
symmetryS S

Article

On Monotonic Pattern in Periodic Boundary Solutions
of Cylindrical and Spherical Kortweg–De
Vries–Burgers Equations

Alexey Samokhin

����������
�������

Citation: Samokhin, A. On

Monotonic Pattern in Periodic

Boundary Solutions of Cylindrical

and Spherical Kortweg–De

Vries–Burgers Equations. Symmetry

2021, 13, 220. https://doi.org/

10.3390/sym13020220

Academic Editors: Jan Awrejcewicz

and Valentin Lychagin

Received: 22 December 2020

Accepted: 26 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Trapeznikov Institute of Control Scienties, Russian Academy of Sciences, 65 Profsoyuznaya Street,
117997 Moscow, Russia; a.samohin@mstuca.aero or samohinalexey@gmail.com

Abstract: We studied, for the Kortweg–de Vries–Burgers equations on cylindrical and spherical waves,
the development of a regular profile starting from an equilibrium under a periodic perturbation
at the boundary. The regular profile at the vicinity of perturbation looks like a periodical chain
of shock fronts with decreasing amplitudes. Further on, shock fronts become decaying smooth
quasi-periodic oscillations. After the oscillations cease, the wave develops as a monotonic convex
wave, terminated by a head shock of a constant height and equal velocity. This velocity depends on
integral characteristics of a boundary condition and on spatial dimensions. In this paper the explicit
asymptotic formulas for the monotonic part, the head shock and a median of the oscillating part
are found.

Keywords: Korteweg–de Vries–Burgers equation; cylindrical and spherical waves; saw-tooth solu-
tions; periodic boundary conditions; head shock wave

MSC: 35Q53; 35B36

1. Introduction

The well known Korteweg–de Vries (KdV)–Burgers equation for flat waves is of
the form

ut = −2uux + ε2uxx + δuxxx. (1)

Its cylindrical and spherical analogues are

ut +
1
2t

u = −2uux + ε2uxx + δuxxx. (2)

and
ut +

1
t

u = −2uux + ε2uxx + δuxxx. (3)

respectively, see [1,2].
The behavior of solutions of the Korteweg–de Vries (KdV) and KdV–Burgers equations

was intensively studied for about fifty years. However, these equations remain subjects
of various recent studies, mostly in the case of flat waves in one spatial dimension [3–7].
However, cylindrical and spherical waves have a variety of applications (e.g., waves
generated by a downhole vibrator), and are studied much less.

We consider the initial value boundary problem (IVBP) for the KdV–Burgers equation
on a finite interval:

u(x, 0) = f (x), u(a, t) = l(t), u(b, t) = L(t), ux(b, t) = R(t), x ∈ [a, b]. (4)
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In the case δ = 0 (that is, for the Burgers equation), it becomes

u(x, 0) = f (x), u(a, t) = l(t), u(b, t) = R(t), x ∈ [a, b]. (5)

The case of the boundary conditions u(a, t) = A sin(ωt), u(b, t) = 0 and the related
asymptotics are of a special interest here. For numerical modeling we use x ∈ [0, b] instead
of R+ for appropriately large b.

For the flat wave Burgers equation (δ = 0) the resulting asymptotic profile looks
like a periodical chain of shock fronts with a decreasing amplitude (weak breaks or
sawtooth waves). If dispersion is non-zero, each wavefront ends with high-frequency
micro-oscillations. Further from the oscillator, shock fronts become decaying smooth quasi-
periodic oscillations. After the oscillations cease, the wave develops as a constant height
and velocity shock. It almost coincides with a traveling wave solution (TWS) of the Burgers
equation [8,9].

A traveling wave solution is the solution of the form u = u(x + Vt). Such a solution
travels with a constant velocity V along the x−axis, unchanged in its form. The well-
known examples are solitons for KdV, shock waves for the Burgers equation. For the
existence of TWS for all values of the parameter V it is necessary that an equation has
Galillean symmetry.

