓ(ν+δ)
(ϑ(t)− ϑ(a))δ+ν−1,<(δ) > 0.

2.
(
I

δ,$,ϑ
b e−

$−1
$ ϑ(x)

(ϑ(b)− ϑ(x))ν−1
)
(t) = Γ(ν) e−

$−1
$ ϑ(t)

$δΓ(ν+δ)
(ϑ(b)− ϑ(t))δ+ν−1,<(δ) > 0.

3.
(

aD
δ,$,ϑe

$−1
$ ϑ(x)

(ϑ(x)− ϑ(a))ν−1
)
(t) = $δΓ(ν) e

$−1
$ ϑ(t)

Γ(ν−δ) (ϑ(t)− ϑ(a))ν−1−δ,<(δ) ≥ 0.

4.
(
D

δ,$,ϑ
b e−

$−1
$ ϑ(x)

(ϑ(b)− ϑ(x))ν−1
)
(t) = $δΓ(ν) e−

$−1
$ ϑ(t)

Γ(ν−δ) (ϑ(b)− ϑ(t))ν−1−δ,

<(δ) ≥ 0.

Remark 2. In view of Definition 3 and for 0 < δ ≤ 1, it is noted that(
aD

δ,$,ϑe
$−1

$ ϑ(x)
(ϑ(x)− ϑ(a))δ−1

)
(t) = 0.



Symmetry 2021, 13, 264 6 of 16

To end this section, we define the supremum norm ‖ · ‖ in E := C(J,R) by ‖u‖ =
supt∈J |u(t)| and the multiplication in E by

(uv)(t) = u(t)v(t), u, v ∈ E, t ∈ J.

Plainly, E is a Banach algebra with respect to the supremum norm and multiplication in it.

Lemma 5. [36] Let Ω be a nonempty, closed convex and bounded subset of a Banach algebra E and
Let A : E→ E and B : Ω→ E be two operators satisfying:

(i) A is Lipschitzian with Lipschitz constant µ,

(ii) B is completely continuous,

(iii) u = AuBv⇒ u ∈ Ω for all v ∈ Ω,

(iv) µL < 1, where L = ‖B(Ω)‖ = supu∈Ω ‖B(u)‖.

Then, the operator equation u = AuBu has a solution in Ω.

3. Existence Results

In this section, we show the existence results for the hybrid fractional problem (3) by
virtue of hybrid fixed point theorem for a product of two operators in a Banach algebra
due to Dhage [36] (see Lemma 5).

We begin this section by the following essential definition of the mild solution of the
hybrid fractional problem (3).

Definition 4. A function u ∈ C(J,R) is said to be a mild solution of the hybrid fractional
problem (3) if the function t 7→ u

Ψ(t,u) is continuous for each u ∈ R and u satisfies the fractional
integral equation

u(t) =Ψ(t, u(t))

λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1w(s)ϑ
′
(s)ds

]
. (17)

Now, we consider the following linear issue of the hybrid fractional problem (3):
aD

δ,$,ϑ
(

u(t)
Ψ(t,u(t))

)
= w(t), t ∈ J,

aI
1−δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
t=a

= λ,
(18)

where w is a continuous real-valued function defined on J.

Lemma 6. Let 0 < δ ≤ 1 and w ∈ C(J). The linear hybrid fractional problem (18) has a solution
u ∈ C(J,R), if and only if the fractional integral Equation (17) is solvable, and their solutions
coincide.

Proof. ⇒ Assume that u satisfies (18). Then,
(

u(t)
Ψ(t,u(t))

)
is continuous and we get that

aD
δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
exists.

Applying the proportional fractional integral aI
δ,$,ϑ(·) to both sides of (18) and using

Lemma 3, one has
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u(t)
Ψ(t, u(t))

=aI
δ,$,ϑw(t) +

e
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

aI
1−δ,$,ϑ

(
u(t)

Ψ(t, u(t))

)
t=a

.

In virtue of the boundary condition aI
1−δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
t=a

= λ, the fractional integral
Equation (17) is obtained.