In the case δ = 0, the Burgers equation has traveling wave solutions, vanishing
at x → +∞. They are given by the formula [10]

uB(x, t) =
V
2

[
1− tanh

(
V

2ε2 (x−Vt + s)
)]

; (6)

it is used below.
Our aim is to obtain a similar description of a long-time asymptote for cylindrical

and spherical waves with periodic boundary conditions. We demonstrate that, in the case
of the above IVBP, the perturbation of the equilibrium state for Equations (2) and (3)
ultimately takes a form similar to this shock.

This paper is organized as follows. In Section 2, we demonstrate graphs of our numer-
ical experiments for cylindrical/spherical Burgers/KdV–Burgers equations for different
combinations to show their the common patterns. In particular we demonstrate that,
after the oscillation cease, a solution becomes a monotonic convex line terminated by
a head shock.

In Section 3, we find symmetries to Equations (2) and (3). No Galilean symme-
try is found, so no real TWS exists. Then equations are brought to a conservation law
form, which is later used to obtain rough estimates for the median parameters of the
solution. This rough estimate becomes exact for constant boundary conditions, and
in Section 4, a very close asymptote for said solution is found in self-similar or homothetic
form u = u(x/t).

Yet, at the head shock this asymptotic is unsatisfactory. This head shock moves in un-
changed form and with numerically equal velocity and amplitude—exactly as the Burgers
traveling wave solution does. In Section 5, using a simple combination of a self-similar
approximation and the Burgers traveling wave solution, we obtain the compact closed form
approximation. It coincides with a solution in its monotonic part; and this approximation
correctly represents the median of the solution in its oscillating part. The quality of the
approximation is verified numerically. Connection between the velocity of the solution’s
head shock and the median value at the start is obtained.

In the section “Conclusions” we formulate main result and discuss the remaining
open questions.

2. Typical Examples

Here we demonstrate typical graphs for cylindrical and spherical Burgers waves
(see Figures 1 and 2) and for cylindrical and spherical KdV–Burgers (Figures 3 and 4).
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We obtained these graphs using the Maple PDETools package. The mode of operation used
was the default Euler method, which is a centered implicit scheme.

Figure 1. Cylindrical Burgers. ε = 0.1, Left: u0 = sin t, t = 150. Right: u0 = sin 10t, t = 200.

Figure 2. Spherical Burgers , u0 = sin t. Left: ε = 0.1, t = 150. Right: ε2 = 0.3, t = 150.

Figure 3. Cylindrical KdV–Burgars. Left: u0 = sin t, t = 300, ε = 0.1, δ = 0.001. Right: u0 = 3 sin t, t = 100, ε = 0.1,
δ = 0.001.
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Figure 4. Spherical KdV–Burgers, u0 = sin t. Left: t = 300, ε = 0.1, δ = 0.001. Right: u↔ −u, t = 300, ε2 = 0.02, δ = 0.001,
ε2 = 0.2

The solution usually starts with a periodical chain of shock fronts with decreasing
amplitudes (sawtooth waves). This weak breaks/sawtooth profile is inherent to periodic
waves in dissipative media. Sawtooth waves, their decay, amplitudes, width, etc., were
intensively studied in 1970 (see [1,2]) and later. One can also see a common pattern,
previously not described, emerging on these figures. After the decay of initial oscillations,
graphs become monotonic declining convex lines, terminated by a shock. Recall that for flat
waves this monotonic part almost coincides with a constant height traveling wave solution
of Burgers equation [7]. The new feature of convex declining lines is caused by the space
divergence. We obtain an analytical description of this pattern below.

3. Symmetries and Conservation Laws
3.1. Symmetries

Since cylindrical and spherical equations explicitly depend on time, their stock of sym-
metries is scarce. For the algorithm of symmetry calculations, see [11]. We found that
the algebras of classical symmetries are generated by the following vector fields:

X =
∂

∂x
, Y = x

∂

∂x
+ 2t

∂

∂t
− u

∂

∂u
, Z =

√
t

∂

∂x
+

1
4
√

t
∂

∂u
, W = ln(t)

∂

∂x
+

1
2t

∂

∂u
.