⇐ Conversely, assume that u satisfies (17). By definition, the function t 7→ u(t)
Ψ(t,u(t)) is

continuous for each u ∈ C(J,R+) and hence almost everywhere differential on J. Then
dividing by Ψ(t, u(t)), one has

u(t)
Ψ(t, u(t))

=
λe

$−1
$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1w(s)ϑ
′
(s)ds. (19)

Operating the proportional fractional derivative aD
δ,$,ϑ(·) on both sides of (19) and

using Lemma 2 with Remark 2, one obtain that

aD
δ,$,ϑ

(
u(t)

Ψ(t, u(t))

)
=aD

δ,$,ϑ

λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+ aD
δ,$,ϑ

aI
δ,$,ϑw(t)

=w(t).

Thus, (18) is satisfied. Furthermore, using (6) and the results in Lemmas 1 and 4,
one has

aI
1−δ,$,ϑ

(
u(t)

Ψ(t, u(t))

)
=aI

1−δ,$,ϑ

λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+ aI
1−δ,$,ϑ

aI
δ,$,ϑw(t)

=λe
$−1

$ (ϑ(t)−ϑ(a))
+ aI

1,$,ϑw(t).

Substitution t = a leads to aI
1−δ,$,ϑ

(
u(t)

Ψ(t,u(t))

)
t=a

= λ. This finishes the proof.

For investigating the main results, the following assumptions will be imposed.

(A1) The functions Ψ : J ×R→ R\{0} and Φ : J ×R→ R are continuous.

(A2) For u, v ∈ R, for all t ∈ J, there exists a bounded function p : J → R+ such that

|Ψ(t, u)−Ψ(t, v)| ≤ p(t)|u− v|,

with p∗ = supt∈J |p(t)|.

(A3) For u ∈ R, for all t ∈ J, there exist a function q ∈ C(J,R+) and a continuous
non-decreasing function H : [0, ∞)→ [0, ∞) such that

|Φ(t, u)| ≤ q(t)H(|u|),

with q∗ = supt∈J |q(t)|.
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Theorem 1. Assume that the assumptions (A1)–(A3) are satisfied. Then, the hybrid fractional
problem (3) has a mild solution on J, provided that

p∗Λ = p∗
(
|λ|(ϑ(b)− ϑ(a))δ−1

$δ−1Γ(δ)
+

q∗(ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
H(k)

)
< 1. (20)

Proof. Define,
k = Ψ0Λ(1− p∗Λ)−1, (21)

where Ψ0 = supt∈J |Ψ(t, 0)|. In view of condition (20), k > 0.
Set E = C(J,R) and define a subset Ω of E by

Ω = {u ∈ E : ‖u‖ ≤ k}.

Clearly, Ω is a closed convex bounded subset of the Banach algebra E.
In view of Lemma 6, we deduce that the mild solution of the hybrid fractional prob-

lem (3) is equivalent to the fractional integral equation

u(t) =Ψ(t, u(t))

λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds

]
, t ∈ J. (22)

Define two operators A : E→ E and B : Ω→ E by

Au(t) =Ψ(t, u(t)), t ∈ J,

Bu(t) =
λe

$−1
$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1 +

1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds, t ∈ J.

Therefore, the equivalent fraction integral Equation (22) to the hybrid fractional
problem (3) can be transformed into the following operator equation:

u = AuBu, u ∈ E.

We shall show that the operators A and B fulfill all stipulation of Lemma 5. The proof
will be given in the following steps.

Step 1. The operator A is Lipschitzian on E.

For any u, v ∈ E and each t ∈ J, using (A2), one has

|Au(t)−Av(t)| =|Ψ(t, u(t))−Ψ(t, v(t))|
≤p(t)|u(t)− v(t)|
≤p∗‖u− v‖.

This leads to ‖Au−Av‖ ≤ p∗‖u− v‖. Thus, the operator A is Lipschitzian on E.

Step 2. The operator B is continuous on Ω.