This list does not contain the Galilean symmetry, so no real traveling wave solu-
tion exists.

In particular, symmetry algebra for:

• Cylindrical Burgers is generated by X, Y, Z;
• Cylindrical KdV–Burgers is generated by X, Z;
• Spherical Burgers is generated by X, Y, W;
• Spherical KdV–Burgers is generated by X, W.

3.2. Conservation Laws

First rewrite Equations (1)–(3) into an appropriate conservation law form

[tn · u]t = [tn · (−u2 + ε2ux + δuxx)]x, (7)

where n = 0, 1/2, 1 for flat, cylindrical and spherical cases, respectively.
Hence, for solutions of the above equations we have∮

∂D

tn · [u dx + (ε2ux − u2 + δuxx) dt] = 0, (8)



Symmetry 2021, 13, 220 5 of 10

where D is a rectangle
{0 ≤ x ≤ L, 0 ≤ t ≤ T}.

While bearing in mind the initial value/boundary conditions u(x, 0) = u(+∞, t) = 0,
for L = +∞ the integrals read

0∫
+∞

Tnu(x, T) dx +

0∫
T

tn(ε2ux(0, t)− u2(0, t) + δuxx(0, t)) dt = 0.

Thus

+∞∫
0

u(x, T) dx =
1

Tn

T∫
0

tn(−ε2ux(0, t) + u2(0, t)− δuxx(0, t)) dt. (9)

Subsequently

1
T

+∞∫
0

u(x, T) dx =
1
T

T∫
0

1
Tn tn(−ε2ux(0, t) + u2(0, t)− δuxx(0, t)) dt. (10)

The right-hand side of Equation (10) can be computed in some simple cases or estimated.
For instance, assume that ε2ux(0, t) + δuxx(0, t) is negligible compared to u2(0, t). Then

1
T

+∞∫
0

u(x, T) dx ≈ 1
T

T∫
0

1
Tn tn(u2(0, t)) dt =

1
T

T∫
0

1
Tn tn(A sin2(ωt)) dt. (11)

It follows that

n = 0⇒ lim
T→∞

1
T

T∫
0

A2 sin2(ωt) dt == A2

2 ;

n = 1
2 ⇒ lim

T→∞
1
T

T∫
0

1

T
1
2

t
1
2 (A sin2(ωt) dt = A2

3 ;

n = 1⇒ lim
T→∞

1
T

T∫
0

1
T t(A2 sin2(ωt) dt = A2

4 .

Another example of exact estimation of right-hand side of Equation (10) is the case
of constant boundary conditions.

Consider boundary condition u(0, t) = M. The graphs of solution are shown in Figure 5,
left (compare their rates of decay caused solely by the spacial dimensions.)

For the resulting compression wave ux(0, t) = 0, the right-hand side of Equation (10) equals

1
T

T∫
0

M2

Tn tn dt =
M2

n + 1
(12)

As the Figures 1–4 show, for a periodic boundary condition, after the decay of initial
oscillations, graphs become monotonic convex lines. These convex lines break at x = V · T
and at the height V. These monotonic lines are similar to the graphs of constant-boundary
solutions; see Figure 5.
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Figure 5. Constant boundary solutions to the Burgers equation, ε = 0.1, t = 200. Left: solid line—cylindrical; dotted
line—spherical. Right: A trace of movement to the right of the spherical solution at moments t = 37.5 · k, k = 1 . . . 6.