Take a sequence {un} ⊂ Ω and u ∈ Ω such that ‖un − u‖ → 0 as n → ∞. For each
t ∈ J and $ ∈ (0, 1], one has
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|Bun(t)−Bu(t)| ≤ 1
$δΓ(δ)

∫ t

a

∣∣∣∣e $−1
$ (ϑ(t)−ϑ(s))

∣∣∣∣(ϑ(t)− ϑ(s))δ−1|Φ(s, un(s))−Φ(s, u(s))|ϑ′ (s)ds

≤ 1
$δΓ(δ)

∫ t

a
(ϑ(t)− ϑ(s))δ−1‖Φ(·, un(·))−Φ(·, u(·))‖ϑ′ (s)ds

≤ (ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
‖Φ(·, un(·))−Φ(·, u(·))‖.

Therefore, the continuity of Φ implies that the operator B is continuous on Ω.
Step 3. The operator B is uniformly bounded in Ω.

For each t ∈ J, u ∈ Ω and $ ∈ (0, 1], using (A3), one has

|Bu(t)| ≤ |λ|
$δ−1Γ(δ)

∣∣∣∣e $−1
$ (ϑ(t)−ϑ(a))

∣∣∣∣(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a

∣∣∣∣e $−1
$ (ϑ(t)−ϑ(s))

∣∣∣∣(ϑ(t)− ϑ(s))δ−1|Φ(s, u(s))|ϑ′(s)ds

≤ |λ|
$δ−1Γ(δ)

(ϑ(t)− ϑ(a))δ−1 +
1

$δΓ(δ)

∫ t

a
(ϑ(t)− ϑ(s))δ−1q(s)H(|u(s)|)ϑ′(s)ds

≤|λ|(ϑ(b)− ϑ(a))δ−1

$δ−1Γ(δ)
+

q∗(ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
H(k) := Λ.

Thus, we get ‖Bu‖ ≤ Λ, for all u ∈ Ω. This proves that B is uniformly bounded in Ω.

Step 4. B(Ω) is equicontinuous in E.

For t1, t2 ∈ J, t1 < t2 and u ∈ Ω, using (A3), we have

|Bu(t2)−Bu(t1)| ≤
|λ|

$δ−1Γ(δ)

∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(a))

(ϑ(t2)− ϑ(a))δ−1 − e
$−1

$ (ϑ(t1)−ϑ(a))
(ϑ(t1)− ϑ(a))δ−1

∣∣∣∣
+

1
$δΓ(δ)

∣∣∣∣∣
∫ t2

a
e

$−1
$ (ϑ(t2)−ϑ(s))

(ϑ(t2)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds

−
∫ t1

a
e

$−1
$ (ϑ(t1)−ϑ(s))

(ϑ(t1)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds

∣∣∣∣∣
≤ |λ|

$δ−1Γ(δ)

∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(a))

(ϑ(t2)− ϑ(a))δ−1 − e
$−1

$ (ϑ(t1)−ϑ(a))
(ϑ(t1)− ϑ(a))δ−1

∣∣∣∣
+

1
$δΓ(δ)

[ ∫ t1

a

∣∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(s))

(ϑ(t2)− ϑ(s))δ−1 − e
$−1

$ (ϑ(t1)−ϑ(s))
(ϑ(t1)− ϑ(s))δ−1

∣∣∣∣∣
× |Φ(s, u(s))|ϑ′(s)ds +

∫ t2

t1

∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(s))

∣∣∣∣(ϑ(t2)− ϑ(s))δ−1|Φ(s, u(s))|ϑ′(s)ds

]

≤ |λ|
$δ−1Γ(δ)

∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(a))

(ϑ(t2)− ϑ(a))δ−1 − e
$−1

$ (ϑ(t1)−ϑ(a))
(ϑ(t1)− ϑ(a))δ−1

∣∣∣∣
+

q∗H(k)
$δΓ(δ)

[ ∫ t1

a

∣∣∣∣∣e $−1
$ (ϑ(t2)−ϑ(s))

(ϑ(t2)− ϑ(s))δ−1 − e
$−1

$ (ϑ(t1)−ϑ(s))
(ϑ(t1)− ϑ(s))δ−1

∣∣∣∣∣ϑ′(s)ds

+
1
δ
(ϑ(t2)− ϑ(t1))

δ

]
.
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Thus, the right-hand side of the above inequality tends to zero independently of u ∈ Ω as
t2 → t1. Hence, from the Steps 2–4 and the Ascoli–Arzelà theorem, we conclude that the
operator B is a completely continuous on Ω.

Step 5. The condition (iii) of Lemma 5 holds.
Let u ∈ E and v ∈ Ω be arbitrary elements such that u = AuBv. Then, one obtains that

|u(t)| ≤|Au(t)||Bv(t)|

≤|Ψ(t, u(t))|
( |λ|∣∣∣∣e $−1

$ (ϑ(t)−ϑ(a))
∣∣∣∣

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a

∣∣∣∣e $−1
$ (ϑ(t)−ϑ(s))

∣∣∣∣(ϑ(t)− ϑ(s))δ−1|Φ(s, v(s))|ϑ′(s)ds

)

≤|(Ψ(t, u(t))−Ψ(t, 0)) + Ψ(t, 0)|
(

|λ|
$δ−1Γ(δ)

(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a
(ϑ(t)− ϑ(s))δ−1q(s)H(|v(s)|)ϑ′(s)ds

)

≤(p∗|u(t)|+ Ψ0)

(
|λ|(ϑ(b)− ϑ(a))δ−1

$δ−1Γ(δ)
+

q∗(ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
H(k)

)
=(p∗|u(t)|+ Ψ0)Λ,

which leads to
|u(t)| ≤ Ψ0Λ

1− p∗Λ
.

Hence, by (21), we get
‖u‖ ≤ Ψ0Λ(1− p∗Λ)−1 = k.

Step 6. The condition (iv) of Lemma 5 holds.

We shall show that µL < 1, where µ = p∗ and L = ‖B(Ω)‖.

Since, L = ‖B(Ω)‖ = supu∈Ω

{
supt∈J |Bu(t)|

}
≤ Λ. Then, µL ≤ p∗Λ < 1. Thus, all

the conditions of Lemma 5 hold true, and hence the operator equation u = AuBu possesses
at least one solution in Ω. Consequently, the hybrid fractional problem (3) has at least one
solution in J. This finishes the proof.

4. Continuous Dependence on Parameters

In this section, our major intent is to set up sufficient conditions under which solutions
of the hybrid fractional problem (3) depend continuously on initial conditions and other
parameters. Let us consider the parameterized hybrid fractional problem

aD
δm ,$m ,ϑm

(
um(t)

Ψ(t,um(t))

)
= Φ(t, um(t)), t ∈ J,

aI
1−δm ,$m ,ϑm

(
um(t)

Ψ(t,um(t))

)
t=a

= λm,
(23)

where 0 < δm ≤ 1, $m ∈ (0, 1], λm ∈ R and ϑm ∈ C(J,R) with ϑ
′
m > 0.

In view of Lemma 6, we infer that the solution of the parameterized hybrid fractional
problem (23) is given by
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um(t) =Ψ(t, um(t))

λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1

+
1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))

(ϑm(t)− ϑm(s))
δm−1Φ(s, um(s))ϑ

′
m(s)ds

]
, t ∈ J. (24)

To achieve the desired goal in this section, we will impose the following assumption:

(A4) For u, v ∈ R, for all t ∈ J, there exists a constant LΦ > 0 such that

|Φ(t, u(t))−Φ(t, v(t))| ≤ LΦ|u(t)− v(t)|.

We set

Λm :=
|λm|(ϑm(b)− ϑm(a))δm−1

$δm−1
m Γ(δm)

+
q∗(ϑm(b)− ϑm(a))δm

$δm
m Γ(δm + 1)

H(‖um‖),

and

Ξ :=
LΦ(ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
.