4. Self-Similar Approximations To Solutions

By observing the solution’s graphs, one can clearly see (e.g., on Figure 5, right) that
the monotonic part and its head shock develops as a homothetic transformation of the
initial configuration (by t as a homothety parameter). Hence, we seek solutions in the
self-similar form, u(x, t) = y( x

t ). By substituting it into Equations (1)–(3), we get the
equation:

− y′
x
t2 +

ny
t

=
2yy′

t
+

ε2y′′

t2 +
δy′′′

t3 , (13)

or

− ξy′ + ny = 2yy′ +
ε2y′′

t
+

δy′′′

t2 , (14)

for y = y(ξ) and n = 0, 1/2, 1. For sufficiently large t we may omit last two terms.
It follows that appropriate solutions of these truncated ordinary differential equations are
given by

u1(x, t) = C1, C1 ∈ R, n = 0, for flat waves equation;

u2(x, t) = −2 +
√

C2ξ + 4
C2

, C2 ∈ R, n =
1
2

, for cylindrical and

u3(x, t) = exp
(

LambertW
(
− ξ

2
e−

C3
2

)
+

C3

2

)
, C3 ∈ R, n = 1 for spherical equation.

(The Lambert W function, also called the omega function or product logarithm,
is a multivalued function, namely, the branches of the inverse relation of the function
f (w) = wew, where w is any complex number.

For each integer k there is one branch, denoted by Wk(z), which is a complex-valued
function of one complex argument. W0 is known as the principal branch. When dealing
with real numbers the W0 = LambertW function satisfies LambertW(x) · eLambertW(x) =
x. The Lambert W function, introduced in 1758, has numerous applications in solving
equations, mathematical physics, statistics, etc.; for more detail, see [12].)

Let V be the velocity of the signal propagation in the medium. Since at the head
shock we have x = Vt and u = V, we obtain the condition for finding Ci. It is y(V) = V.
It follows then that

C1 = V, C2 = − 3
V

, C3 = ln(V) +
1
2

.
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For flat waves, it corresponds to a traveling wave solution of the classical Burg-
ers equation.

For the cylindrical waves, the monotonic part is given by

u2 =
1
3

(
2V + V

√
4− 3x

Vt

)
;

and for spherical waves

u3 = V
√

e exp
(

LambertW
(
− x

2Vt
√

e

))
.

Note that
u2|x=0 =

4V
3

and u3|x=0 = V
√

e ≈ 1.65V. (15)

These formulas show that the velocity is proportional to the value of a constant
boundary solution at x = 0.

The corresponding graphs visually coincide with the graphs obtained by numerical
modeling; for instance, see a comparison to the solution (at t = 100) for the problem

ut = 0.01uxx − 2uux − u/t, u(0, t) = 1, u(75, t) = 0, u(x, 0) = 0 (16)

in Figure 6, left.

Figure 6. Left: solid line—solution to Equation (16); dotted line—its u3 approximation. Right: solid line—solution to
spherical KdV, x → −x, ε2 = 0.02, δ = 0.002; dotted line—its ũ3 approximation; both at t = 200.

5. Median Approximation

Yet, the monotonic part of the periodic boundary solution ends with a breaking, which
travels with a constant velocity and amplitude, very much like the head of the Burgers’
traveling wave solution (Equation (6)). A rather natural idea is to truncate a self-similar
solution, multiplying it by a (normalized) formula for the Burgers TWS. Namely, put

• For the cylindrical waves take

ũ2 =
1
2
[1− tanh(

V
ε2 (x−Vt))] · 1

3

(
2V + V

√
4− 3x

Vt

)
; (17)
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• For spherical waves,

ũ3 =
1
2
[1− tanh(

V
ε2 (x−Vt))] ·V

√
e exp

(
LambertW

(
− x

2Vt
√

e

))
. (18)

This construction produces an approximation of astonishing accuracy (see Figure 6, right
and Figure 7); these graphs correspond to the spherical KdV–Burgers problem (it comes
from Equation) (3) after the change x → −x.

ut = 0.02uxx + 2uux − u/t− 0.002uxxx, u(0, t) = sin t, u(10, t) = 0, u(x, 0) = 0. (19)

Figure 7. Solid line—solution to spherical KdV, x → −x, ε2 = 0.02, δ = 0.002, dotted line—its ũ3 approximation; both
at t = 400.

Moreover, it is evident that the graphs of ũ2, ũ3 neatly represent the median lines
of the approximated solutions over their whole ranges. By median we mean

M(x) = (2πn/ω)−1
∫ 2πn/ω

0
u(x, t) dt, n ∈ N, n� 1 (u(0, t) = sin ωt).