Theorem 2. Let 0 < δm ≤ 1, $m ∈ (0, 1], λm ∈ R and ϑm ∈ C(J,R) with ϑ
′
m > 0. Assume

that the assumptions (A1)–(A4) are fulfilled. If

(δm, $m, λm)→(δ, $, λ), as m→ ∞, (25)

‖ϑm − ϑ‖ →0, as m→ ∞, (26)

‖ϑ′m − ϑ
′‖L1[a,b] →0, as m→ ∞, (27)

p∗Λm + Ξ < 1. (28)

Then the parameterized hybrid fractional problem (23) has at least one solution um ∈ C(J,R)
such that

‖um − u‖ → 0, as m→ ∞.
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Proof.

|um(t)− u(t)| =
∣∣∣∣∣Ψ(t, um(t))

λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1

+
1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))(ϑm(t)− ϑm(s))

δm−1Φ(s, um(s))ϑ
′
m(s)ds

]

−Ψ(t, u(t))

λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

+
1

$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds

]∣∣∣∣∣
≤
∣∣∣∣Ψ(t, um(t))−Ψ(t, u(t))

∣∣∣∣
{
|λm|(ϑm(t)− ϑm(a))δm−1

$δm−1
m Γ(δm)

+
1

$δm
m Γ(δm)

∫ t

a
(ϑm(t)− ϑm(s))

δm−1∣∣Φ(s, um(s))
∣∣ϑ′m(s)ds

}

+
(
|Ψ(t, u(t))−Ψ(t, 0)|+ |Ψ(t, 0)|

){∣∣∣∣∣λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1

−λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

∣∣∣∣∣
+

∣∣∣∣∣ 1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))(ϑm(t)− ϑm(s))

δm−1Φ(s, um(s))ϑ
′
m(s)ds

− 1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1Φ(s, u(s))ϑ
′
(s)ds

∣∣∣∣∣
}

≤p(t)|um(t)− u(t)|
{
|λm|(ϑm(t)− ϑm(a))δm−1

$δm−1
m Γ(δm)

+
1

$δm
m Γ(δm)

∫ t

a
(ϑm(t)− ϑm(s))

δm−1q(s)H(|um(s)|)ϑ
′
m(s)ds

}

+

(
p(t)|u(t)|+ |Ψ(t, 0)|

){∣∣∣∣∣λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1

−λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

∣∣∣∣∣
+

∣∣∣∣∣ 1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1ϑ
′
(s)

∣∣∣∣∣|Φ(s, um(s))−Φ(s, u(s))|ds
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+

∣∣∣∣∣ 1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))

(ϑm(t)− ϑm(s))
δm−1ϑ

′
m(s)

− 1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1ϑ
′
(s)

∣∣∣∣∣|Φ(s, um(s))|ds

}

≤p∗‖um − u‖
{
|λm|(ϑm(b)− ϑm(a))δm−1

$δm−1
m Γ(δm)

+
q∗(ϑm(b)− ϑm(a))δm

$δm
m Γ(δm + 1)

H(‖um‖)
}

+

(
p∗‖u‖+ Ψ0

){∣∣∣∣∣λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1

−λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

∣∣∣∣∣+ LΦ(ϑ(b)− ϑ(a))δ

$δΓ(δ + 1)
‖um − u‖

+q∗H(‖um‖)
∣∣∣∣∣ 1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))

(ϑm(t)− ϑm(s))
δm−1ϑ

′
m(s)

− 1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1ϑ
′
(s)

∣∣∣∣∣ds

}
.

Therefore, we get(
1− p∗Λm − Ξ

)
‖um − u‖

≤
(

p∗‖u‖+ Ψ0

){∣∣∣∣∣λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1 − λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

∣∣∣∣∣
+q∗H(‖um‖)

∣∣∣∣∣ 1

$δm
m Γ(δm)

∫ t

a
e

$m−1
$m (ϑm(t)−ϑm(s))(ϑm(t)− ϑm(s))

δm−1ϑ
′
m(s)

− 1
$δΓ(δ)

∫ t

a
e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1ϑ
′
(s)

∣∣∣∣∣ds

}

≤
(

p∗‖u‖+ Ψ0

){∣∣∣∣∣λme
$m−1

$m (ϑm(t)−ϑm(a))

$δm−1
m Γ(δm)

(ϑm(t)− ϑm(a))δm−1 − λe
$−1

$ (ϑ(t)−ϑ(a))

$δ−1Γ(δ)
(ϑ(t)− ϑ(a))δ−1

∣∣∣∣∣
+q∗H(‖um‖)

[∣∣∣∣∣ 1

$δm
m Γ(δm)

− 1
$δΓ(δ)

∣∣∣∣∣ (ϑm(b)− ϑm(a))δm

δm

+
1

$δΓ(δ)

∫ b

a

∣∣∣e $m−1
$m (ϑm(t)−ϑm(s))(ϑm(t)− ϑm(s))

δm−1ϑ
′
m(s)− e

$−1
$ (ϑ(t)−ϑ(s))

(ϑ(t)− ϑ(s))δ−1ϑ
′
(s)
∣∣∣ds

]
.

Hence, according to the conditions (25)–(28), we deduce that the above inequality tends to
zero as m→ ∞. This proves that ‖um − u‖ → 0 as m→ ∞. This completes the proof.

5. A Simulative Example

In this position, we prepare a simulative example with known constants and parame-
ters to illustrate the effectiveness of the obtained analytical findings.

Example 1. Consider the following hybrid fractional problem
0D

3
4 , 1

2 ,t2
(

u(t)
Ψ(t,u(t))

)
= Φ(t, u(t)), t ∈ [0, 1],

0I
1
4 , 1

2 ,t2
(

u(t)
Ψ(t,u(t))

)
t=0

= 1.
(29)
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Here, δ = 3
4 , $ = 1

2 , a = 0, b = 1 and ϑ(t) = t2.

Set Ψ(t, u(t)) = e−2t

1+7et
|u(t)|

1+|u(t)| and Φ(t, u(t)) = t2

25 cos u(t).

It is clear that the assumption (A1) is satisfied and Ψ0 = 1
8 .

Let u, v ∈ R and t ∈ [0, 1]. Then, we get

|Ψ(t, u)−Ψ(t, v)| =
∣∣∣∣ e−2t

1 + 7et

∣∣∣∣∣∣∣∣ |u(t)|1 + |u(t)| −
|v(t)|

1 + |v(t)|

∣∣∣∣
≤ e−2t

1 + 7et

∣∣∣∣ |u(t)| − |v(t)|
(1 + |u(t)|)(1 + |v(t)|)

∣∣∣∣
≤ e−2t

1 + 7et |u(t)− v(t)|.

Thus, the assumption (A2) holds true with p(t) = e−2t

1+7et and p∗ = 1
8 .

Moreover, for u ∈ R and t ∈ [0, 1], we get

|Φ(t, u(t))| =
∣∣∣∣ t2

25
cos u(t)

∣∣∣∣ ≤ t2

25
.

This implies that the assumption (A3) is fulfilled with q(t) = t2

25 , q∗ = 1
25 and

H(|u|) = 1.

By the above data, we get Λ ≈ 0.759408 and p∗Λ ≈ 0.094926 < 1. Thus, we can
choose k > 0.104882. Accordingly, all the conditions of Theorem 1 are fulfilled, the hybrid
fractional problem (29) has at least one solution on [0, 1].

6. Conclusions

In this current research paper, we intend to check the existence aspects of solutions
for a category of a new class of hybrid fractional differential equations within generalized
fractional derivatives depending on another function. With the aid of a hybrid fixed point
theorem for a product of two operators, the desired results are verified. Moreover, the
continuity of solutions in terms of inputs (fractional orders, associated parameters, and
appropriate function) has attracted interested researchers due to its significance in the
experimental process. Based on this, the topic of continuity of solution of the equation
of the class under consideration with respect to inputs is important and worth consider-
ing. A simulative example is prepared to demonstrate some applicability aspects of the
obtained results.
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