Let us assess the quality of ũ2, ũ3 approximations numerically.
Evaluate the trapezoid area under ũ2, ũ3 graphs:

• For the cylindrical equation

∫ Vt

0

[
[1− tanh(V

ε2 (x−Vt))]
2

1
3

(
2V + V

√
4− 3x

Vt

)]
dx =

32
27

V2t;

• For the spherical equation

∫ Vt

0

[
[1− tanh(V

ε2 (x−Vt))]
2

V
√

e exp
(

LambertW
(
−x

2Vt
√

e

))]
dx =

V2t · e
2

.

Hence, the mean value of the left-hand side of (10) can be estimated as follows.

1
T

+∞∫
0

u(x, T) dx =
1
T

VT∫
0

u(x, T) dx ≈
{ 32

27 V2 in cylindrical case;
V2·e

2 in spherical case,
(20)
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This mean value can be also evaluated numerically. In the case illustrated by Figure 1
the direct numerical evaluation of the integral differs from the estimation (20) by 1%.
It confirms the quality of the approximation.

For constant-boundary waves, it follows from Equation (12) that

M2

n + 1
=

{ 32
27 V2 in cylindrical case;
V2·e

2 in spherical case;
(21)

see Equation (12); of course this result coincides with Equation (15). Hence, the mean value
M of an arbitrary solution at the start of oscillations (or in a vicinity of the oscillator) is
linearly linked to the velocity of the head shock.

However, to find this mean value for an arbitrary border condition is a tricky task,
because the integrands ux and uxx of the right-hand side of Equation (10) have numerous
breaks. Still, one may get an (admittedly rough) estimation for M using Equations (11)
and (21). It follows that

M2

n + 1
≈ A2

k
, k = 2, 3, 4 (22)

for flat, cylindrical and spherical cases. In all these cases it results in M ≈ A
√

2
2 ≈ 0.71A.

Numerical experiments also show (e.g., see Figure 3) that for the u|x=0 = A sin(t)
boundary condition such a value is M ≈ A · a, where a ≈ 0.467 is the mean value for
1 · sin(t) condition. That is, M depends on A almost linearly.

Note that this value may be obtained via the velocity V of the head shock, which, in
turn, can be measured with great accuracy by the distance passed by the head shock after a
sufficiently long time.

6. Conclusions

In this paper, we studied the pattern formation in periodic boundary solutions of spher-
ical and cylindrical KdV–Burgers equations. Such a solution usually starts with a periodical
chain of shock fronts with a decreasing amplitude. When oscillations decay and cease,
a solution proceeds as a monotonic convex line that ends with a head shock. This last
pattern was not described previously and it is the main subject of the paper.

We obtained simple explicit formulas describing the monotonic part of the solution
and its head break. These approximate formulas have great accuracy. Moreover, their
graphs neatly represent the median lines of the approximated solutions on their entire
ranges. (By median line we mean the level around which the periodical oscillations occur).

To obtain these approximations we used self-similar solutions of the dissipationless
and dispersionless KdV–Burgers equation and a traveling wave solution of the flat Burgers
equation. Formulas depend on only one parameter: either on the velocity of the signal
propagation or on the median value of the solution in the vicinity of the periodic boundary.

Some open questions remain. Our approximations are very good for the one-parameter
class of constant boundary solutions. The existence of a one-parameter family of solutions
points to the existence of a suitable symmetry, but the classical symmetry analysis was,
so far, unhelpful. Conservation laws allows us to assess the value of the approximation’s
parameter using the boundary condition, but the resulting estimation is rough.

Funding: This work was partially supported by the Russian Basic Research Foundation grant
18-29-10013.

Conflicts of Interest: The author declares no conflict of interest.
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Abbreviations
The following abbreviations are used in this manuscript:

KdV Korteweg–de Vries
IVBP Initial value|boundary problem
TWS Traveling wave solution
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